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The development of a nonstationary separation and coherent 
structures in a two-dimensional viscous incompressible flow 
around a body 
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Dedicated to the memory of Vladimir M. Calkin 
killed in an aircrajt crash in September 1994 

TwO-DIMENSIONAL VISCOUS incompressible flows around a circular cylinder and a 12% Zhukovsky 
airfoil arc considered. Numerous examples of complex separated flows around these bodies with co-
herent structures and detached separation generation, as well as examples of fl ow stabilization and 
separation destruction arc obtained. Numerical experiment technology based on paramctrization 
of the far-field boundary conditions and effect of sequential exclusion of the scheme parameters 
and problem statement disadvantages is proposed. 

1. Problem statement 

THE STATEMENT of the problem and solution procedure are detailed in [1 , 2]. 
'TWo-dimensional N - S equations are written in terms of the stream function 
l]i and vorticity n, which are defined by relations 11 = D!P I fJy, v = - DIJ! I Dx, 
n = Dnl fJy - Dvl fJx: 

(1.1) 

(1.2) 

where lf2 is the Jacobian of transformation of Cartesian coordinates x, y to curvi-
linear orthogonal coordinates ｾＮ＠ 7] . A grid of "0"- type obtained by a conformal 
mapping of an airfoil onto a circl e is used. Re= Uooblv is the Reynolds number, 
where Uoo is a free stream velocity, i.J is a characteristic length, 11 is coe,fncient of 
kinematic viscosity. Dimension less time l is defined by the relation t phys = t.i.J I U 00, 

where b is eiter the chord of airfoil or i.J = n is radius of the cylinder. 

Boundmy condition . On a solid body surface S the following no-sli p conditions 
are defined: 

The condition ｦｊＡｊｩｩｄｾＯｳ＠ =IT j(r7) is transformed in to a boundary condition for a 

vorti city Ds [1 , 3] by using a two-parameter approximating formula; this permits 
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us to eliminate the approximation effect on the solution accuracy and to maximize 
the iterative solution process rate by employing the procedure described in [1 ). 

Over the far boundary 500 (being about 10 chords away from the body), the 
following boundary conditions are specified: 

(1.3) ＸｦＲ ｪ Ｘｾ＠ = 0, 

(1.4) [)1[! I ｡ｾ＠ = Voo ( ｾ［＠ sin a - ｾｾ｣ｯｳ＠ a) 
- ｾ Ｚ＠ [D x sin(17-a) + Dy cos(ry- a)] - r j27r , 

where Dx, Dy and r are parameters. 
The fl ow starts from the state when the body and fluid are at rest. 

2. Method of solution 

A solution of decoupled equations of the system is used. Equation (1.1) is 
solved directly by expansion into a Fourier series in terms o f the cyclic coordi-
nate ry . 

Equation (1.2) is solved by the ADI method. Central differences for second 
derivatives and one-sided upwind differences for nonlin ear terms in (1.2) a re 
used. 

At each time step an iterative process is employed. A zonal approach used in 
[4] is appli ed. 

3. Flow past a circular cylinder 

1Wo problems are considered. 

3.1. 

Uniform fl ow around a circular cylinder in a viscous incompressible fluid that 
is preliminarily spun can serve as an interesting example. An initi ally steady flow 
around a cylinder rotating at a constant angular velocity lV in a uniform viscous 
flow has been obtained by calculation for Re = Uoo R/ v = 200 (R denotes the 
radius of the cyl inder) and Rossby number Ro = W R/Uoo = 2. In this case the 
boundary conditions o n 500 include the circulation term, as in [5, 6, 7). When the 
flow becomes steady, the cylinder is suddenly stopped. Tf we apply in this case the 
widely used argument that the velocity over S will change when cylinder-induced 
vortical disturbances carried by the fl ow reach this boundary, we conclude that 
after a long time (comparable with the distance between S and .500) , the presence 
of the vortex term in the asymptotic on Soo will be retained. 

The equi-vorticity lines are shown in Fig. 1 for the solution to N - S equa-
tions when the problem statement includes (i) no-slip boundary conditi on over 
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a) I = 16 

b) I= 18 

c) 1 = 20 

[FIG. I a, b, c] 
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d) t = 22 

e) I = 24 
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D 
f) t = 25 
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F IG . 1. 
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S for immovable cylinder, and (i i) uniform flow with circulation term over 500• 

Reversed Karrnan street is observed: a vortex A, leaving the upper side of the 
cylinder, gets down and is then found under the vortex B which has departed 
from the lower side of the cylinder; and simultaneously, all vortex street is car-
ried downwards due to the fl ow spinning effect (or upwards, if the flow has been 
spun in the opposite direction). The fir st vortices of Golubev street [8] are ob-
tained. It follows that a thrust is generated. 

The computation domain size is limit ed to 20 radii of the cylinder. Therefore 
the vortex street development is computed over a time interval L1t = 15. In this 
case it is clear that changes over S= will occur earlier than the wake will reach 
it. It is obvious that, after the initi al vortex street reversal, some time is necessary 
for the Karman street to be restored. 

To study this phenomenon, the computation domain size should be expanded 
and the problem of proper boundary conditions for S= should be solved. In 
view of technical problems, a more powerful computer than MICROVAX-2 is 
desirable. 

3.2. 

Detached separation in flow around a circular cylinder which performs angular 
oscillations about its axis in a free stream has been studied previously in [4). The 
law of oscillations is as follows: 

W = ｾａ＠ sin(w(/ - to)), 

Figure 2 a presents the equi-vorticity lin es at Re = 35. The oscillation amplitude 
A = 45°, reduced frequency A. = R/U= T = 3 (T is an oscill ation period); 
F ig. 2 b presents the streamlines. One can see a symmetrical separation region 
that is separated from the cylinder by the circular layer in which the fl ow is 
essentially unsteady. 

At Reynolds numbers as high as 200, the fl ow topology presented in Fig. 2 
is conserved [4) . Effects of scheme parameters were studied by diminishing the 
mesh steps in both space and time. 

A further study of the problem is concerned with the opportunity of flow 
stabili zation of the previously developed separated fl ow. The unsteady flow with 
a Karman street (Reynolds number Re = 200) past a circular cylinder was taken 
as an initi al state. Attempts to attain fl ow stabili zation were made with the help 
of angular oscill atio ns of the cylinder about its axis with the reduced frequency 
k = 3 at rl = 45°. Survey of the equi-vorticity lines in Fig. 3 raises the questio n 
about an intermediate separation, when detached separation with asymmetrical 
fl ow pattern alternates with the attached (conventional) separation. The vortex 
is detached from the cylinder surface by a liquid layer and the infl owing liquid 
particles do not reach the cylinder [4). To compare, one can refer to Fig. 1 drawn 
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F IG. 2. 
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b) I = 25 

c) t = 27 

F IG. 3. 
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t = 23 

b) 

t = 23 

c) 

1 = 26.025 
[F IG. 4a, b, cj 
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d) 

t = 26.55 

e) 

I = 26.9 

f) 

I = 30.225 

F iG. 4. 

[403] 



http://rcin.org.pl

404 M. N. ZAK H ARENI<OV 

for a cylinder at the same Reynolds number, but without angular oscillations. No 
differences in generation and motion of vortices are seen. Differences in geometry 
of vortices and hence in their intensity are also not observed. 

However, changing the scheme parameters results in an unexpected new type 
of flow presented in Fig. 4. In this case the calculations are stable and, with 
parameters of the finite-difference scheme being fixed, the results converge pre-
cisely to the revealed solution. Different solutions at different parameters of a 
finite-difference scheme means the lack of convergence in a strong mathematical 
sense. So some new aspects of the computational fluid dynamics theory must be 
developed. 

Small vortices generation presented in Fig. 4 reduces the intensity of primarily 
separated vortices, which move away from the cylinder, and even eliminates the 
generation of large vortices that are known as a vortex street of the Karman street 
type. A completely different topology is realized (Fig. 4). 

Note that the time interval from t = 23.0 to t = 30.225 when such changes 
have taken place, is quite short and comparable with the specific period of vortex 
generation in the Karman street. 

At Re = 35 small vortices are not generated, with any finit e-difference scheme 
parameters. A considerable growth of errors in the region of the reversal wake 
flow is observed at a time step greater than a certain value. In such a way, at this 
Reynolds number the solution converges only to the unique fl ow pattern, which 
is identifi ed as the detached separation, see Fig. 2. 

The examples presented have raised the problem of estimation of adequacy 
of a numeri cal solution to physical reality. 

4. Numerical experiment for a f1ow past an airfoil 

Numerical experiment technique was designed for the problem of flow past 
an airfoil. Primary effect of specifying the circulatio n term for a velocity over 500 

on the solution was studied. Flow past the 12% Zhukovsky airfoil with a finit e 
trailin g edge angle at Re = 104 and angle of attack o = 5° was estimated. For 
the boundary condition (1.4) Dx = Dy = 0 was specifi ed. There exists the range 
of values r = (0 : - 0.21) where the condition of pressure uniqueness over the 
trail ing edge is satisfied [9, 10]. The pressure coefficient Cp = (p - JJco)J1gU'!x, is 
presented in Fig. 5, where a) I' = 0; b) r = - 0.21; c) F = - 0.40. The vortex 
wi thin the domain limit ed by 800 is placed rather arbitrarily. For example, when 
the centre of the vortex with intensity r = - 0.21 lies on the positive OX axis 
downstream the airfoil at X, = 0.5 or X 1 = 2, we obtain the coefficient Cp 
presented in Fig. 5 d or 5 e, respectively. Pressure coefficient Cp in both cases is 
the same and close to that occurring in the s;ase with X , = 0 (Fig. 5 b). 

When an asymptote of far field flow with two vortices is specified over S'00, 

we conclude the foll owing: if the second vortex is outside the domain bounded 
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by S00, then it insignifi cantly afTects the integral characteri stics and Cp (Fig. S f, 
X 7 = 12, r = - 0.21). In this case the fir st vortex can be located inside the 
computational region (bounded by S00) arbitraril y, retaining the integral char-
acte ristics unchanged. Such a dependence of r on Soo and Cp emphasizes the 
connection of this asymptoti cs with the liftin g capabil ity o f the airfo il and makes 
it very suitable fo r modellin g these phenomena. 

The dipo le term effect was studied. For example, Fig. 6 presents the stream-
lines and the equi-vorticity lin es (Fig. 6 e) in the vicinity o f the 1/ 4 chord o f the 
12% Zhukovsky airfoil ; Reynolds number Re = 104, angle of attack a = 7.2S0

• 

Parameters in (1.4) are as fo ll ows: Dx = Dy = r = 0 (Fig. 6 a-t) and Dx = - 4, 
Dy = 4, r = - 0.20 (Fig. 6 g-1). Development of coherent vortex structures in the 
vicinity o f the trailing edge was obtained. This study is discussed in detail in [2) . 

The next step o f the investi gatio n is to study the fl ow with an increasing 
Reynolds number. Figure 7 presents the streamlines (7 a-7 f) and equi-vorticity 
lines (7 g- 71) for the 12% Zhukovsky airfoil at a = S0

, Dx = Dy = 0 and 
r = - 0.21, when the Reyno lds numbers a re the fo llowing: a), g) Re = l. S x 104

; 

b), h) Re = 2 x 104
; c) i) Re = 2.5 x 104; d), j ) Re = 3 x 104; e), k) Re = 3.5 x 104

; 

t), I) R e = 3.7S x 104• 

Considerable development o f separation over the leeward side o f the airfoil is 
observed. Reynolds number of 37SOO is the highest value at which the computatio n 
convergence in the framework of laminar fl ow is obtained (at a = S0

). In this 
experiment the computations are performed with successively increasing Re and 
the fl ow for previo us Re is the initi al condition for computations of fl ow at a next 
Re. The fact that distributions C11 over S (Fig. 8 a for Re = 1SOOO), obtained by 
integrating (along the different paths but with the same method of integration) 
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f i G. 6. 

the equation of motion, do not coincide, indicates that the solution is not quite 
correct [11] . The study in [12] for a circular cylinder rotating in viscous flow 
shows that asymptotic condition for far field flow may be properly stated so as 
to eli minate the pressure nonuniqueness. This is one of the goals of our study of 
the viscous fl ow around a body with boundary conditi ons (1.3) and (1.4), where 
the number of terms in the asymptotic expansion may be increased. 

The efTect of scheme factors and parameters of the mathematical model on 
the problem solution is studied. It has been fo und that, within the investigated 
angles-of-attack and Reynolds numbers ranges, the fl ow turbulization cannot yet 
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reduce the separation region, presented in Fig. 7. The I3oldwin-Lomax model was 
used. 

The search of explanations of the causes of the presented topology of fl ow 
around an airfoil results in constructi on of a fl ow model including a laminar 
wake [13]. In this case the theory suggests the solution in which the fl ow in 
the wake conserves (and convects) momentum losses of two types. The first o ne 
defines the drag acting on an airfoil d ue to viscous friction. The second o ne 
corresponds to lift variation. Those losses must occur within the near-wall layer 
and then be convected by the wake. In the framework of this theory, construction 
of distributed sources and sinks is necessary. 

We will synthesize the above-mentio ned theory [1 3] with the Lighthill con-
struction (14], where the near-wall layer momentum losses are simulated by dis-
tributed sources and sinks with their extension into the wake. The latter combines 
the suggestion of (13] and the model of [14] . 
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However, practical application of the part of this theory which deals with 
specification of distributed wake singularities is a difficult problem. It has been 
found that application of this model doesn't resolve yet all the difficulties which 
we have in numerical solution for the flow presented in Fig. 7. Thus, generation of 
a developed separated flow is connected with construction of a general asymptotic 
behaviour of the solution for flow around an airfoil. 

A detailed study by including additional sources, dipoles and vortex terms in 
the asymptotic expansion for velocity over S= was conducted. It is obtained that 
at least one of possible representations includes the additional asymptotics of two 
vortices with opposite signs of circulation and their centres are located inside the 
airfoil. 

0) 

-
b ) 

-
FIG. 9. 

Figure 9 a, b present the topology for Re = l .S x 104, a = S0
, and Fig. 8 b, the 

pressure distribution when the mentioned singularities are added to the initial 
state shown in Fig. 7 a, g. As we see, the flow obtained is similar to that studied 
before at Re = 104 and a = s o and is in agreement with our knowledge of 
the full-scale experiment. Note that the separation region disappears, what is 
especially clear in comparison with flow in Fig. 7. The agreement between Cp 
and cg obtained by different ways of integration [11] indicates mathematical 
accuracy of the solution obtained. 
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After the same construction, the elimination of massive separation in the fl ow 
at Re = 3.5 x 104 is obtained too. It should be no ted that the fl ow topology 
singulariti es that were presented in F ig. 7, are still o f interest to investigators 
because simil ar vortex structures are realized obviously at high angles o f attack. 

At last, Fig. 10 shows a distribution of circulation 1 along a coordinate line 
ｾ＠ = const as a function of the coord inate x at which this line intersects the positive 
Ox axis; these data indicate that, in accordance wit h the model of [13], solu tions 
can be realized when value of 1 is bounded by r given at Soo from below, see 
Fig.lO a (o = 5°, Re = 1.5 x 104

, r = - 0.21, Dx = Dy = 0) and flows where 
bl < Fl (at the same Re, Dx, Dy, but the above mentioned two vortices with 
opposite signs of circulation are included in (1.4)). The latter means that in the 
airfoil wall region there occur momentum losses resu lting in a decrease of Cy in 
comparison with that Cy defined by r in the framework of potential fl ow theory 
for an ideal fl uid. 

a) b) 
I 2 ] 4 5 6 7 I 2 ] 4 5 6 7 X 

ｲｾ＠
I I I I I ' ' 
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.I 

FIG. 10. 

It can be noted briefly that inclusion of additional vorti ces into the asymptotic 
for 500 affects signifi cantly the aerodynamic moment that is induced by the po-
tential part of the solution. This foll ows from the Chaplygin - Blasius theorem for 
an ideal fl uid . The results obtained fo r an ideal flui d are no t related directly to 
viscous fl ows, but mechanical meaning of inclusion of the mentioned singulariti es 
- to change the aerodynamic moment - is certainly the same. 

The examples presented have shown that the appli cation of the techno logy 
of the numeri cal experiment all ows us no t only to reveal disadvantages of the 
problem statement but also to eliminate the diffi culti es. The results concerning 
the fl ow past the circular cylinder present new problems that couldn' t be studied 
earli er in the framework of numerical experiments. 
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