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On the existence of solutions for two-dimensional Stokes flows 
past rigid obstacles 

M. KOHR-ILE (CLUJ-NAPOCA) 

I N n us PAPER we obtain some existence and uniqueness propert ies for the solution corresponding 
to the problem of the plane unbounded Stokes fl ow past rigid obstacles. The stream function of 
the flow is represented in the form of simple layer potentials. 

1. Introdu ction 

IN SOME PREVI OUSLY published papers [5, 6, 7], the autho rs treated the problem of 
an unbounded two-dimensional viscous flow past an arbitrary obstacle, using the 
method of matched inner and outer expansions of the corresponding solutio n. 
These results were then generalized to the three-dimensional case. 

The purpose o f this paper is to present a method for studying the problem of 
the Sto kes fl ow past some rigid two-dimensional obstacles, using the properties 
of simp le layer potentials. 

Let N ｾ＠ 2 be the number of obstacles denoted by Di , i = 1, N, J2 denoting the 
region exteri or to these obstacles. The fl ow is described by the velocity u and the 
pressure p. We suppose that u --+ Ui, p --+ p as lxl - , where x = x1 i + x2 j , 
and U, p are prescri bed constants. Using the dimension less vari ables: x' = xI l, 
u' = ul U, p' = l(p - Poo)l JLU and the Reyno lds number Re = glU I l l, where l is 
a characteristic length, JL the dynamic viscosity, and g the fluid density, then u' 
and p' are solutions of the Navier - Stokes problem (disregarding the primes over 
u and p) 

(1.1) 

Llu - \lp = Re(u· \7)u 

\7·u = 0, 

In [2 , 

u = f ' on C; = fJD;, 

u ...... i, p --+ 0, as 

i = 1, N , 

lxl --+ oo. 

Here L1 and \7 denote the two-dimensional Laplacean and the gradient operato r, 
respectively . We require the given velocities f i , i = 1, N to satisfy the zero outflow 
conditions: 

(1.2) J ri . n i ds = 0, 

c• 

where n i is the exterior vector normal to D;, i = 1, N. 



http://rcin.org.pl

386 M. 1\0 HR- lL E 

We suppose that the Reyno lds number defined above is sufficiently small. 
The Navier- Stokes problem (1.1), for the case N = 1, is singular in the sense 

that the linearized Stokes form: 

(1.3) 
.du - \17J = 0, 

\l·u = 0, 

together with the same condit ions as in (1.1 )3,4, has no solution in view o f the 
Stokes paradox. But, in this case, it is possible to obtain a solution, if the condition 
at infinity is replaced by: 

(1.4) u = A ln lxl + 0(1), as lxl -. oo, 

for any given constant vector A [6, 7]. Also, in the case of N ｾ＠ 2, we prove that 
there exists a constant vector A such that the problem (1 .3) has a solutio n, if the 
condition at infinity is replaced with (1.4). 

2. Integral equation of the first kind 

The equation of continuity \l·u = 0 implies the existence o f a stream function 
'!/; such that 

(2.1) 

where vl. denotes the vector obtained by ro tating the vector v = v1 i + v2 j by 1r / 2 
counterclockwise, so that vl. = -v2 i + vd. Because the do main n is not simply 
connected, the condition (1.4) is only local, i.e. '!/; might no t be a single-valued 
function. But the following arguments prove that '!/; is necessarily a single-valued 
function. 

Let c be any closed CUIVe bounding the domain n° c n and n· = (f?\J2°) n 
Bn, where Bn is a large disk o f radius R. Applying the Green's fo rmula, we 
obtain: 

N 

(2.2) 0 = j divudx = L j u·nds + j u·nds- j u·nds. 

n· •=1 c• c aaR 

From (1.1)3 and (1.2), it results that j u· nrls = 0, i = 1,N. 

c • 
From Green's formula in f?n = n n Bn, we have: 

(2.3) 
N 

0 = j divudx = L j u·nds + j u·nds . 
nR •= 1 c• aaR 
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Hence (2_3) implies that j u·n rls = 0. The above arguments show that 

8Bn 

j u·n ds = 0, 
c 

Then we express 'ljJ in the form 

so 

X 

(2.4) '1/J(x) = - j u.L · ds, 
xo 

j u.L · ds = 0. 
c 

X E f2 , 

387 

where x o is a fuced point in f2, x is an arbitrary point in f2, and the integral is 
evaluated along an arbitrary polygonal line between x0 and x. Al so, it is easy to 
establish the condition (2.1 ). 

Using (1 .3) and (2.1 ), we obtain the Stokes problem for stream function ·tf; : 

6.2'1/• = 0 in f2 , 

V 'lj; (x)= j - f i.L (x), xEC', i= 1, N. 
(2.5) 

We shall prove that there exists a real constant vector A such that 

(2.6) "V 'I/•(x) = Aln i.TI + 0(1), as l:z.·l -

and that the problem (2.5)- (2.6) has a solution. 
For these purposes, we represent the stream function 1/J in the form: 

(2.7) 
N 

7/J(x) = L j ｖ ｹ ｆＨｸ Ｌ ｹ Ｉﾷ＼Ａ＾ ｩ Ｈｹ Ｉ ､ＬＮ［ ｾＬ＠
•= I c· 

where ｳｾ＠ denotes the arc length measured along Ci, = 1, N and F is the 
fundamental solution of biharmonic equation: 

(2.8) 
1 

F(x , y) = S1r I·T - yl2[1n lx- yl - 1). 

It is easy to show that 7/.• given by (2.7), satisfies the equation (2.5)1 and will 
be a solution of the boundary conditions (2.5)2, if the density function ｾ Ｎ＠ with 
ｾ Ｈ ｸ Ｉ＠ = <l>i (x ), X E ci, i = 1' N , satisfies the following system of integral equations 
of the first kind: 

(2.9) 
N 

L j ｜ｬ ｸ Ｂｖ ｹ ｆＨ ｸ｜ ｹＩ＼ｪ＾ ｩ ＨｹＩ､ ｳｾ＠ = gk(:ck), 
•= I c • 

k ck 
X E ' ' k = 1,N, 
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where 

(2.10) k • r k l_ g := J - 0 

The integral operator V i defined hy 

V' <t>i(x ) := j ｜Ｗ ｾＮ ｜ＷｹｆＨ ｸ Ｑ ｹＩ ＼Ａ＾ ｩ ＨｹＩ､ ｳ ｾ Ｑ＠ X E C' 

c• 

has a kernel with logarithmic singularity. 
Diff erentiating (2.9) with respect to the arc length ｳｾＬ＠ k = 11 N , we obtain the 

set of integral equations with a Cauchy singularity: 

(2.11) k = 11 N . 

Because F is a function of lx- vi only, it is seen that the ad joint homogeneous 
system of (2.11) has the form: 

(2.12) k = 11 N. 

N 

We remark that the functions .S'i: U ci ｾ＠ ne, given hy 
j = l 

(2.13) C') 
X E 1 j = 1,N 1 

with ｡ ｾ Ｌ＠ bj denoting constants, are the solutions of the system (2.1 2). These 
functions determine a linear space with 3N dimensions, which impli es that the 
dimension of to solution space corresponding to the homogeneous system (2.11) 
is at least 3N. We use here the fact that the homogeneous system (2.11) and the 
adjoint system (2.12) have the same number of linearly independent solutions 
(see [10]). 

THEOREM 1. There exist at most 3N linearly independent solutions of the homo-
geneous system (2.11 ). 

P r o o f. The functions 

N 

r' : U ci _, IR2 1 

j= l 

7' (.1:) = 0 . { 0. 
T' (:t) 1 

:r E Ci 1 j f i, 

.1: E Ci, 

i = 1, N, where T;(.r ) denotes the unit tangent vector in the point x E Ci, are N 
linearly independent solutions of the homogeneous system (2.11 ). 
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N 

Let {j) : U Cj __. ｾ Ｒ＠ be any 2N + 1 solutions of the homogeneous system 
j = l 

(2.11), and 1/Ji = 1/Ji(<;si), 'i = 1, 2N + 1, deno te the corresponding stream func-
tions, as in (2.7). Then functions 1/Ji satisfy the equations 

1121/Ji = 0 in J2, 

(2.14) v 1/Ji 1 = cj , J = 1, N , 
CJ I 

'V 'lj;i (x) = Ai In lx l + 0 (1), as ixi __. oo, 

where c{ is a constant vecto r and 

We defin e the function <;si as <;si (x ) = ｾｴ＾ Ｉ Ｈ ｸ Ｉ＠ fo r x E CJ, j = 1, N. 
We can choose real constants a 1, . . . ,0'2N+J. not all equal to zero, and the 

vector c(c1, c2), such that: 

(2.15) 

2N+ I 

ｾ ｡ ､ Ｍ ｣ ］ ｏ＠L..-t l 1 , 

i= l 

N 

L a; A; = 0 
i= I 

j = 1, N , 

because we have here 2N + 2 homogeneous equations with 2N + 3 unknowns. 

Le t the functio ns 1/Jo and Jo be defin ed by: 

2N+ 1 N 

(2.16) V'O = L O'j'lj;i, Jo = L n;ipi . 
i = l i = l 

Then 1/Jo satisfi es the equation 

1121/Jo = 0 

'V 'l/Jo(:r) = C, 

'V'l/Jo(x) = 0 (1), 

m ft, 

(2.17) E CJ . - -1 1\f X , J - , n , 

as ix i - oo. 

The problem (2.17) has a solu tion o f li near form '1/-•o(x) = c·x. From the 
uniqueness theo rem of the solu tion corresponding to the exterior Stokes problem 
(see Theorem 3), we deduce that 1/Jo is the unique solution of (2.17). The fu nctio n 
1/Jo given by (2.16) is also biharmonic in each domain ft ; and is continuous together 
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with its first derivatives on Ci, i = 1, N . Using the uniqueness result of the inner 
Stokes problem, we conclude that '1/-•o has also a linear form in ft; , i = 1, N. 

Using [5], it is easy to prove that on each contour Ci , j = 1, N, the stream 
function 'lj; given by (2.7) has the properties: 

(2.18) 

where the symbols +, - denote the limits in n and nj, respectively, and a 1 ani 
is the normal derivative on C i, j = 1, N. 

Since 'tf;o has a linear form in f/ and S?j, respectively, from (2.18) we obtain 
that there exists a constant (3J such that: 

(2.19) 

where the function <t>b is defined by ｾ ｯＨ ｸ Ｉ＠ = <t>b(x), x E CJ, j = 1, N . 
Hence we deduce that 

N N 

(2.20) ｾ ｯＨ ｸ Ｉ Ｍ "i:. f3iri (x) = 0, :rE U c1 
j =l j= l 

or 

2N+ I N N 

(2.21) I:. a;<P; (x ) - L f3jr1(:r) = 0, .T E U Cj, 
i= l j= l j= l 

with the functions :ri defined above. It results that the functions <pi, ri, i = 
1, 2N + 1, j = 1, N , are linearly dependent. 

So, we have proved that the dimension of the solutions ｾ｡｣･＠ of the homo-
geneous system (2.12) equals exactly 3N, and each solution S has the form: 

(2.22) X E C' , i = 1) .N , 

where ai, b; are constants. 
Using the theory of singular integral equations (the Fredholm alternative, 

[10]), the system (2.11) has solutions if and only if 

(2.23) 
N J d . . . L -. ｧ Ｇ Ｈ Ｎ Ｑ Ｚ Ｉﾷｓ ＧＨ Ｚ ｲ Ｉ､ ｳｾ＠ = 0, 
._

1 
､ｳ ｾ＠

,_ C • 

where S, with S(x) = S'(x), x E Ci, i = 1, N, is a solution of the adjoint 
system (2. 1 2). 
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From (2.22), (2.10) and (1.2) the conditions (2.23) foll ow immediately. 

Let J0 be a solution o f the system (2.11), with J01c
1 

= ＼Ａ＾ ｾＬ＠ j = 1, N. The 

corresponding stream function ·t/;0 = 1j;0(J0) satisfi es: 

t127j;0 = 0 in Jl, 

(2.24) '\l 'lj} (x ) = gi(x) + ki, x E C', i = 1,N, 

'\17j;0(x) = A0 lnlxl + 0 (1), as lxl---; oo, 

where 
N 

A
0 = Ｔ ｾ＠ L j ＼ｬ＾ ｾ Ｈ ｸ Ｉ＠ ､ｳ ｾＬ＠

J = l C'J 

- N 2 
and ki, i = 1, N are constant vectors. Let 1.:0: U C i ____, JR. be defined by 

j = l 

k0 I = ki' j = 1 ' N. 
C J 

Al so let <pi, i = 1, 2N and ::;:i , j = 1, N , be the 3N lin early independent 
solutions of the homogeneous system (2.11 ). Then the stream functions t/Ji = 
'lj;i (<pi ), i = 1, 2N satisfy the equations 

t127j;i = 0 in n, 
(2.25) 'V 't/J'(x)= kj, xEC1 , j= 1,N, 

'V'Ij;i (x ) = Ai ln l.rl + 0(1), as lxl-. oo, 

wi th 

. 1 N J . . 
A' = 

4
11' L tpj (x)dsi, 

J=l CJ 

. I . 
-· t <p CJ = IPj' j = 1, N and kj, j = 1, N, 

N 
are the constant vectors, i = 1, 2N. Let f::i: U Ci ____, IR.2, be given by J..il = ｫ ｾ Ｌ＠

j= l CJ 

j = l , N, i = 1, 2N. 
Let V be the set defin ed by: 

V = { k : LJ ci ---+ IR.2 I k( x) = kj, x E C 1
, ki a constant vector, j = 1, N}. 

j= l 

V is a linear space with dim V = 2N, and the functions k0, J::i, i = 1, 2N belong 
to V. Hence, there exist the real constants a 1, . .. , a 2N with the property: 

2N 

(2.26) L a;ki (x ) + k0(x ) = 0, 
i =l 

2N 

X E u Ci, 
j = l 
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if we suppose that the functions (j; i, i = 1, 2N, satisfy: 

(2.27) A' = 0, i = 1,2N , 

since k i are linearly independent functions. 
Using (2.24), (2.25) and (2.26), we deduce that the function 

2N 

'1/J = '1/Jo + ｉＺ＾ ｾ［ＧｬＯｊｩ＠
i=l 

M. K O HR- lL E 

is a solution of the Stokes problem (2.5). At infinity '1/J satisfi es the condition: 

(2.28) '1/J(x) = A0 In lxl + 0 (1), as lx l -+ oo, 

where A 0 is defined in (2.24 ). 
So, we obtain the following result: 

THEOREM 2. If the functions r: Ci -+ IR2
, i = 1' N satisfy the conditions (1 .2), 

then in the hypothesis (2.27), there exists a constant vector A such that the problem 
(2.5) with the condition (2.28) at infi nity, has a solution 1/J. 

In the proof of the Theorem 1, we used the uniqueness property of solution 
for the exterior Stokes problem. This result is given by: 

THEOREM 3. The Stokes problem (2.5) has at most one solution (up to an 
additive constant), under the condition that 

(2.29) 

and 

(2.30) Jaw . an Ｈ ｸ Ｉ､ ｳｾ＠ = 0, i = 1, N, 

where w = 6. '1/J. 

P r o o f. We suppose that there exist two solutions ,p and 'l/;2 of the problem 
(2.5). If we consider the difference '1/J = .,P1 - 'l/;2, then 1/J satisfies the equation 

(2.31) 
in n, 
i = 1, N, 

with the additional conditions (2.29) and (2.30). 
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Let r2n = r2 n Bn, where 1Jn is a large disk o f radius /?. Fro m Green's formula 
we obtain: 

(2.32) j [1/J(x)Ll 2 7jJ(x) - (Ll 7/l(x))2
] dx 

On 

where 8BR denotes the boundary of the disk B n. 
From (2.32), it resul ts that the integrals taken along 81Jn are zero, for R ---. oo. 

From the homogeneous conditions (3.31)2 we have 

J 8·1/J . 
w(x) on Ｈ ｸ Ｉ､ ｳｾ＠ = 0, i = 1,N. 

Al so 7/1( x) = c;, for x E C'i, where c; is a real constant, i = 1, N. 
Now, if we use the conditi ons (2.30), we deduce: 

ｾ＠ j ow · ｾ＠ ! Dw · L- ＷＯｊ Ｈ ｸ Ｉ ｾ Ｈ ｸ Ｉ ､ ｳｾ＠ =L-e; -D Ｈ ｸ Ｉ ､ ｳｾ＠ = 0. 
. un . n 
•= I c • •= I c • 

Hence the above identity (2.32) impli es <17/1 = 0 in r2. 
Applying again the Green's fo rmula, we obtain: 

(2.33) 0 = j 7/J(x)Ll7/J (x) dx 
On 

Using the conditi o ns (2.29), (2.30), (2.31 )2 we obtain \17/J = 0 in r2 , hence 7/1 
is a constant in r2 and 7/11 = Ｇｾｨ＠ (up to an additive constant). 

R EMARK. Since we determine the stream function 7/1 in the form (2.7), the 
conditions (2.30) are easily obtained as a consequence o f Green's identity. 

U sing the stream function ·lj; determined above, we obtain the velocity u = 
(\17/J ) j_, and the pressure pas the harmonic conjugate of w = Ll·lj;, but only locally , 
because the domain r2 is not simply connected. 
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