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Stokes flow past a composite porous spherical shell 
with a solid core 

B.S. PADMAVATill and T . AMARANATH (HYDERABAD) 

A GENERAL SOLLJTION of the Bri nkman equations in the form of an infi nite series is presented. A 
representation for the solution of Brinkman's equations is also proposed and its equivalence to the 
infinite series is established. 11te usefulness of the representation is demonstrated by applying it to 
design a general method of solving an arbitrary Stokes fl ow past a composite porous spherical shell 
with a rigid core. Some physical properties, such as the drag and torque exerted on the composite 
sphere are calculated. Several ill ustrative examples are discussed. 

1. Introduction 

IN THE STUDY of flow and heat transfer problems in porous media, two models 
which have been extensively used are those due to DARCY [1 ] and BRtNKMAN 
[2]. However, the Brinkman model seems to be favoured in some problems in 
porous media, owing to the lim itations of D arcy's law. The inadequacy of Darcy's 
law in the formulation of problems in bounded porous media is pri marily due to 
the order of Darcy's equations being lower than the second order Navier - Stokes 
equations. A variety of f1ow and heat transfer problems in porous media were 
solved using the Brinkman's equations. In this paper, we give a general solution 
of the Bri nkman equations in the form of an infinite series by using a procedure 
fo llowed by LAMB [3] in the case of Sto kes equations. We also propose a represen-
tation for the solution of Brink man equations in terms of two scalar functio ns and 
establi sh its equivalence to the series solution. We shall use this representation to 
study the problem o f an arbitrary Stokes fl ow of an incompressible, viscous fluid 
past a composite poro us sphere with a ri gid core, using the Brinkman model in 
the po rous regio n. The results obtained by MASLIYAH et al. [4] who considered a 
uniform fl ow past a composite porous sphere with a rigid core can be recovered 
as a special case. Some illu strative examples are discussed. 

2. Structure of the general solution of Brinkman's equations 

We consider Brinkman's equations 

(2.1) 2 J.l 
- \17; + J.LV V = k V, 

and the equation o f continuity 

(2.2) \l ·V = 0, 
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where V is the velocity, p is the pressure, I' is the coefficient of dynamic viscosity, 
and k > 0 is the permeability coefficient of the porous medium. Equation (2.1) 
can be rewritten as 

(2.3) 

where A2 = 1/ k. 
The general solution of the equation 

(2.4) 

is as follows: 
00 

(2.5) If/= L(XnFn(Ar) + Ynll n(Ar))Xn, 
- 00 

where X n, Yn are arbitrary constants, Xn = rnSn(B,</; ) is a solid harmonic of 
degree n, and 

n 

Sn(B, </;) = L P,:" (()(Anm cos m</; + Dnm sin m</;) , ( = cosB. 
m=O 

The functions Fn(z) and Ifn(z ) (z = Ar) are defined as follows, 

where 0
2

71" f + 1 ( z) and 0
2

71" /\" + 1 ( z) are the modified spherical Bessel functions 
Vl; " 2 Vl; " 2 

which are finite at the origin and infinity , respectively. The functions Fn(h) or 
Hn(Ar) are retained in the solution depending on whether the motion is finit e 
at the origin o r at infinity , respectively. Suppose we assume the conditi on of 
finiteness of the motion at the origin r = 0, then the general solution of Eqs. (2.2) 
and (2.3) is 

00 

P = LPn, 
-oo 

(2.6) V= ｾ＠ ( [Cn + 1 Ｉｆ ｾ Ｍ Ｑ＠ (A 7') + nFn+l (Ar)A 2r.2] 'V</Jn 

- n(2n + l)Pn+ l (h)A2r<Pn - F,.(h)\1 X (rxn) - + 'Vpn) , 
A P 

where Xn, <Pn and Pn are solid harmonics of positiv e degree n. When the condition 
of finiteness at the origin is not imposed, we have an additional system of solutions 
in which the functions ｽ ｾｴ ＨａｲＩ＠ are replaced by 11n(A1-). 
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3. A representation for the solution of Brinkman's equations 

We now propose a representation for the velocity and pressure in I3rinkman's 
equations (2.2) and (2.3) in terms of two scalar functions A and B and establi sh 
its equivalence to the series solution given in (2.6). We assume the following form 
for the velocity V, 

V = curl curl(rA) + curl(rB), 

= grad div(rA) - v2(rA) + curl(rB). 
(3.1) 

Equation (2.2) is satisfied identically and substitution of (3.1)2 in Eq. (2.3) results 
in 

(3.2) grad (p - JL ｾＭ [r (\72 - ), 2)A]) 

= JL ( -er1·(V'4 - >.2v2)A + eo cscB : 1> (\72 - >.2)8- e<l> :
0

(\72- >.2)B) , 

where er, eo and e<l> are the unit vectors along the radial, transverse and azimuthal 
directions, respectively. Equations (2.2) and (2.3) are satisfi ed if 

P = Po + ｊｌ ｾ＠ [r (v2- >.2).4], 
vr 

(3.3) \72(\72- >.2)!1 = 0, 

(\72 - >..2)B = 0. 

A general solution of (3.3)2 is given by A = A 1 + A2, where A 1 and ;12 are, 
respectively, the solutions of 

(3.4) 
v 2A 1 = o, 

(v2
- >. 2 )A2 = o. 

Equation (3.1 )1 can also be written as 

f) 
(3.5) V= 2grad A + r or grad A - r \72 A + curl (rlJ). 

From the above equation, we recover the solution given in Eqs. (2.6) by assuming 

00 

-oo 

(3.6) ｾ＠ 1 Pn A I = - L.., - ____:__:.:___ 
- oo ),2JL (n + 1) ' 

00 

-oo 
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It is observed that such D, A 1 and A2 satisfy Eqs. (3.3)3 and (3.4), respectively. It 
may be noted that when the condition o f finit eness at the origin is not imposed, 
the functions Hn(>..r) also have to be considered along with the functions Fn(>..r) . 
Thus (3.1)1 and (3.3)1 give a general solution of the Brinkman's equations. Similar 
representations have been considered earlier in the lit erature and, more recently, 
in connection with the solution of Stokes equations by P ALANIAPPAN et al. [5]. 
However, the application of the representation proposed here to the Brinkman's 
equations is new and this representation lends itself to useful applications in 
problems of flows through porous media; in particular, in problems involving 
spherical boundaries, owing to the simplicity of its form. This fact is exemplified 
in the next section in the discussion of a general, non-axisymmetric Stokes fl ow 
past a composite porous spherical shell with a rigid core, using the Brinkman 
model in the porous region. 

4. Stokes flow over a composite sphere: Solid core with a porous shell 

Consider a stationary, solid, impermeable sphere of radius b surrounded by 
a porous shell of permeability /..; and thickness (a - b). We shall consider a 
non-axisymmetric, Stokes fl ow o f an incompressible, viscous fluid over the com-
posite sphere. The Stokes equations are 

IL\12V = \lp, 
(4.1) 

\l·V=O. 

We find it advantageous to use the representation, proposed by P A LANIAPPAN 

et al. [5] for the solution of the Stokes equations ( 4.1 ), given below in the form 

(4.2) 
V = curl curl(rA) + curl(rfl) , 

where 

(4.3) 

Suppose now that the basic, unperturbed velocity is given by 

(4.4) Vo =curl curl(rAo) + curl(rBo), 

where 
00 

Ao = L ( O'nrn + a;t1.n+2
) Sn(B, c/Y) , 

(4.5) n =l 
00 

Bo = L ｾ ｮ ＱＮ ｮ ｔ ｮ Ｈｂ Ｌ｣ｰ Ｉ Ｌ＠

n=l 
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where 
n 

Sn(B, qy) = L ｰｾ ｮ ＨＨＩＨａ ｮ ｭ＠ COS mqy + Bnm sin mqy), ( = cos B, 

(4.6) 
m=O 

n 

Tn(B, qy) = L P::" (()(Cnm COS mqy + Dnm sin mqy), 
m=O 

ｏＧ ｮ Ｌ ｡ｾ Ｌ ｾ ｮＬ ａ ｮ ｭ Ｌ ｂ ｮｭ Ｌ ｃｮ ｭ＠ and Dnm are known constants and ?;:" (() is the Leg-
endre polynomial. For the flow quantities in the region a < r < oo we shall use 
the superscript e. Therefore in the presence of the sphere, we shall assume the 
modified flow in this region to be given by eve, pe) in terms of two scalar functions 
A e and n e, where 

(4.7) 
\74Ae = 0, 

\72 n e = 0. 

The equations which describe the flow field in the porous region b < r < a 
are assumed to be the Brinkman equations (2.1) and (2.2). We make use of the 
representati on (3.1)1 and (3.3)1 proposed for the Brinkman's equations, to find 
the modified flow (Vi, 7i ) in this region in terms of two scalar functions Ai and 
ni, where 

(4.8) 
\72(\72 _ ,\2)Ai = O, 

( \72 _ ;...2)Bi = O. 

We assume the foll owing forms for these scalar functions as 

Ae(r , (} , qy) = f ( O'nTn + ｡ ｾｲｮＫ Ｒ＠ + ｲ ｾＺ ｊ＠ + ｲ ｾＺ ｬＩ＠ Sn(B, qy), 
n= l 

B e(r·, B, qy) = f ( ｾ ｮ ｲ ｮ＠ + ｲ ｾ Ｚ Ｑ Ｉ＠ Tn(B, qy), 
n = l 

Ai(r , B, qy) = A1 (r, B, qy) + ｊ｜ｾＨｲ Ｌ＠ B, qy), 
(4.9) 

00 

ni (r·, e, qy) = L b nfn(>.. r) + ｾｾ ｧ ｮ Ｈ＾ＮＮｲﾷＩＩ＠ T!l (B, qy), 
n=l 

where 

(4.9') 00 

ａｾ Ｈ ｲＬ＠ B, qy) = L (onfn(>..r) + ｯｾｧ ｮ Ｈ ＾ＮＮｲ ＧＩ Ｉ＠ Sn(B, qy), 
n = l 
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where f n(z ) = ＯＢＧｦ ｬ ｮ Ｋｾ Ｈ ｺ Ｉ＠ and .rJ11(z ) = /"'f ｲｾ ﾷｮ ＫＡ Ｈ ｺ Ｉ Ｎ＠ The boundary conditio ns 

to be satisfied at r = a and 1· = b are 
1) continuity of velocity components on the surface r = a 

(4.10) 

ｱ ｾ Ｈ ｡ Ｌ＠ 0, <P) = q; (a, 0, </J), 
qO(a, 0, <!J) = ｱ ｾ Ｈ ｡ Ｌ＠ 0, </J), 

q: (a, 0, <P) = ｱ ｾ Ｈ ｡ Ｌ＠ 0, <P); 

2) continuity of stresses on the surface r = a 

(4.11) 
1';r(a, 0, </J) = Tjr (a, 0, </Y) , 

ｔ Ｌｾｯ Ｈ ｡ Ｌ＠ 0, <P) = Tj0(a, 0, </J), 

r :q,(a, 0, <P) = Ｑｾ ｱＬ Ｈ ｡ Ｌ＠ 0, <P); 

3) no-slip conditions on the surface r = b 

( 4.12) 

q:.(b, 0, <P) = 0, 
qb(b , 0, <P) = 0, 

ｱ ｾ Ｈ｢ Ｌ＠ 0, <P) = 0, 

where ｱ ｾ Ｌ＠ qb and ｱ ｾ＠ are the radia l, transverse and azimuthal velociti es, T:r is the 

normal stress and Tj0 and Tjq, are the tangenti al stresses in the region b < 1· < a. 
The corresponding velociti es and stresses in the region a < 1· < are defin ed 
in a similar manner using the superscript e. 

In terms of the scalar functions which appear in ( 4.8)- ( 4.9'), the boundary 
conditio ns ( 4.1 0)- ( 4.12) can be restated as foll ows 

(4.13) 

Ac(a, 0, </J) = Ai(a, 0, </J), 

ａ ｾ Ｈ ｡Ｌ＠ 0, </J) = r1 :. (a, B, </J), 
ａ ｾｲ Ｈ ｡ Ｌ＠ (} , </Y) = A:or(a , B. </J), 

｡ Ｈ ａ ｾｲｲ Ｈ ｡ Ｌ＠ 0, <P) - 11:.n.(a., 0, </Y)) = --\2 ｾ ｾ＠ (rAi )(a, 0, </J), 
U l' 

IJe(a, B, </J) = JJ' (a, 0, </J), 

ｂ ｾ Ｈ｡Ｎ Ｌ ｂ Ｌ＼ｊｹ Ｉ＠ = n;.(a , B,</J), 

A'(b,O,<Jy) = 0, 

ａ ｾ Ｈ｢ Ｌ＠ 0, <P) = 0, 
IJ;(b,O,<Jy) = 0. 

The functions !1 e , ne, A i and IJ i which correspond to the modifi ed flow can be 
determined by determining the nine unknown constants f3n, ｻＳｾ Ｌ＠ O'n, ｅｮＬﾣｾ Ｌ＠ On, o:l, 
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/n, and ｾｾ＠ from the nine equations (4.13) in terms of an, ｡ｾＬ＠ ｾ ｮＬ＠ Anm, Bnm, Cnm 
and Dnm· The nine unknown constants are determined to be as foll ows: 

(4.14) 

where 

f3n = 
numb 

de no ' 

ｻＳｾ＠ = 
numb' 

deno ' 
nu me 

En = 
deno ' 

I nu me' 
[n = 

deno ' 

bn 
numd 

= 
deno ' 

b' 
numd' 

= ' n de no 

[ Sn(l + 2n)] 2n an = - a+ A a ｾ ｮＬ＠
l n 

(1 + 2n)a"- 1g,l (A.b) 
In = A[ ｾｮＧ＠

7l 

ｾｾ＠ = 
(1 + 2n)an- l f n(A.b) 

- A.! ｾＢＮ＠n 

deno = 2an+S bn+ 1 A-3 { [(I + 11 )a2n+3 &A 2 + 'lla2&2+2n A. 2 -n(1 - 4n2)a 1 +2nb ]a,, 

+(1 - 2n)A[(1 + n)a2+2nb + na&2+2n]bn 

+ n(l - 4n2)anb2+nCn + n(l - 4n2)a11+2b11r 11 

-n(1 + 2n)A.a2&1+2ns11 - n(1 - 4n2)ab1+2ntn}, 

numb= a3"+6b"+1A. 3(2n - 1){ [a2n+3bA.2(1 + n) + 2a2n+lb(1 + n)(1 + 2n) 

+ a2b2n+2/\2n]an + 2a&A.[a2n+l(l + n) + b2n+ In]bn 

- 2anbn+\1 + n)(1 + 2n)cn + 2a2+11U71 n(l + 2n)1'11 

- a2&1+2n>..n(1 + 211)sn - 2a&1+2"n (1 + 2n)t11 }CI' n 

+a3n+6&n+1A. (1 + 27l){ab[a2n+4>..4(1 + n) 

+a302n+l_A.4n + 4a2n+2A.2(2n + 5) 

-4a2" (1 - 4n2)(2n + 3) + 4A.2au2n+i (2n + 3)]an 

+a&A. [4a2n+3_A.2(1 + n) + 4a2b2n+l_A.2n 

- 4a2n+l (1 - 2n)(2n + 3) + 4&2"+ 1(1 - 2n)(2n + 3)]bn 

+2anbn+2(1 + 2n)[2(1 - 2n)(2n + 3) - 3A.2a2]cn 
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- 2a71+2b71(1 + 2n)[3c/ )..2 - 2(1 - 2n)(2n + 3)]rn 

-a2b2n+l )..(1 + 2n)[a2 A2n + 4(2n + 3)]sn 

- 4nb271+1(1 + 2n)[a2 )..2n + (1 - 2n)(2n + ＳＩ ｝ Ｑｮｽ｡ｾ Ｌ＠

numb' = -a371+6b71+2(1 + 2n)A4{[ a2"+1(1 + n) + b271+1n]An71 

- b2nn(1 + 211 )s,.}an 
- a3n+6bn+1(3 + 2n)A3{[a2n+3b.-\2(1 + n) + n2b2n+2)..211 

+2a271+1b(l + n)(l + 2n)]a11 + 2.-\[a2n+2b(l + n) + ab2n+2u]bn 

+2a71b71+2n(l + 2n)cn- 2a71 +2b71(1 + n)(1 + 2n)7'71 

- a2u2n+l .-\n(l + 2n)s - 2ab271+1n(l + 2n)t }a' n n n' 

numd = 2a2n+Sbn+l.-\2(1 - 4n2){an+ibnn(l + 2n)g,.(.-\a) 

- A[b2n+2n + a2n+Jb(l + n)]gn-!( .Xb) - b2n+in(l + 2n).IJn(.-\b)} an 

+2a2"+6bn+l).. (1 + 2n)(3 + 2n){[a2n+2b.X2(1 + n) 

+1\ 2ab2n+2n - 2a2"b(1 - 4112)]gr,- I(.-\b) 

- a71+2b" .X(n - 2)(1 + 2n).r;11 (Aa) + 2n"+ 1b" (l - 4n2)gn- I(.-\a) 

+ ab2n+ i .-\n(1 + ＲｮＩｧ ｮ ＨＮＭ｜｢Ｉｽ ｮｾ ＬＬ＠

numd' = - 2)..2(1 - 4n2)n2"+5b"+ 1{a"+ 1b"n(l + 2n)f,.(.-\a) 

Ｋ ｾ ｜Ｈ｢Ｒ ｮ ＫＲｮ＠ + a2n+lb(1 + n))fn-1 (.-\b) 

- b2"+1n(l + 2n)j, ()..b)} a, 

+ 2.-\(1 + 2n)(3 + 2n)n2"+6bn+l {a2n+2u.-\\1 + n)fn-1 (.-\b) 

+a"+ 2b" A(n - 2)(1 + 2n)J,.(>..a) 

+ 2nn+lb" (1 - 4n2)f n-J(.-\a) + ab2" +2n.X2f n-J(Ab) 

-nb2"+ 111(1 + 2n)>..fn(l\b) - 2a2nb(l - ＴＱ Ｏ Ｉｦ ｮＭ ｊＨ＾ＮＮ｢Ｉ ｽ｡ｾ Ｌ＠

nume = - 2.-\3a2n+Sbn+2n(1 - 47/)[an+ln,- bn+lc, ]an 

+2>..2n2"+ 7bn+2(1 + 2n)(3 + 2n){a"+ 1(n- 2).-\an 

- 2a11(1 - 2n)bn- ｢ ＢＫ Ｑ ｮＮＭ｜｣ ＱＱ ｽｲｲ ｾＬ＠

nume' = 2.X2a3" +6b2n+2(1 - 4u2 ){Ab''+ 1
1W11 - b71n(1 + 2n)sn 

+Aa71b(1 + n)cn}Cl'n 

+.-\a3n+6b2n+\1 + 2n)(3 + 2n){ - 2.-\2a2bn+l(n- 2)an 

+4.-\ab71+1(1 - 2n)b, + (4a71 b(1 - 4n2) - 2)..2an+2b(1 + n))c11 

ＫＲ ｾ ｜｡ Ｒ ｢ ＱＱ Ｈ ｮＭ 2)(1 + 2n)s11 + 4ab71 (4n2
- 1 Ｉ ｴ Ｌ ｽ｡ｾＬ＠
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and 

Un = gn(>..a)fn-1(>-. u) + fn(>..a)gn- l(>..b) , 

Un = gn- l(>..a)fn- 1(>..&) - fn- t(>..a)gn- 1(>..&) , 

Cn = .9n(>..b)fn-l(>..u) + fn(>..u)gn-1(>-.b), 

rn = gn(>..a)fn-I(Aa) + fn(>..a)gn-1(>-.a), 

Sn = gn(>..a)fn(>..b) - fn(>..a)gn(>..b) , 

tn = gn(>..b)fn-l( >..a) + f n(>..u)gn- 1(>-.a). 

5. Drag and torque 

The force exerted by the fluid on the composite sphere is given by 

(5.1) D = X/Y, 

where 

(5.2) X= { l27rp>..c/{(2a3 + u3)>..a1 - 3u2sl}a1 

319 

+207rpn3{( 2a4>..2 + ab3>..2 + 12a2)a l + 2>..(2a3 + u3)bl 
2 2 2 2 '} """:" """:" -+6& c1 - 12a r 1 - 3au >.. s1 - 6U tt}a1 Ｈ ａ Ｑ Ｑ ｾ＠ +Btu + !110k ), 

= 611"JlAa2{(2a3 + b3)>..nt - 3b2st} (Vo]o 

(see Appendix) 

+ 7rJW3{(2a4
)..

2 + ab3)..2 + 12n2)al + 2)..(2a3 + u3)ul 

+6u2c1 - 12a2r 1 - 3ab2 >..s1 - 6b2t t}[\7 2V0] 0, 

(5.3) Y = {(2a4>..2 + ab3>.. 2 + 3a2)at - >..(2a3 + b3)b1 

-3u2c1 - 3a2r1 - 3ab2 >.. s1 + 3&2ti} , 

and where Vo is the velocity corresponding to the basic fl ow, and [ ]0 denotes 
the evaluation at the origin r = 0. 

Similarly, the torque T is given by 

(5.4) 

(see Appendix). 



http://rcin.org.pl

320 fl .S. PADMAVAT!II AND T. AIVI ARANAT!I 

It is found that when a = b, in the limit k ____. 0, i.e., .A - oo, we recover the 
well known Faxen's laws [6] for drag and torque acting on a ri gid sphere of radius 
a, 1.e., 

(5.5) 
D = 67rJ.ta(Vo]o + 7rJw3[\72Vo]o , 

T = 47r rw3[\7 X Vo)o. 

Similarly, when b = 0, we recover the expressions for drag and torque obtained 
by PADMAVATH£ and AMARANATH [7] for the Stokes fl ow past a porous sphere, i.e., 

D = l27rJ.La3_x2!J(.Xa)(Vo]o 
((2a2,X2 + 3)!J(.Xa) + 2a.Xfo(.Xa)) 

(5.6) 
21rft [(a5 .X2 + 6a3)!J (.Xa) - 2a4 .Xfo(.Xa)][ \72Vo]o 

+ ((2a2A2 + 3)!1(-Xa) + 2a.A fo(.Xa)) ' 

T = 4 ( a
3

-X fo(.Xa)- 3a
2
JI(.Xa)) [" V] 

1r ft .Xfo(.Xa) v x o O· 

6. Effective viscosity 

The effective viscosity J.L* of a dilute suspension of composite porous spheres 
with rigid cores, each of outer radius a is found (as in [7]) to be 

(6.1) fl. = J.l { 1 + ｾｾ＠ p} ' 
where 

R = a.A[(3 a5 + 2b5).Xa2- lOb4s2], 

(6.2) S = 2[(a.X2(3a5 + 2b5) + 30a4)a2 - 3.X(3a5 + 2b5)b2 

- 10ab(3b2c2 + 3a27'2 + .Xb3s2) + 30&41.2], 

where <!> denotes the concentration by volume of the fluid containing the spheres. 
When a = b, in the limit k ____. 0, we obtain the well known formula due to 

EINSTEIN [8] for the effective viscosity of a dilute suspension of rigid spheres 

(6.3) J.L* = fl· { 1 + ｾ＼ｬ＾ｽ＠ . 
When b ____. 0, we recover the formula obtained by P ADMAVATHI and AMARANATH 

[7] for a dilute suspensio n of porous spheres of radius a 

(6.4) 
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7. Examples 

7.1. Stokeslet 

Consider a Stokeslet of strength F1 j 81r JL located at (0, 0, c), c > n, its axis ex-
tending along the positive direction of the x-axis. The corresponding expressions 
for Ao and B0 due to the Stokeslet are [5] 

F1R1 ｣ｯｳ ｾ＠
-
8
-(rcosB-c + R1)-.-() , 
7rJLC r sm 
F1 ｳｩｮ ｾ＠

-
4

- (rcosB- c + R1) -.-() , 
7rJLC r sm 

(7.1) 

where 

(7.2) 

For r < c, 

Fl oo [ r n+2 

ａｯＨｲ Ｌ ｂ Ｌｾ Ｉ＠ = 81rp,?; (n + 1)(2n + 3)c"+2 

(n - 2)1'n ] 1 
(7·3) - n(n + 1)(2n- l)c" ｐ Ｂ ＨＨＩ｣ｯｳ ｾＬ＠

F1 Loo [ r" ] 1 Bo(1·, B,4J)= -4 ( l) +I ｐ ｮ ＨＨＩｳ ｩｮ ｾ Ｎ＠1r jJ. 11 11 + en 
n= l 

The drag D and torque T are given by 

(7.4) 

where 

M ｾ＠
D = - l ;t i N , 

M = (3>.a2c2{(2a3 + b3)>.a1 - 3b2sJ} 

+ a3{ (2a4>.2 + ab3>. 2 + 12a2)at + 2..\(2a3 + b3
)b1 

+6b2
c1- 12a2

r l - 3ab2>.si- 6b2tJ}) , 

(7.5) N = 4c3{( 2a4>.2 + ab3>. 2 + 3a2)a1 - ..\(2a3 + b3)b1 

- 3b2
c l - 3a2

r l - 3ab2 
ASJ + 3b2tl} , 
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As before, the results for the rigid case [5] are recovered by putting k ____, 0 i.e., 
.\----> oo and a = b. 

(7.6) 

D= 

a3 ｾ＠
T = 2 FI). 

c 

Similarly when b ----> 0, we recover the results obtained for the case of a porous 
sphere [7] 

D = ((3a3c2.X2 + a5.X2 + 6a3)JI(.Xa) - 2a
4
.\fo(.Xa)) Fli 

2c3[(2a2.X2 + 3)ft(.\a) + 2a.\fo(.Xa)] ' 

T _ a3 .\fo(.Xa)-3a2 !1 (.\a) F ｾ＠
- c2.Xfo(.Xa) 11· 

(7.7) 

7.2. Uniform flow 

The basic, undisturbed flow is given by 

u 
Ao= - rcosB 2 , 
Bo = 0, 

(7.8) 

where 
Z = 2a4.X2 + ab3 .\

2 + 3a2. 

This result agrees with that of M ASLI YAH et al. [4] who solved the uniform flow 
past a composite porous sphere with a rigid core. 

8. Conclusions 

An infinite series solution and a representation for the solution of Brinkman's 
equations are presented. They are shown to be equivalent. It is found that this 
representation is very useful for discussing an arbitrary Stokes flow past a co m-
posite porous sphere with a ri gid core, and a general method is suggested for 
finding the solution. The formulae to calculate drag and torque are given. The 
effective viscosity of a dilute suspension of composite porous spheres with rigid 
cores is calculated. The previous results pertaining to Stokes flow past rigid and 
porous spheres are recovered as special cases. It may be noted that the method 
suggested in this paper can also be used effectively to discuss the problem of 
Stokes flow past a porous spherical shell, where the rigid core in the present 
problem is replaced by a region fill ed with a viscous fluid. 
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Appendix 

[Vo]o = (2gradAo]o = 2a1[Au7 + B11] + A10k], 

[V' 2Vo]o = 2oaaA117 + B11] + A10k], 

[V' x Vo]o = ＲｾＱ｛ｃＱＱＷ＠ + Du]+ Cwk] . 
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