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On finite deformation dynamic analysis of saturated soils

M.T. MANZARI (WASHINGTON)

A GENERAL FORMULATION is proposed to treat the dynamic response of saturated soils in finite
deformation regime. Considering the soil as a saturated porous medium, the formulation for finite
deformation analysis was established by extending Biot’s classical theory to incorporate finite de-
formation effects. Particular attention was given to the flow of water through the soil while the soil
skeleton undergoes a finite deformation. The derived formulation constitutes the theorctical basis
for analysis of the liquefaction induced flow failure in soil embankments. Due to the integral form
of the governing cquations, they are specially suitable for application of numerical methods such

as the finite element method.

Notations
(‘B),(**2'B)  body configurations at time ¢ and t + At, respectively,
8,  Kronecker delta,
Y0,%,"" g mass densities of soil per unit volume in the configurations
at time 0, ¢, t + At, respectively,
os,05 mass density of solid particles and pore water, respectively,
“*at,,  Cartesian components of the Cauchy total stress tensor
measured at time t + At,
o.;, 05,  total stress and effective stress tensors, respectively,
v ¥ ; 2
o,0 corotational rates of the total stress and effective stress tensors,
respectively,
2 material spin tensor,
(Ai;ke finite deformation tensor of tangent stiffness moduli,
“+4%,  i-th component of body force per unit mass measured at time ¢ + A,
t+4'%,  body force in the configuration at time ¢ + At (**='@) and measured

0qv, 34y, gy

in the configuration at time ¢ (‘B),

volume of an infinitesimal clement in the configuration at
time 0, t, t + At,

f*+ate,,  Cartesian components of infinitesimal strain tensor measured at
time ¢ + At,
t+ae,,  the Green-Lagrange strain tensor,

t+Ath I+Atf5

(Ol t

components of the applied body forces and surface traction,
respectively, measured at time ¢ + Af,

Al FS surface traction in the configuration at time ¢ + At (**2'8) and
measured in the configuration at time ¢ (‘B),
I:-. ,  permeability tensor,
Ks, Ky  bulk moduli for solid particles and pore fluid, respectively,
n  porosity,
p  pore water pressure,
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thatg,, A, different portions of body surface, respectively related to prescribed
thatg, 1Al displacement, traction, pore pressure, and flow, measured at time ¢ + At,
t+4ls,,  the second Piola-Kirchhoff stress tensor,
u;  components of incremental displacement at time ¢,
taty, 'u,  components of displacements at time ¢ + At, and ¢, respectively,

U components of the absolute velocity of pore water in the direction of r,,
w, relative surface velocity of pore water with respect to the soil skeleton,

('J:l. ‘z2,'r3)  coordinates of a generic particle of the body in Cartesian coordinate
system at time t.

1. Introduction

ANALYSIS OF soiL liquefaction and its consequences, such as permanent deforma-
tions in constructed facilities or earthen structures, requires a rational analytical
procedure. Such a procedure should be based on a proper understanding of
the physics and mechanics of soil as a particulate medium composed of three
phases, i.e. solid particles, water, and air. Due to discontinuous nature of granu-
lar soils, it appears that the best approach to study the mechanics of soil is a
micro-mechanical approach. In principle, if the behaviour of saturated granular
soils on the microscopic scale was known, it would be possible to calculate the
behaviour of granular soils on the macroscopic scale by applying appropriate sta-
tistical methods. In practice, however, such calculations are extremely difficult
and, at the present time, limited to some simple cases. On the other hand, our
knowledge of mechanical behaviour of soils is mainly based on observations and
experimental studies of the samples of soils whose dimensions are large com-
pared to those of an individual particle. In particular, most of the experimental
results available in the field of soil mechanics are expressed in terms of the overall
macroscopic quantities, such as confining pressure, axial stress, axial strain, etc.,
which indicate a wide acceptance of continuum approach in the study of soil be-
haviour. In a continuum approach, the particulate nature of soil is ignored and it
is assumed that material is uniformly distributed throughout the regions of space.
For dry soils or in the case of drainage processes for saturated soils, the regular
equations of continuum mechanics may be used to formulate the problem. But in
the case of saturated soils which are subjected to disturbances of transient nature,
the effect of pore water pressure should be considered by a proper regularization
of soil as a two-phase medium [4, 5] or a mixture of two different materials [23,
24, 43].

Both of the aforementioned approaches, i.e. the micro-mechanical and con-
tinuum approach, have received much attention during the past three decades.
Micro-mechanical approaches have been continuously used to study some of
the important features of granular soils, such as dilatancy, shear strength, and
anisotropy. However, their application to boundary value problems has been
started only recently by introduction of the distinct element method [10, 11, 12].
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The distinct element method considers an assembly of large number of particles
representing the soil mass and solves the dynamic equilibrium equations for each
particle, subject to body forces and boundary interaction forces. The method
can potentially handle nonlinearities which may arise from large displacements,
rotation, slip, separation and material behaviour, but its performance is highly de-
pendent upon the constitutive laws selected to represent the inter-particle forces.
In addition to application of the distinct element method to the dry soils [2, 11],
a few attempts have been reported [42] to utilize the method in a simulation of
soil liquefaction. However, these developments are in the initial stages and the
micro-mechanical approach is far from application to the real boundary value
problems.

In contrast to micro-mechanical approach, the continuum approach has been
successfully used in the analysis of geotechnical problems during the past few
decades. Following the introduction of a coupled stress-flow formulation for dy-
namics of porous media by Bior [4, 5], many investigators employed the new
formulation to solve some practically significant boundary value problems using
the finite element method [38, 48, 18, 19, 21, 40, 36, 37, 49, 50]. A historical
review of such applications for liquefaction analysis is given in [33]. Recently
ADVANI, et al. [1] have used a generalized form of the Biot’s formulation for
hygrothermo-mechanical evaluation of porous media under finite deformation
regime. CHOPRA and DARGUSH [9] have also utilized the Biot’s formulation for
large deformation analysis of time-dependent problems.

In this paper, a generalized form of Biot’s formulation for dynamics of porous
media [5, 50] is derived by taking into account the finite deformation effects. The
developed formulation serves as the basis for the numerical procedure proposed
in a companion paper on the analysis of soil liquefaction and deformations in a
finite deformation regime.

2. Statement of the problem

For a saturated earthen structure which occupies an initial volume of V
with the boundary surface S at time 0, we seek to establish the governing field
equations necessary to evaluate its equilibrium positions and entire time histories
of responses during a quasi-static or transient process of deformation.

It is assumed that specified displacements, surface traction, pore water press-
ure, or water flow boundary conditions are defined on different portions of the
boundary surface ‘*4'S at a generic time ¢ + At. These portions of the bound-
ary surface are named ‘*4t5,, t*Atgy t+Atg and A5 | respectively. It is
attempted to establish the governing equation without imposing any restriction
on the magnitude of strains and displacements which the soil body may experi-
ence in the course of deformation. In order to deal with nonlinearities involved
in the problem, an incremental analysis is adopted and the equilibrium position
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at time t + At is searched for, assuming that the solutions for all time steps from
time 0 to time ¢ are known.

We adopt a Lagrangian (material) formulation and follow the material points
in their motion. Therefore, in a generic time step from time 1 to time ¢ + A, it is
assumed that the initial configuration of the soil body (°3) and the configuration
at time ¢ (‘B) are known and we are searching for the configuration of structure
at time ¢ + At (‘*28). In the following development, an updated Lagrangian
formulation is followed.

3. The principle of virtual work

Let us consider the motion of a generic point P’ of a saturated earth structure
(Fig. 1). In the process of deformation from the initial configuration at time 0 to
the configuration at time ¢, its coordinates with respect to a fixed Cartesian co-
ordinate system change from (%z;,%z,,%3) to (Y2, 'z, 'x3), where the left-hand
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FiG. 1. Three different configuration of the soil body during its motion.

superscripts refer to the configuration of body, and the subscripts refer to differ-
ent axes of the Cartesian coordinate system. In our analysis, we seek to find the
position of each material point in the next configuration, i.e. at time ¢t + At. Let
us suppose that the soil body, in the configuration at time ¢ + A¢, is subjected to a
virtual displacement field éu which satisfies all the boundary conditions (Sec. 6).
The principle of virtual work requires that the virtual work performed, when the
soil body undergoes a virtual displacement éu, is equal to the external work done
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by the body forces and surface traction, i.e.

(3]) t+At‘,Vti’nt e j [+At0','j6 t+Atf'in-Atdv

t+Aty

—t+At w;:l:xt - / t+A'fiB(S?L,‘t+Ath 4 / t+A{ff6'tL1-"+m(15',

t+ ALY t+At gy

where the ‘*4!g;; are Cartesian components of the Cauchy total stress tensor,
the {*4%,; are Cartesian components of infinitesimal strain tensor, t+at fB and
t+AtfS are the components of the applied body forces and surface traction, re-
spectively, and du; represents the components of virtual displacement field in the
direction of axis ¢ of the Cartesian coordinate system. The ‘*2/S, is a part of
soil body surface on which a specified traction **2! 5 is applied. The &8 14 ac€,; is
the variation in the small strain tensor defined as follows:

1 Ou; du,; 1 0(6u;) A(bu;)
(3.2) O+ n0€i; = & li ((')H"-"l'j + 0”‘3‘.‘1‘5)] e (i)f+‘3‘17j + (')l+.jt7m ;

where u; is the incremental displacement at time ¢ defined as

t+ At t
= U — Ug

U;
in which *3%y; and 'u; denote the displacements at time /+ Af and (, respectively.
Note that the first term on the right-hand side of Eq.(3.2) implies the partial
derivative of the variation u; with respect to "4z .

In a dynamic loading of saturated soil systems, there are three contributions
to the body forces *4¢ fB in Eq.(3.1):

1At pb,) body force due to gravity or centrifugal acceleration, where
t+at, is the mass density of the soil and '*4%; is the i-th
component of body force per unit mass, both measured at
time ¢ + At,

t+34(pii;) body force due to acceleration of the soil skeleton ‘*4 i;

negative sign is used because this force is in opposite direc-

tion to {Faty,;,

body force due to relative acceleration of the pore water with

respect to the soil skeleton.

t+Atf_Bw
i

The first two terms are common in any structural dynamics problem, but the
third term *4¢ fB% is due to the presence of water and its relative motion with
respect to the soil skeleton. To account for *2¢ fB* we note that in a differential
volume "t4dV of the soil with porosity n, only (n‘*t3/dV) is occupied by the
pore water, therefore o (n‘"2'dV) is mass of the pore water available in the
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differential volume of the soil. Here p; is the mass density of pore water and the
following relation holds:

(3.3) o=mnos+ (1-n)o,,

where o, is the mass density of solid particles.

Now if we define a relative average or superficial displacement, w;, so that
w; is the relative superficial velocity (') of the pore water with respect to soil
skeleton (in the direction of axis ¢, ¢ = 1,2, 3), the actual displacement of water
in the pores is w; /n. The body force due to the relative acceleration of pore water
with respect to the soil skeleton is expressed by

[Qj (n”‘“d")] (:lz 1?)‘2’{) B ]_)ﬂ

AT

(34) t+Alf,'Hw = T

(
where D/ Dt is the symbol of total derivative with respect to time (*). Here we
must use a total time derivative, because 1w, is measured with respect to the
soil skeleton that itself is moving and makes a moving coordinate system for
measuring ;. The negative sign in Eq. (3.4) is used because the ‘*! {5 applies
in the opposite direction of water flow. It must also be noted that the effect of
change of porosity has been ignored in the acceleration term in Eq.(3.4). This
effect will be very small during a usual time step.

Considering the above mentioned contributions to the body force
we can now write Eq. (3.1) as

t+ 4t Bu
] 3

(35) l+.;\l‘,‘,'lllnt — / t+._X£n_l_J_[‘ t+Jt”ijt+J,([“-
t+ ALy

— (+Atppext _ t+At Sg Si+Alyc
= wW* = S bu, dS

t+ AL,

s / |t£+‘3t91+‘3lbi - t+At0t+At H, _f+._\l£)j_i+._\{ (%)} 511.,'l+'_‘!(,"..

t+Ary

There are two major difficulties in application of Eq.(3.5) to a finite deforma-
tion problem involving saturated soils. First, the configuration at time ¢ + At is

(') This is the superficial velocity of water used in Darcy’s law for seepage of water through a porous
medium, ie. w, =1 = ki;(Oh/Ax,), where k,, is the hydraulic conductivity of the soil in the direction ¢ due
to a unit flow in the direction ; and A is the hydraulic potential at the point of interest.

(?) The material time derivative or the rate of a quantity, A = A(xz(¢), ) is defined as

DA .
—=A=— = -
Dt at Ar,

where A is a scalar quantity and it is a function of time and space.

a4 dA .
B
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unknown and the integration over the ¥4V and '*4'St cannot be performed
before calculating the equilibrium position at time ¢ + At. The second difficulty
is the presence of total stress tensor, "', in Eq.(3.5) which does not have any
direct influence on the mechanical behaviour of the soil and cannot be used in
a realistic constitutive equation relating a proper measure of stress to a measure
of strain. To resolve the first difficulty, we can rewrite Eq.(3.5) by referring the
applied forces, stresses, and strains to a known equilibrium configuration, such
as the initial configuration at time 0 (Total Lagrangian Formulation) or the con-
figuration at time ¢ (Updated Lagrangian Formulation). The second problem can
be resolved by applying the principle of effective stress and introducing effective
stresses in Eq. (3.5). The aforementioned measures are adopted in the following
sections.

4. The principle of effective stress

Terzaghi’s principle of effective stress can be written in the following form:

(4.1) Oij = 0Tjj — ])50‘ s
where o;; and @;; are the total stress and effective stress tensors, respectively,
and p stands for the pore water pressure. The 6;; is the Kronecker delta defined
as

0 =1 for =7,
0, =0 for @ # j.

In direct notation, Eq. (4.1) can be written as
(4.2) o=7—pl,

where 1 is the symbolic form of the Kronecker delta.

Here the conventional sign convention of solid mechanics is used which con-
siders tensile stresses as positive values and compressive stresses as negative val-
ues. The negative sign of p in Egs. (4.1) or (4.2) is associated with the fact that
pore pressure is considered as a compressive stress.

Since the effective stress principle is defined in terms of the Cauchy stress
tensor which is not an objective measure of stress, it is important to establish a
suitable rate form for Eq. (4.2). Taking the time derivative of Eq. (4.2), we find

(4.3) 2 (o) = 1@~ ()

or

v . e A = .
(4.4) o toj(e;®e)+oij(e;@ e;)=0 +7,;(e; ®e;) +7;i(e; ® ;)

— i)l — ])(Sij(é; ® ej-) - ])ﬁ.ij(eg ® éj).
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. . . . v
where e; and e; are the unit vectors in a Cartesian coordinate system. The o and
v
@ are corotational rates of the total stress and effective stress tensors, respectively.

Using Eq. (4.2), we can write the above equation as

-pl.

Qla

(4.5) o=

Equation (4.5) is of paramount importance in our subsequent developments. We
will use this equation in development of the incremental equations governing the
dynamics of saturated soils.

As previously mentioned, Eqs. (4.2) and (4.5) enable us to formulate the gov-
erning equations of motion (Eq.(3.5);) in terms of effective stresses. However,
substitution of Eq.(4.2) in Eq.(3.5) leads to the appearance of a pore pressure
related term which prevents a direct application of Eq. (3.5) as a sole field equa-
tion in the solution of boundary value problems in soil dynamics. The additional
unknown, p, requires an additional field equation which governs the flow of water
through the soil. Derivation of this equation is the subject of the next section.

5. Equations governing the flow of water through a saturated soil

In Sec.3, we derived an integral equation governing the motion of the soil
mass by making use of the principle of virtual work for the bulk mass of the
soil body. In this section, we consider the equations of motion and mass balance
for the pore fluid (water) alone in order to establish a complementary equation
to Eq.(3.5). To this end, let us consider a unit volume of the soil in the current
configuration at time ¢+ At as a control volume for the flow of the pore water. We
assume that the coordinate system is attached to the soil skeleton and is moving
with it. The flow of water in this control volume is affected by inertial forces and
by a viscous (velocity-dependent) drag force due to interaction of the pore water
and solid grains. In the following consideration, it is assumed that the viscous
drag force can be determined by application of Darcy’s law. In a quasi-static flow
of the pore water, Darcy’s equation is written as

. dp
(5.1} w; = —kij,—d};
in which
i
(5.2) ki; = — Kiss

-~

fw

where :}U’ is a component of the permeability tensor. The w, in Eq.(5.1) is the
superficial velocity of water, i.e. the volume of water flowing per unit time and
per unit gross area through the face of the control volume perpendicular to the
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z; axis. The negative sign in Eq.(5.1) emphasizes that the water flow occurs in
the direction of decreasing potential.

Now if we define the resistivity tensor r,; as the inverse of the specific permea-
bility tensor,

(5.3) rijkjk = bik
Eq.(5.1) can be written as:

dp .
(5.4) Pz, T W =3,

where R, is the viscous drag force in the direction of z; axis applied to the pore
water flowing through a unit control volume of the soil. Considering the effects
of the inertial and body forces (Fig. 2), Eq.(5.4) can be generalized,

dp . o Db
3.3 ————riw;+ gy | bi— U —— ] =0,
3) dz; 4T EIATT T
where
. Dw; ..
i + =
Dt
represents the total acceleration of pore water.
- R’-
-
9 UFDI ? b
(] f 8]
1 plx) pix)+ ag:”
B X
" ! J
Note: ii'' =, +» D%

F R Dt
F16. 2. Free body diagram for the pore fluid in a control volume.

In order to reduce Eq.(5.5) to a form containing only the displacements of
soil skeleton (u) and pore water pressure (p), we first use the axiom of mass
balance to establish a relationship between the rate of change of pore pressure p
and the rates of volumetric strains for the pore water w,; and the soil skeleton
i, ;. Such a relationship can be used to remove the relative displacement of the
pore water w from Eq. (5.5).
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Let us consider a unit volume of the soil in which the masses of the pore
water and solid grains are respectively npy and (1 — n)p,. The axiom of mass
balance requires that in the process of flow of the water through the soil, these
two masses must be conserved, i.e.

D
(5.6) E/(ngf)dv = 0,
Vv

J(l —n)os (IV} = 0.

Equations (5.6) and (5.7) lead to:

(5.7) %

(5.8) nos +noy + (noy) Ui =
(5.9) —nps +(1=n)p, +(1 —n)o.u;; =0,

where U; is the component of the absolute velocity of pore water in the direction
of z; axis, i.e.

(5.10) Wi = n(U; — ).
Dividing Egs. (5.8) and (5.9) by o; and o, respectively, and adding up these two

equations, we find:

(s.11) B (=) [0 = )] + i = 0,
ef s

)

or by using Eq. (5.10), we have:

ng D )
(512) ﬂ =+ (1 - n) Os 3 '&’i.i + ;= 0.
ef @s

The first term in the above equation represents the compressibility of the pore
fluid (water) which is of cardinal importance in dynamic analysis of saturated
soils. In order to stress the importance of this term, it suffices to mention that
the compressibility of pore water (fluid) is highly dependent on the degree of
saturation of the soil, and a small fraction of percentage of air in the pore water
may significantly increase its compressibility [31]. The second term in Eq.(5.12)
accounts for the compressibility of solid grains and, in general, is much smaller
than the first term. In the following considerations, we seek to substitute the first
two terms in Eq.(5.12) by means of simple constitutive equations. To this end,
we note that a change of effective stress will result in a change of volume of solid
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particles, while a pore pressure change will induce a change of volume in both
the solid particles and the pore water. Thus

; Mo
(2y) = E)pf)

. _ 8(95) . 6(95) L
(6= =5, P ¥ 5. 7"

.
P,

(5.13)

In practice, the ¢ _ is very small and negligible as compared to the ¢ . Thus it can
be ignored in the subsequent procedure. However, it is kept in the formulation
for the comparison purposes. It is noted that the constitutive law representing
the change of p is similar for the change of hydrostatic pressure or the change
of pore water pressure. Therefore, the terms on the right-hand side in Eq. (5.13),
can be described in terms of the change of hydrostatic total stress (o;;), i.e.

2.,

do;;

(5.13); (0,) =

It is also assumed that the following linear relationships exist between the
change of pore water pressure (or any hydrostatic pressure) and the changes of
volumes of the pore water and solid grains:

av,

s

o _ 1
(5.14) 2=
v
dp 1
1 I =
e Ve K

where Vs and V), are the volumes of solid grains and the pore water in a unit
volume of the soil mixture, respectively, while ' and A’y indicate the compress-
ibility of the above constituents. In general, /i s is by several orders of magnitude
larger than Ay, Considering Vs = (1 — n)o. and V,, = npy, and ignoring the
change of soil porosity due to the change of p, we can rewrite Egs.(5.14) and
(5.15) as

do.
1
(5.16) O
Os K S
doy
Jdp 1

517
(5-17) o K
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Substituting Eqgs. (5.16) and (5.17) in Eq.(5.12), we finally find the equation
of mass balance in a desired form:

n 1-n)\. . ;

. —_ 4 - + w,; + u;; = 0.
(5.18) (I\'_f s ) p+ wii+ ;=0
Denoting:

1 n 1-n
Aty r Ky Ks

Eq. (5.18) is written as

1, . .
(5.20) Fp + w; i+ ui; =0.
Equations (5.20) and (5.5) yield the following relations:

. J dp . Dw 1. .
(5.21) Wig = P {ki./ ["W + oy ([‘J_ - I)fj)}} =P

or

Ts . s ) ) 4
(5.22) TP + ;- ¢ (1\';, i) 4 _)(—.(]-'i_]Q]/)J)

H dr; dz;
d D
e ks [ B 4225 )| = .
Dz, [ Wel (”J D )] .

2

This is the final equation governing the flow of the pore fluid (water) through
the soil and combines the axiom of mass conservation and equation of motion
for the pore fluid. Presence of the term D,/ Dt in the above equation is still an
undesirable feature which inhibits a direct coupling of Eq. (5.22) with Eq. (3.5)
in order to get a coupled systems of equations in terms of u and p. However,
it has been shown [49] that for the range of frequencies encountered in the
earthquake loading, the relative acceleration of the pore water with respect to
the soil skeleton is negligible. Therefore by ignoring D@ ;/Dt in Eq.(5.22), we
find:

. 0 op d 0 =
(523) F]) + Uy ; — ()_1—1- (kijm;) b R(L”bej) = ;).T{(kijgf ”j) = O

Equation (5.23) is written in terms of u and p and is suitable to be solved in

combination with Eq. (3.5), for which we also neglect the Dw;/Dt term for the
foregoing reasons.

http://rcin.org.pl
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6. Boundary conditions

As it was mentioned in Sec.2, we assume that four types of boundary con-
ditions are specified on different portions of the boundary surface ‘*4LS of the
soil body at a generic time ¢ + At. These boundary conditions are defined in the
following sub-sections.

6.1. Displacement boundary condition

It is assumed that on a portion of the boundary surface ‘*<S of the soil body,
displacements of soil skeleton are specified as follows:

(61) t+Atui - t+Atﬁi on t+AtSu .

where ‘447, is the specified value of displacement on the boundary surface
t+4tg, at time ¢ + At.

6.2. Pore pressure boundary condition
The pore water pressure boundary condition is defined on ‘*4S, as follows:

At _ t+AL- t+A
(6.2) Thlly = eiig on -

where ‘*4%5 is the specified pressure on the surface 'T4S, at time ¢ + Al
6.3. Traction boundary condition

We assume that on a portion of the boundary surface, there is a specified
traction which must be in equilibrium with the internal total stresses, i.e.

(63) £+A!Uij”_] — £+Atfi.'a on t+.'_\tST

where the ‘*2f5 is the specified traction on the surface ‘*4‘S7 with a unit normal
of n, and "2, is the total Cauchy stress tensor acting on the neighborhood of
the L+Atf,€-'

o,

6.4. Water flow boundary condition

It is assumed that on some portion of the boundary surface, the water flow
boundary conditions are specified. One of the typical examples of such boundary
conditions is the impervious boundary. The water flow boundary condition follows
from Eq.(5.8) and is expressed as a flux condition, i.e.

. dp .  Di;
(6.4) win; = ”() +kijorb; —kijor (uj-i-%)} n; = 4% . on H‘MS,,,

where n; denotes the i-th component of the outward unit normal to the surface
t+41g and ' 3'G, is the prescribed fluid flow on the 415,



294 M.T. MANZARI

7. Constitutive equations for the soil skeleton

The governing field equations developed in Sec.3 (Eq.(3.5)) and in Sec.5
(Eq.(5.23)) along with the boundary conditions defined in Sec.6 are not suffi-
cient to solve a boundary value problem in soil dynamics. For ten unknowns (3
displacements of soil skeleton, pore pressure, and six components of stress tensor)
in a boundary value problem, we have established only four governing equations.
Thus six constitutive equations are necessary to make the problem well-posed.
Due to nonlinearity of soil behaviour, it is desirable to define the constitutive
equations in a rate form relating an appropriate measure of stress to the rate
of deformation. In a finite deformation analysis, an objective stress rate must be
used to ensure that the effects of rigid body rotation are correctly considered.
This criterion, however, does not determine completely which stress rate should
be used. There are different forms of stress rates which satisfy the objectivity
requirement. The most commonly used objective stress rate is the JAUMANN [27,

28] corotational rate of the Cauchy stress tensor, (;i-.,v, defined as follows:
(7.]) (vfij= (:il_,' # Ulkfzk_,‘ S Uijki 4

where &,; is a Cartesian component of the material (time) derivative of the
Cauchy stress tensor, and (2;; is a Cartesian component of the spin tensor, i.e.

1 {ou;  Ouy
(72) .sz - 5 ((').l"/ - ()“) ;

Numerous application of the Jaumann stress rate have been reported in the
finite deformation analysis of crystalline solids in the crystal plasticity context (e.g.
22, 35). In a crystal plasticity application, the material spin tensor €2 is replaced
by the rate of rotation or spin of the crystal lattice. However for non-crystalline
solids, a proper choice of the spin tensor is not clear. Previous study by NAGTEGAAL
and DE JonD [34] has shown that a direct application of Eq.(7.2) in the large
strain simple shear analysis of a material obeying a Mises-type kinematic harden-
ing plasticity results in an oscillatory response during monotonic shearing. Such
an unrealistic result has motivated several investigators (e.g. reference [13]) to
explore the possibility of removing the stress oscillation by using different spin
tensors. Later the original suggestion by MANDEL [32] and KrRATOCHVIL [29] for a
decomposition of the spin tensor to an “elastic” or “rigid” part and a plastic part,
and Mandel’s concept of material underlying substructure, motivated DAFALIAS
[13, 14, 15] and LoreT [30] to propose some constitutive equations for the plastic
spin in the case of anisotropic materials. These studies suggested that the “elastic”
part of the spin tensor must be used in a Jaumann-type corotational rate.

The concept of plastic spin has received increasing attention in the recent
years and many investigators have studied the effect of plastic spin on the large
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deformation of solid materials (e.g. [44, 45]). One interesting point shown in
the closed form analytical solutions presented by DaraLias [13, 14, 15] is that
unless strong initial anisotropy preexists, the difference in the material response
between using the substructure and material spin for a material which is initially
isotropic becomes important only after very large strains (of the order of 100%)
are developed.

In the light of the above discussion and due to the lack of experimental data
necessary for calibration of the constitutive equations for the plastic spin, we
will use a corotational stress rate without restricting the formulation to particular
choices of the spin tensor.

Assuming an inelastic behaviour for the soil skeleton, we choose the following

v
incremental form to relate the corotational rate of the effective stress tensor @;;
to the rate of deformation tensor dy; = 1/2(0 1 /0z; + O it/ Dxy),

=
(73) ﬁg1‘= Dijkldkh

where D is the tangential stiffness tensor which may be a function of the current
state of effective stresses, strains and some internal variables.

The specific form of the tangential stiffness tensor will depend upon the type
of mathematical framework (e.g., elasticity, plasticity, viscoplasticity, etc.) that we
choose to model the behaviour of the soil skeleton. Equation (7.3) is general
enough to enclose a wide variety of existing frameworks for the soil constitutive
modeling.

8. Expression of the virtual work equation in terms of the coordinates
of the configuration at time {

As mentioned in Sec. 3, all the integrals appeared in Eq. (3.5) must be written
in terms of a known configuration, such as the initial configuration of the soil
body (°B) or its converged equilibrium position at the end of the previous time
step (‘B). Here we choose the latter option and our aim in this section is to
rewrite Eq.(3.5) in terms of the coordinates of the configuration at time ¢.

Let us consider an infinitesimal cubic element of the soil body (Fig.3) whose
' 3
volume in the configuration at time ¢ can be expressed as ‘dV = [] dz;. During

=1
the motion of soil from time ¢ to time { + A¢, the material enclosed in the cubic
element ‘dV will occupy a new volume of 'tV and the initial shape of the
element will be distorted. Considering the axiom of mass balance, we can relate
t+31V to 'dV by the following equation:

(8.1) 000(11*' - 10 Y = l+._\[£)l+.“l[(“',"
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where %p, %o, and !+ 4o are the mass densities per unit volume in the configurations
at time 0, ¢, t+ At, respectively. The 04V is the volume of the infinitesimal element
in the initial configuration at time 0 (°).

//v
/ 1 AL,

F 5%, %

F1G. 3. The soil body at two subsequent configurations.

In general, the external loading, such as surface traction, external water press-
ure, gravitational and centrifugal loading are deformation-dependent. However,
in most geotechnical structures, the aforementioned loading does not induce such
a large displacement, large strain, or large rotation which would require a finite
deformation analysis. Therefore, it is reasonable to assume that the magnitude
and direction of surface force and body forces are independent of the current
configuration of the soil body, i.e. [3]

t+Atb1_ = t+Agtbi,
(8'2) t+dtfiS t+AidS — t+Attff t{l.S'.
where *4f%; and *4{f5 are respectively the body force and surface traction in
the configuration at time ¢ + At (**4!@), and measured in the configuration at
time ¢ (‘B). Combining Egs. (8.1) and (8.2);, we have:

(83) t+At0 t+A!b,‘ Hn_\tdv = tQ t+Attbi th.

If we further assume that the effect of the pore water relative acceleration
D ;/Dt with respect to the soil skeleton is negligible as compared to the in-
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ertial effect of the soil bulk mass, we can rewrite Eq.(3.5) by using Egs. (8.1),
(8.2) and (8.3):

(8.4) Hligpe / to t+aL,. g, fdv—/op HALE bu; OdV
ty oy

4 / tHALES §uf 148,
tSp

The second integral on the r.h.s. in Eq. (8.4) is evaluated using the initial configur-
ation (%B) and hence its contribution can be calculated prior to the incremental
step-by-step analysis.

As to the internal virtual work (Eq. (3.5),), we first use the principle of effective
stress (Eq. (4.1)) to rewrite (3.5); in terms of effective stresses. Thus, substituting
Eq.(4.1) in Eq.(3.5); leads to

t+Atppint - / 3% & rravei; TV

l+.’_\l\/

_ t+At— t+AL ¢ ~ b+ ALy
= j( Tij — Pbij)éwarﬁj dV

or

85 t+.ﬂl[{;m( - i+.3f—d,-i B 4+ ALCL t+Jtd\/’_ l+.3t) b,é A€ t+;\{(]‘/'
v J J P o J

t+ ALYy t+ Aty

We now need to refer the Cauchy effective stress tensor ‘*4{7;; and the infinitesi-
mal strain tensor ;4 a¢€;; to the configuration at time ¢ (‘B). It is well known that
the second Piola—Kirchhoff stress tensor '**2!S;; and the Green-Lagrange strain
tensor 't 4¢,; are a work-conjugate pair of stress and strain measures which relate
the *4!7,; and ;4 a¢e;; to the configuration at time ¢. The second Piola - Kirchhoff
stress tensor ‘t4/S;; is defined as [8]:
t Yo .
t+AtS'ij = i+§t ¢ () ,l‘l ﬁmn - 0 .LJ .
o D1t oAy

(8.6)

The Green - Lagrange strain tensor can be defined by considering the deformation
of a generic line segment of the soil body whose lengths are denoted by ‘ds and
t+4%s in the configurations at time ¢ and ¢ + At, respectively. Without giving the
details of this derivation, we find [8]:

. 1 [ du; ou; du Ouy
7 t+At. 1 4 Oy _
(8- t54 = 3 ((‘953:j dta; & ote; B‘mj-)
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Taking a variation of the both sides of Eq. (8.7), we have

110(0u;)  d(0uj) = I(bug) duy Quy d(buy)
t+At J

8. e == + 4 ,
(8:8) 0% 2| &z; g o'z; d'zy Oz Oz

where du; is the variation (virtual displacement) in the displacement ‘™ <%, We
also note that:

' A - O,
dtz; B L

(8.9)

Combining Eq. (3.2) and the above equation, we can relate the variation 6 '*4/¢,;
to & ¢+ at€mn in the following manner:

at+ At at+ At
siAL J L g Ht ety
(8.10) & = i t+At€mn "Bz

1 I]

Finally by using Eqs. (8.1), (8.6), and (8.10), we can write Eq. (8.5) as

(8.11) t+ At L,Vlijnt . /HJ:Hz‘j $ t+;3£¢€” tdv */’(Hkﬁl{hlj) $ I+JtIEiJ tdv.
v

Ly
where
¢ i, .
At o J i 14+ At 4 Z;
(8.12 t+aty, = e e (Pdii ) mgmrmi— -
) tHmn t+""£) ()t+"‘l.l',” %] ()1+J£?1'rl

Equation (8.11) together with Eq.(8.12) complete the virtual work expression
in terms of the coordinates of the configuration at time ¢ (‘@). However, in
order to use this equation in an incremental analysis, it is necessary to establish
its equivalent incremental form. Derivation of such incremental form will be
discussed in the next section.

9. Incremental form of the virtual work equation

An incremental form of the internal virtual work equation (8.11) can be es-
tablished by introducing truncated Taylor series expansions of the second Pi-
ola - Kirchhoff stress tensor and the h tensor, i.e.

/ ]
Hlide = 185 % [(;—t(S,-j)] At + higher order terms,
9.1) !

1
talh, = thi + [(;—’(h;j)] At + higher order terms,
& t
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where
¥2) (Sij = 'Tij s
(9.3) thi; = "pbi; .

Ignoring the higher order terms in Eqgs.(9.1) and using Egs. (9.2) and (9.3), we
have

i+AttS'_j - taj 4 [(%(Su)] At
(9.4) t

t+Aty
thij

d
i + [;[—[(hu)]tm.

In order to evaluate the second terms on the r.h.s in Egs. (9.4), we make use
of the following kinematic relationships [8]

d t() 3 10 (‘)H,_'NL,'_
(9.5) di t+at, - t+aty gt+aty,

d( M, )_ gt+aty,  ftay

dt \ §t+aig, Pratg, gitdty, ©

(9.6)

where ‘*2f denotes the velocity of the soil mass in the direction of axis k.
Utilizing Egs. (9.5), (9.6) and (8.6), we find:

d tn 80 ame . Oz
2 . 5 2 i
(9'7) a(‘s‘i) = t+Aty i+t 0k10(+AtIl ’

. . T N -
in which **3¢7 |, is the Truesdell rate of the effective stress tensor 74, and defined
as

t+AtEr _ t+At= t+ At t+ A= t+ At t+ At—
(9.8) T = ot Tt —

VIm T km

t+ At t+Al=
- Vkm Tml -

Vin,m

1
Since we seek to find [((I—t(S'i-J-)] , Eq.(9.7) should be evaluated at time ¢, i.e.
’ t

d T .
v _ = _ t= t t— t t— t t—
(99) [m('su)} = 04 = 045 E Vmm Oij — Vim Oim — Vim Omj -
: t

The Truesdell stress rate appearing in Eq. (9.9) can be related to the Jaumann

stress rate by decomposing the velocity gradient »; ,, to the sum of the rate of
deformation tensor d;,, and the spin tensor §2,,,, i.e.

(910) Vim = i + 4

http://rcin.org.pl
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Substituting (9.10) in Eq. (9.9), leads to
d :
(9.11) [d—i(s,’j):lt = iF,‘j % tl/mﬂn tﬁ,‘j - (tdjm + tﬁjm) tﬁim
— (tdt‘m + t.Q,'m) iEmJ' "
or by using Eq. (7.1), we find:

d . ¥ " - _
(9]2) —(LSI'J') =" g + il/m,m toij = l(]jm t(rim = !dim tﬂmj ’
dt :

v
where ! 7;; is the Jaumann rate of the effective stress tensor.

Considering the general form of the constitutive equation (7.3) applied to * gu
and substituting (9.12) in Eq. (9.4), we have:

t+ At — t= t t = t t— t =
(9]3) gSij - o'ij+-3[ (tDejkl dkl 4 Vinom 045 — djm Oim — dinz J-mj)-

It must be noted that the ;D,;i; appearing from now on in the subsequent equa-
tions is the one which relates the rate of deformation tensor to the Jaumann
rate of effective stress. However, if the initial formulation of the constitutive law
calls for the use of a corotational rate with respect to a different spin than ‘12,
then one must perform a subsequent transformation to a Jaumann rate for the
effective stress with simultaneous change of the constitutive moduli which will be
again defined by , D, ;4 after the transformation.

Equation (9.13) can be written in a compact form by using the following
relations:

1 Aluy 0wy 1 [0(Aug)  I(Aw)
Apt = Ay = = -
At dy 2_\1 ( dlry h (")‘.u,) 2 [ My + otz tekl s
(9.14)

t =
/—\t UTﬂ.Jﬂ =

M Aum) _

(f)t = t€mm
Lo

where Auw,, is the m-th component of the incremental displacement at a generic
point of the soil body. Thus Eq. (9.13) can be written as:

(9.15) TASG = T+ Aiken
where
(9.16) tAijii = tDijrt + T — 'Tubrj — 6 'Tx; -

The (A;x is the finite deformation tensor of tangent stiffness moduli and it
includes the regular tangent stiffness moduli tensor and the effect of stresses at
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the beginning of the step. It must be noted that if the components of the effective
stress tensor are of the same order of magnitude as the ;D;;x;, contribution of
the initial stresses to the ;A;;; tensor can be significant.

Similarly to Eq. (9.9) for the rate of the second Piola - Kirchhoff stress tensor,
one can write the following equation for the rate of the /,,,,

d d
(917) [d_[(h'mn)] = ;E(Pémn) . tuk,k tP 6mn = t”n,m [P = tum,n iP
' t
recalling that
1

(918) ldmn = 5 (tl’m.n + ll’n.m) 3
Eq.(9.17) can be written as
(9.19) [;—i(h,,m)] = D + Wik pOmn — 20 dinn -

¢
Using Eqgs. (9.20) and (9.14), we can now write (9.1); as
(920) 1+Aethmn = [[) 67117! + (tJI)(SHHI) + tCkk t]’ 6mn‘ - 2 ll’lernn )
where
(9.21) '(_\p) = 'f)_\l.

Regarding the variation in the Green - Lagrange strain tensor, i.e. 6 t*4fc,
we note that:

(9.22) 81 e = 6 eij + &5,
where
1 [ Ou; ou;

) 25 S35 For
(9-23) v 2 (0‘.rj (')’;l:i)
and

1 [ Our Ouy

.24 = | 55— 55—

(a3 i = 3 ((’)l.lr,' (‘)’.rj-)

in which u, is the incremental displacement.
Substituting Eqgs. (9.15), (9.20), and (9.22) in Eq.(8.13), we find

(925) t+At1“{"'Jm = / (tﬁij + f.1l'jkl ifkl) ((5 t€ij + 5,1]1'J') A%
[‘/'

"] (tpémn * lJP‘Smn + t€kk tp(smn - Zt])temn) (5 t€mn + 0 i”mn) !(”/-
l"/
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This is the final form of the internal virtual work expression in terms of the
coordinates of the configuration at time {. A more compact and computatonally
useful form of Eq.(9.25) can be obtained by utilizing Eq.(4.1) and combining
the effective stress-related terms implicit in the ;A;;z; tensor (Eq.(9.16)) wth the
pore pressure-related terms in Eq. (9.25). We finally find:

(9.26)  tHAtwint = / (ta'ij + ¢ Lijxi tekl) (6 eij + 8mij) ‘dV
ty

—/ (t,i\p) (6 teii + 84my) A
!l’

where
t t t
(9:27) tLijkt = tDiji + '0ij 6 — 'aq bkj — 60 oy,

or by using Egs. (3.5), we have:
(928) -/ tLijkl t€L! o €5 WV — / f.’l]'}(ﬁ €5 A%
ty ty

+j tLijki cex 6 4mi AV + / ‘aij 6475 dV
l‘/' l‘l/

—/f(_x,))a,_;,,,- [y = tratyet _ /‘n,_, & ye;; dV.
tv !V

The last three terms on the left-hand side of Eq. (9.28) are due to finite deforma-
tion effects, and they may be omitted in a small deformation analysis. In the case
of infinitesimal strains and small rotations, the ,L;;z; tensor will also redice to
the ;D;;x, tensor of tangent stiffness moduli. It should be mentioned that in an
incremental numerical solution, Eq. (9.28) is normally linearized by ignoring the
third and fifth terms on the left-hand side in this equation. This lineariza:ion is
justified due to small effects of these higher order terms in a regular earthquake
engineering problem, where the time steps are generally small if a plasticity-based
constitutive model is to be used.

Here it must be noted that Eqgs. (9.25) and (9.28) are incremental approxi-
mations of the internal virtual work at time ¢ + /. These equations, alonz with
equations governing the motion of the pore water (Eq. (5.23)), are used to calcu-
late an incremental displacement and pore water pressure. The calculated incre-
mental values are then used to evaluate approximations to the displacements of
soil skeleton, strains, stresses, and pore water pressure at time ¢ + A¢. The calcu-
lated values of displacements can be employed to establish an approximation to
the configuration at time ¢ + A7 (‘*213, 31y 4346 Therefore it is possible
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to calculate the difference between the internal virtual work evaluated with the
calculated static and kinematic quantities at time ¢ + Af, and the external vir-
tual work. In general, linearization of Eq. (9.28) introduces some errors and the
aforementioned difference may not be negligible. Thus, in order to reduce the
difference between the estimated internal work and the external work, an itera-
tive solution strategy is necessary. Different schemes may be used for an iterative
analysis. A full Newton - Raphson iteration scheme leads to the following form:

(9.29) /tLijkl(m)Jlekl(m)bt(’,'j(m)td"’-/ tAP™ 6 e, v
v %
+/ tL,»J-k,(’")A,ek,("‘)mq,-j‘m“dv+/‘n,-jﬁ;xmij(m)fdv
‘v v
- / EAPY™ § oy (M AV = Ao / to;m=D 6 e, (m=D gy,
% ty(m—1)
where m is the iteration number and the first iteration (m = 1) corresponds to

Eq.(9.28). The Auer(™ in Eq.(9.28) is a component of the incremental strain
tensor for iteration m, i.e.

1 a(_juk(m)) {‘)(A“l(m))
93 A : (m) = = + .
(, 0) t€kl 2 ( 011.1 (.')t.lfk

Similarly, the 6.A ;0™ is defined as
1 (0(_1“,-("”)) e)(hxfu.,-("')))

2 a[.'l‘k (')'l‘[

(9.31) A '™ =

Iterations are repeated until the r.h.s. in Eq. (9.29) is negligible within a certain
convergence tolerance. After each iteration, the displacements and pore water
pressure are updated.

The full Newton scheme adopted in Eq.(9.29) is obviously expensive due to
the necessity of evaluation of the constitutive tensor ,L;;;; at each iteration. A
modified Newton scheme can be achieved by keeping the constitutive tensor (L
constant during each step of incremental solution, i.e.

(9.32) / Liit A o™ § e, MV — f CAP™ 6 oM Y
f‘/ l"
+/ zIIEJA-lJzC’l;!(T’I)‘St"]ij(m) v + / ‘o764 177ij(m) ‘av
ty tV
o / t (L\]))(m) 5 Ln“(m) f([‘/ - t+Af‘,,‘,'ltJ:X! . / tai_j(m—l) 8 teij(m—l) th.

v ty (m—1)

http://rcin.org.pl
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Such a solution strategy has been successfully used in some of the applications
reported in [33].

As a final note in this section, it should be mentioned that the case of a
deformation-dependent external loading can be conveniently handled by applying
an iterative incremental procedure as described for Eq.(9.29). For example, in
the case of centrifugal loading, the body force applied to an infinitesimal volume
of the soil is a function of its current position, i.e.

(9.33) “"‘Mb,- = t+Atb1_( t+Atx)'

In such a case, the corresponding term in Eq. (2.5), is approximated as follows:

(9.34) /t+AtQt+th£5“i_ t+ Aty
t+ Aty
- t+.ﬂl£)(m—1)t+Albl_ (H-.Alx(m—l)) Su; tHAYY,
t+ Aty (m=1)
where
(")t-!-...”\l:l.,(m—l)
93 t+At (m—1) — det|———*
(9.35) e e 0z ;

The approximation introduced in Eq. (9.35) is only accurate for a small load in-
crement. Evidently, a better approximation for the finite load increments can be
achieved by linearizing '*<%;, as it was done for the second Piola - KirchhofT stress
tensor and the Green - Lagrange strain tensor. Such a linearization, however, in-
troduces a new contribution to the stiffness matrix and reduces the computational
efficiency of the formulation, as mentioned in [3].

10. Integral form of the equation governing the flow of the pore water

In Sec. 5 we have established a differential equation (Eq. (5.23)) governing the
flow of the pore water through the soil. For the purpose of numerical solutions,
however, it is appropriate to develop an integral form of this equation which
complements the virtual work equation developed in the previous section.

In order to establish an integral form of Eq. (5.23), we recall that this equation
is basically an expression of the axiom of mass balance implying that a tendency
of volumetric strain in the soil skeleton (first term in Eq. (5.23)) is counteracted
by a change in pore pressure (second term), and by the flow of the pore water
through the soil (the last three terms). Therefore, a weak form of Eq. (5.23) can be
generated by using the Galerkin weighted residual method and recognizing that
the pore water pressure is the appropriate weighting function on the volumetric
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strain rate, i.e.

(10 ]) lt'+.'_\t_') & t+A{l.t o _d______ t+__\l‘l i
: ir ! i Jt+aty, “1 QA
t+Aty
d t+Atl\ t+ At t+Atb
+8‘+‘“1',' ( of j)
d (HA%UHAth t+Aty )}6t+At Ay = )

at+.'_'lt1.l.

where 61*4% is a virtual pore water pressure analogous to the virtual displace-
ment du prev1ously used in the virtual work expression (Eq. (5.1)).
An expanded form of Eq. (10.1) can be written as

(102) /H—At' 6t+J£] L+_\t“/ /%t+dl]')6£+dlpt+dt(“/
t+;_\tv t+ Aty
J t+At a2y t+AYy,  t+AL, t+AL
+ / L}t-&n‘_\tl.‘.( A’ldt+‘_]t + ‘l‘ o5 b;
t+ Aty

t+ArL t+At fz+41 J)]bum t+ Aty = (.

Applying the Green’s theorem to the last integral, we have:

(10‘3) /f+A!’ 6!+A£ L+J![‘ + ./ _11:.£+:;\l]')6i+._'“])t+ﬂid‘;r
t+ Aty t+Ary
t+At 9t {+At, (+At. t+AL
[ (b g, - e,
t+ ALY

d

t+AL,  t+AL, t+AL L+AL N I+A

+ Reis os't tuj)aHmJ‘_(ﬁ p) TV
i

dt+‘
i /( t+A£AlJ()l+_\l 3 t+Atke’jt+Atht+A1bj

t+Atg

t+"”l|, H’At._f H'Jtﬁj) ; 6t+Atpt+AtdS = (.

where n; is the component of outward unit normal vector to the surface ‘+4S in
the direction of z; axis.
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Utilizing the water flow boundary condition (Eq. (6.4)), we can write Eq. (10.3)
in the form

. - / 1 . / r
(104) /t+Atu i'ibi"i"dl_])!*-._!ldv + / Ft+4'[)6t+4tpt+dtdl”
t+ Aty t+ Aty
o t+ At
t+ AL, d p t+At,  t+AL t+AL
t+ Aty d

t+ A,  t+At t+Aate d t+ At \t+ Aty
-+ i oy tl_,) m(é ») dV
3 / t+d[—(isél+;§£pi+._\ldb' =5 0

t+dzsq

Equation (10.4) is written in terms of the coordinates of the current configura-
tion t*43, whose equilibrium position is to be calculated while proceeding from
time ¢ to £ + At in the incremental solution. By applying the chain rule and using
Eq. (8.1), we can write Eq. (10.2) in terms of the coordinates of the configuration
at time ¢, B, i.e.

lQ QA o i+AL 08-'1'1 £ w7 10 i+‘-\t1.) t+ At t v,
(10.5) /t-{-._\lg ( f)lIJ i) Y4 W dV +/‘+‘an T(S P dV

(‘7 l+.'_\1l’

/ to D'z t+ay, OVt (étrapy| Btz Ly
I b L _tay
wEdly GrEah Yoate, dtay g itaty,

[‘,’ J

i, aé r+.nJ)' dtr
_/ £ |t+ay, t+ar, t+ay / 2ty
1+41, i es T 0t Q1+ay,
ty J
t (8 t+ALN]T At

+/ s thAy,  thALy thAty Ao p)| _0'n tav

t+At, 1 Y dte gttatg,

t+ Aty 2

g / £+.3117156t+.3£pi([5- - 0’

t 5‘q

where *4/g¢ was assumed to be a deformation-independent flow on *4'5,, so
that

(]06) H-Ata.s‘ l+At([S Az I+J:q,§ t([_S-_

It is noted that due to the presence of ‘*3%,, 3%, . and the inverse of the de-
formation gradient tensor, (9 ‘x;)/(9 "), in Eq. (10.5), most of the integrals in
this equation cannot be evaluated without further simplifying assumptions. Similar

http://rcin.org.pl
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to the procedure adopted in Sec. 8, one may utilize linearization technique to re-
duce Eq. (10.5) to a suitable form for incremental iterative analysis. Linearization
of Eq.(10.5), however, leads to a very complicated equation which significantly
reduces the computational efficiency of the formulation. Therefore, in order to
avoid such a difficulty, it is suggested to use some reasonable approximation for
the aforementioned redundant terms (‘*%%y, *4%,;, ...). For example, in the
first iteration, one may utilize the values obtained from the previous time step.
Corrections to the results of the first iteration can be achieved by establishing
approximate position of the configuration at time ¢ + At. The new configuration
can be used in iterative solution of Eq.(10.4) written in the following form:

0!+AL,‘L ) 1 ) ) ]
(107) / A—(fl)b t+A£pi+A!dV + / FHu-.\ii) § I+Atpt+‘;.\ldv
o tts :l.l_ S

t+ Aty (m—1) t+ Aty (m=1)
0 t+ At
+ t+4y, (m-1) d P t+at, (m=1) t1+4y (m—1)
= gt+aty (m=1) &f J
t+Aty(m—1) '

()((5 t+_‘:l])) r+.'.\l(”,'

(.)1+A,;F1‘(m—l)

i+At, (m=1) t+ At
+ oy i

i / l+_jtq“{ Py t+‘_“])[+‘_”115 = O:

l+,_)t.qq(tn-—l)

where the right superscript (m — 1) refers to the iteration number (m — 1), and
the case mn = 1 is defined as

(10.8) OO = 1),

t+Ath(m—l)

and is calculated by using the following equation:

d £+.’_\tx(m—1)

dtx

B t+ Aty (m—1) ~ il - 71)(+A10}m-1) + np,

(m=1) _ —
(10.9) d ‘ to (1 —=mn)tos + no,

In Eq. (10.9), we assumed that the change of soil porosity during the time incre-
ment was negligible. This assumption is used to prevent the need for iteration
over porosity.

Equation (10.7) has a number of special characteristics which distinguish
it from the virtual work expression, i.e. Eq.(9.25). First, the dependence of
the acceleration term on ‘"<, and '*'%;; requires that the corresponding
“mass” matrix in a discretized solution procedure should be calculated in every
iteration. Similar situation renders the body force contribution in Eq.(10.7) a
deformation-dependent loading. It is also noted that components of the effective
permeability tensor are variable quantities which may change due to the change
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of fabric in the soil skeleton. Unfortunately, experimental data in order to char-
acterize such a change in the soil fabric is very limited.

In so far as the permeability tensor is concerned, it is important to note that
in a finite deformation regime, a generic element of the soil system may undergo
large rotations. Therefore, special care is necessary to define the coefficients of the
permeability tensor in terms of the coordinates of the Cartesian reference system
used in the Lagrangian formulation. Assuming that the permeability coefficients
are intrinsic to the soil element, it can easily be shown [7] that the matrix of the
permeability coefficients obeys the following transformation:

(10.10) k = RTKgR,

where kg is the matrix of permeability coefficients in the initial position and R
is the matrix characterizing the rotation of the soil element with respect to the
reference Cartesian coordinates.
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