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On finite deformation dynamic analysis of saturated soils 

Notations 

M. T. MANZARI (WASHINGTON) 

A GENERAL FORMULATION is proposed to treat the dynamic response of saturated soils in finite 
deformation regime. Considering the soil as a saturated porous medium, the formulation for finite 
deformation analysis was established by extending Biot's classical theory to incorporate finite de-
formation effects. Particular attention was !;iven to the floV>' of water through the soil while the soil 
skele ton unde rgoes a finite deformation. 1l1e derived formulation constitutes the theoretica l basis 
for analysis o f the liquefaction induced Aow failure in soil embankments. Due to the integral form 
of the governing equations, they are speciall y suitable for application of numerical methods such 
as the fin ite e lement method. 
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mass densities of soil per unit volume in the configurations 
at time 0, t, t + Llt, respectively, 

mass density of solid particles and pore water, respectively, 

Cartesian components of the Cauchy total stress tensor 
measured at time 1 + .1t, 

total stress and effective stress tensors, respectively, 

corotational rates of the total stress and effective stress tensors, 
respectively, 

material spin tensor, 

finite deformation tensor of tangent stiffness moduli , 

i- th component of body force per unit mass measured at time t + Llt, 

body force in the configuration at time t + Llt ('+6 'f3) and measured 
in the configu rati on at time t ('f3), 
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the Green- Lagrange strain tensor, 
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respectively, measured at time t + Llt , 

surface traction in the confi guration at timet+ Llt ('+ 6 'f3) and 
measured in the configuratio n at time t ('f3), 
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1. Introduction 
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different portions of body surface, respectively related to prescribed 

displacement, traction, pore pressure, and fl ow, measured at time t + Lll , 

the second Piola- Kirchhoff stress tensor, 

components of incremental displacement at time I, 

components of displacemcnts at time t + L:l t , and I , respectively, 

components of the absolute velocity of pore water in the d irection of L, , 
relative surface velocity of pore water with respect to the soil ske leton, 

coordinates of a generic particle of the body in Cartesian coordinate 
system at time t. 

ANA LYSIS OF SOIL liquefaction and its consequences, such as permanent deforma-
tions in constructed faciliti es or earthen structures, requires a rational analytical 
procedure. Such a procedure should be based on a proper understanding of 
the physics and mechanics o f soil as a particulate medium composed of three 
phases, i.e. solid particles, water, and air. Due to d iscontinuous nature of granu-
lar soil s, it appears that the best approach to study the mechanics of soil is a 
micro-mechanical approach. In principle, if the behaviour of saturated granular 
soil s on the microscopic scale was known, it would be possible to calculate the 
behaviour of granular soil s o n the macroscopic scale by applying appropriate sta-
tistical methods. In practice, however, such calculations are extremely diflic ult 
and, at the present time, lim ited to some simple cases. On the other hand, our 
knowledge of mechanical behavio ur of soil s is mainly based on observations and 
experimental studies of the samples o f soil s whose dimensions are large com-
pared to those of an individual particle. In parti cular, most of the experimental 
results available in the fi eld of soil mechanics are expressed in terms of the overall 
macroscopic quantities, such as confining pressure, axial stress, axia l strain, etc., 
which indicate a wide acceptance of continuum approach in the study of soil be-
haviour. In a continuum approach, the parti cula te nature of soil is ignored and it 
is assumed that materi al is uniformly distributed througho ut the regions of space. 
For dry soils or in the case of drainage processes for saturated soils, the regular 
equations of continuum mechanics may be used to formulate the problem. But in 
the case of saturated soil s which are subjected to d isturbances of transient nature, 
the effect of pore water pressure should be considered by a proper regularization 
of soil as a two-phase medium [4, 5] or a mixture of two different materials [23, 
24, 43]. 

Both of the aforementioned approaches, i.e. the micro-mechanical and con-
ti nuum approach, have received much attentio n during the past three decades. 
Micro-mechanical approaches have been continuously used to study some of 
the important features of granular soil s, such as dil atancy, shear strength, and 
anisotropy. However, their application to boundary value problems has been 
started only recently by introduction of the distinct element method [10, 11, 12] . 
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The distinct element method considers an assembly of large number of particles 
representing the soil mass and solves the dynamic equilibrium equations for each 
particle, subject to body forces and boundary interaction forces. The method 
can potentially handle nonlinearities which may arise from large displacements, 
rotation, slip, separation and material behaviour, but its performance is highly de-
pendent upon the constitutive laws selected to represent the inter-particle forces. 
In addition to application of the distinct element method to the dry soils [2, 11 ], 
a few attempts have been reported [42] to utilize the method in a simulation of 
soil liquefaction. However, these developments are in the initial stages and the 
micro-mechanical approach is far from application to the real boundary value 
problems. 

In contrast to micro-mechanical approach, the continuum approach has been 
successfully used in the analysis of geotechnical problems during the past few 
decades. Following the introduction of a coupled stress-flow formulation for dy-
namics o f porous media by BIOT [4, 5], many investigators employed the new 
formulation to solve some practically significant boundary value problems using 
the finite element method [38, 48, 18, 19, 21, 40, 36, 37, 49, 50]. A historical 
review of such applications for liquefaction analysis is given in [33]. Recently 
ADvANI, et al. [1 ] have used a generalized form of the Bio t's formulation for 
hygrothermo-mechanical evaluation of porous media under finite deformation 
regime. CHOPRA and DARGUSH [9] have also utili zed the Biot's formulation for 
large deformation analysis of time-dependent problems. 

In this paper, a generalized fo rm of Biot's formulation for dynamics of porous 
media [5, 50] is derived by taking into account the finit e deformation effects. The 
developed formulation serves as the basis fo r the numerical procedure proposed 
in a companion paper on the analysis of soil liquefaction and deformations in a 
fin ite deformation regime. 

2. Statement of the problem 

For a saturated earthen structure which occupies an initial volume of 0 \1 
with the boundary surface 0 S at time 0, we seek to establish the governing field 
equations necessary to evaluate its equili brium positions and entire time histories 
of responses during a quasi-static o r transient process of deformation. 

It is assumed that specified displacements, surface traction, pore water press-
ure, or water fl ow boundary conditions are defined on different portions of the 
boundary surface t +.1t S at a generic time l + L1l. These portions of the bound-
ary surface are named t+.1tsu, t+ .1tSr, t+.1tsP, and t+,jtsq, respectively. It is 
attempted to establish the governing equation without imposing any restriction 
on the magnitude of strains and displacements which the soil body may experi-
ence in the course of deformation. In order to deal with nonlinearit ies involved 
in the problem, an incremental analysis is adopted and the equili brium positi on 
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at time t + Llt is searched for, assuming that the solutions for all time steps from 
time 0 to time l are known. 

We adopt a Lagrangian (materia l) formulation and fo llow the material points 
in their motion. Therefore, in a generic time step from time I to time l + Lll , it is 
assumed that the initi al configuration o f the soil body (0 13) and the configuratio n 
at time t (113) are known and we are searching for the confi guration of structure 
at time t + Llt e+Lltl3). In the fo ll owing development, an updated L agrangian 
formulation is foll owed. 

3. The principle of virtual work 

Let us consider the motion of a generic point P of a saturated earth structure 
(Fig. 1 ). In the process of deformatio n from the initi al configuration at time 0 to 
the configuration at time t, its coordinates wi th respect to a fix ed Cartesian co-
ordinate system change from (0x1, 0x2, 0x3) to (1 x1, 1x2, 1x3) , where the left- hand 

F IG. 1. Three different configuration of the soil body during its motion. 

superscripts refer to the configuratio n of body, and the subscripts refer to d iffer-
ent axes of the Cartesian coordina te system. In our analysis, we seek to fi nd the 
positi on of each material point in the next configuratio n, i.e. at time l + Ll l .. Let 
us suppose that the soil body, in the confi guratio n at time I + .J.t, is subjected to a 
vir tual d isplacement fi eld 8u which sati sfies all the boundary conditio ns (Sec. 6). 
The principle of virtual work requires that the virtual work performed, when the 
soil body undergoes a vi rtual displacement 8u, is equal to the external work done 
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by the body forces and surface traction, i.e. 

(3.1) ｴ Ｋｌｬ ｴ ｷ ｾ ｮｴ＠ = j t+Llt a ;jb t+ Llte;/+ Ll tdv 

<+6<V 

= t+ Ll t wcxt = J t+Llt f BSu·t +Ll tdV + J t+LltfSbu·t +Llt d S 
V t t 1 t 1 

t+6tV <+6<Sr 

where the t+Lltaii are Cartesian components of the Cauchy total stress tensor, 
the t+Ll te;j are Cartesian components of infi nitesimal strain tensor, t+ Ll t / ;8 and 
t+ Ll t f ;5 are the components of the applied body forces and surface traction, re-
spectively, and Su; represents the components of virtual displacement fi eld in the 
direction of axis i of the Cartesian coordinate system. The t +Llt ST is a part of 
soil body surface on which a specified traction t+Llt JP is applied. The 8 t+Ll teii is 
the variation in the small strain tensor defined as fo ll ows: 

where u; is the incremental displacement at time l defined as 

in which t+ Ll tu; and 1u; denote the displacements at time l + ..Jt and l, respectively. 
Note that the fir st term o n the right-hand side of Eq. (3.2) implies the parti al 
derivative of the variatio n u; wi th respect to t+Lltx i . 

In a dynamic loading of saturated soil systems, there are three contributions 
to the body fo rces t +Ll t f ;8 in Eq. (3.1): 

t+Ll t(g b;) body force due to gravi ty or centrifugal acceleration, where 
t+Ll to is the mass density of the soil and t+ Llt& ; is the i-th 
component of body fo rce per unit mass, both measured at 
timet + Lll, 

t+Llt (gii;) body force due to acceleration of the soil skeleton t+Llt u;; 
negative sign is used because this force is in opposite direc-
tion to t+Llt ii ;, 

t+Llt ! ;Bw body force due to relative acce leration of the pore water wit h 
respect to the soil skeleton. 

The fi rst two terms are common in any structural dynamics problem, but the 
third term t+Llt f ;8 w is due to the presence of water and its relative motion with 
respect to the soil skeleton. To account for t+ <1 t f ;8 w , we note that in a differential 
volume t+Ll tdv of the soil with porosity n, only (n t+.1 tdV) is occupied by the 
pore water, therefore g 1 (n t+ Ll tdV) is mass of the pore water avail able in the 
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differential volume of the soil. Here Q 1 is the mass density of pore water and the 
following relation holds: 

(3.3) (} = n{}J + (1 - n ) {!s , 

where (}s is the mass density of solid particles. 
Now if we define a relative average or superficial displacement, w; , so that 

w; is the relative superfici al velocity(') of the pore water with respect to so il 
skeleton (in the direction of axis i, i = 1, 2, 3), the actual displacement o f water 
in the pores is w;j n. The body force due to the relative acceleratio n of pore water 
with respect to the soil skeleton is expressed by 

(3.4) 

where D I Dl is the symbol o f total derivative with respect to time e). Here we 
must use a total ti me derivative, because w i is measured wi th respect to the 
soil skeleton that itself is moving and makes a moving coordina te system for 
measuring w i · The negative sign in Eq. (3.4) is used because the t+.dt f ;8 w appli es 
in the opposite direction of water flow. It must also be noted that the effect of 
change of porosity has been ignored in the acceleration term in Eq. (3.4). This 
effect will be very small during a usual time step. 

Considering the above mentioned contributions to the hody force t+ .Jtf ;8 w , 

we can now write Eq. (3.1) as 

(3.5) ｴＫＮ､ ｴ ｷ ｾ ｮｴ＠ = j t+ .JtO"iJ b t+ .:l te;/+ .1tdV 

ｴＫｾ＼ｖ＠

= ｴ Ｋ ＮＱ ｴ ｷｾ ｸ ｴ＠ = j t +t:J.t f /' ou/' t+ ..ltd S 

c+.:.csT 

+ j [t +.dtnt+ t:J. tb · _ t+ .1t0 t+t:J.tii · _ t+ .1tn t+t:J.t (D ·ti; ; )] ou·t+ .1trl v 
e:- I ｾ＠ I '-f Dt t • 

<+il<V 

There are two major diffi culti es in application of Eq. (3.5) to a finit e defo rma-
tio n problem invo lving saturated soils. First, the configuration at time l + fj f is 

(') This is the superficia l velocity of water used in Darcy's law for seepage of wate r through a porous 

medium, i.e. w, = v, = k,1 (oh/ 8x 1 ), where k,1 is the hydraulic conductivity of the soil in the di rect io n i due 
to a unit fl ow in the d irectio n j and h is the hydraulic potential at the point of interest. 

(') The material time derivative or the rate of a quantity, A = !l( .r(t) , t ) is defined as 

OA · 8 .4 o A . 
- =A= - + -x, , 
Dt ot ｄ ＺｾＮ ﾷ Ｌ＠

where A is a scalar quantity and it is a function of time and space. 
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unknown and the integration over the t +.1t v and t+.11Sr cannot be performed 
before calculating the equilibrium position at time l + .dl. The second difficulty 
is the presence of total stress tensor, t + .1tO'ij in Eq. (3.5) which does not have any 
direct influence on the mechanical behaviour of the soil and cannot be used in 
a realistic constitutive equation relating a proper measure of stress to a measure 
of strain. To resolve the first difficulty , we can rewrite Eq. (3.5) by referring the 
applied forces, stresses, and strains to a known equilibrium configuration, such 
as the initial configuration at time 0 (Total Lagrangian Formulation) or the con-
figuration at timet (Updated Lagrangian Formulation). The second problem can 
be resolved by applying the principle of effective stress and introducing effective 
stresses in Eq. (3.5). The aforementioned measures are adopted in the following 
sections. 

4. The principle of effective stress 

Terzaghi's principle of effective stress can be written in the foll owing form: 

(4.1) 

where O'ij and O'ij are the total stress and effective stress tensors, respectively, 
and p stands for the pore water pressure. The O;j is the Kronecker delta defined 
as 

DiJ = 1 

Dij = 0 

fo.· 1 = J, 

for i f; j . 

In direct notation, Eq. ( 4.1) can be written as 

(4.2) a=a-pl , 

where 1 is the symbolic fo rm of the Kronecker delta. 
Here the conventional sign convention o f soli d mechanics is used which con-

siders tensil e stresses as positive values and compressive stresses as negative val-
ues. The negative sign of p in Eqs. ( 4.1) or ( 4.2) is associated with the fact that 
pore pressure is considered as a compressive stress. 

Since the effective st:-ess principle is defined in terms of the Cauchy stress 
tensor which is no t an objective measure of stress, it is important to establi sh a 
suitable rate form for Eq. ( 4.2). Taking the time derivative of Eq. ( 4.2), we find 

(4.3) 
D D D 
- (cr) = -(Cf) - - (pl) 
Dt Dt Dt 

or 
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where e; and ei are the unit vectors in a Cartesian coordinate system. The ; and 
'V 

u are corotational rates of the total stress and effective stress tensors, respectively. 
Using Eq. (4.2), we can write the above equation as 

(4.5) 

Equation ( 4.5) is of paramount importance in our subsequent developments. We 
will use this equation in development of the incremental equations governing the 
dynamjcs of saturated soils. 

As previously mentioned, Eqs. ( 4.2) and ( 4.5) enable us to formulate the gov-
erning equations of motion (Eq. (3.5)1) in terms of effective stresses. However, 
substitution of Eq. (4.2) in Eq. (3.5) leads to the appearance of a pore pressure 
related term which prevents a direct application of Eq. (3.5) as a sole field equa-
tion in the solution of boundary value problems in soil dynamics. The additional 
unknown, p, requires an additional field equation which governs the flow of water 
through the soil. Derivation of this equation is the subject of the next section. 

5. Equations governing the How of water through a saturated soil 

In Sec. 3, we derived an integral equation governing the motion of the soil 
mass by making use of the principle of virtual work for the bulk mass of the 
soil body. In this section, we consider the equations of motion and mass balance 
for the pore fluid (water) alone in order to establish a complementary equation 
to Eq. (3.5). Th this end, let us consider a unit volume of the soil in the current 
configuration at timet+ !lt as a control volume for the flow of the pore water. We 
assume that the coordinate system is attached to the soil skeleton and is moving 
with it. The flow of water in this control volume is affected by inertial forces and 
by a viscous (velocity-dependent) drag force due to interaction of the pore water 
and solid grains. In the following consideration, it is assumed that the viscous 
drag force can be determined by application of Darcy's law. In a quasi-static flow 
of the pore water, Darcy's equation is written as 

(5.1) w· = - k · 
8

P 
' •J fJx . 

J 

in which 

(5.2) 

where k;j is a component of the permeability tensor. The 1u; in Eq. (5.1) is the 
superficial velocity of water, i.e. the volume of water flowin g per unit time and 
per unit gross area through the face of the control volume perpendicular to the 
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x; axis. The negative sign in Eq. (5.1) emphasizes that the water flow occurs in 
the direction of decreasing potential. 

Now if we defin e the resistivity tensor r ij as the inverse of the specific permea-
bility tensor, 

(5.3) 

Eq. ( 5.1) can be written as: 

(5.4) ()ap = -r;j Wj = ffi ;, 
x · 1 

where ffi ; is the viscous drag force in the direction of x; axis applied to the pore 
water flowing through a unit control volume of the soil. Considering the effects 
of the inertial and body forces (Fig. 2), Eq. (5.4) can be generalized, 

(5.5) ap . ( .. D t"u i) 
- ox; - r ;_i Wj + PJ b;- t l ; -----;)t 

where 
D w; ··tot 

tt; +-- = u · 
Dt 1 

represents the total acceleration of pore water. 

r---
. . fol 

9t U; 

p(x) r---

r---

Note: 

R,. 

9t b; 

·· tot . . DW; 
U; =U; +Of 

-
-
-

= 0, 

x,. 

FIG. 2. Free body diagram for the pore fluid in a control volume. 

In order to reduce E q. (5.5) to a form containing only the displacements of 
soil skeleton ( u) and pore water pressure (p ), we fir st use the axiom of mass 
balance to establi sh a relationship between the rate of change of pore pressure j; 
and the rates of volumetric strains for the pore water ·w;,; and the soil skeleton 
u;,;. Such a relationship can be used to remove the relative displacement of the 
pore water w from Eq. (5.5). 
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Let us consider a unit volume of the soil in which the masses of the pore 
water and solid grains are respectively ng 1 and (1 - n ) f! 5 . The axiom o f mass 
balance requires that in the process of fl ow of the water through the soil , these 
two masses must be conserved, i.e. 

(5.6) zl j(nfJJ)dV = 0, 
V 

(5.7) ｾｾ＠ [/(1 -n)es dV] = 0. 

Equations (5.6) and (5.7) lead to: 

(5.8) 

(5.9) 

TtflJ + nb1 + (nfJJ ) U;, ; = 0. 

- 1ig5 + (1 - n) g5 + (1 - n )g8 it; ,; = 0, 

where U; is the component of the absolute velocity of pore water in the direction 
of x; axis, i.e. 

(5.10) w; = n( U; - ·it ;). 

Dividing Eqs. (5.8) and (5.9) by f!J and g8 , respectively, and adding up these two 
equations, we find: 

0 0 

(5.11) ng f f2 s [ 0 ] - + (1 - n) - + n( U i ,i- it ;,;) + ·it ;,; = 0, 
{}J Os 

or by using Eq. (5.10), we have: 

0 0 

(5.12) ng 1 + (1 - ｮＩｾ＠ + tu;,; + it ;,; = 0. 
(} f f!s 

The first term in the above equation represents the compressibili ty o f the pore 
fluid (water) which is of cardinal importance in dynamic analysis of saturated 
soils. In order to stress the importance o f this term, it suffices to mention that 
the compressibility of pore water (fluid) is highly dependent on the degree of 
saturation of the soil , and a small fraction of percentage o f air in the pore water 
may significantly increase its compressibility [31]. The second term in Eq. (5.12) 
accounts for the compressibility o f solid grains and, in general, is much small er 
than the fir st term. ln the following considerations, we seek to substitute the first 
two terms in Eq. (5.12) by means of simple constitutive equatio ns. To this end, 
we note that a change of efTective stress will result in a change of volume of solid 
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particles, while a pore pressure change wi ll induce a change o f volume in both 
the solid particles and the pore water. Thus 

(5.13) 

( • ) fJ(Q f) . 
(}! = -.-]J ' Dp 

( • ) _ fJ(es) • + &(gs) _!._ •. 

f2 s - &p p o((f;;)a". 

In practice, the iJ 
5 

is very small and negli gibl e as compared to the iJ 1. Thus it can 
be ignored in the subsequent procedure. However, it is kept in the formulation 
for the comparison purposes. It is noted that the constitutive law representing 
the change of f2 5 is simil ar for the change of hydrostatic pressure or the change 
of po re water pressure. Therefore, the terms o n the right-hand side in Eq. (5.13)2 
can be described in terms of the change of hydrostati c total stress (a;; ), i.e. 

(5. 13)3 ( • ) - &(g s) • .. 
f2 s - &a;; a " . 

It is also assumed that the fo ll owing linear relationships exist between the 
change of pore water pressure (or any hydrostatic pressure) and the changes of 
volumes of the pore water and soli d grains: 

av __ s 

(5.14) ____Q£_ 1 

Vs /1.S ' 
OVw 

ｾ＠ 1 
= 

\1 fi .J ' w 
(5.15) 

where Vs and Vw are the volumes of soli d grains and the pore water in a unit 
volume of the soil mixture, respective ly, while l1·s and 11·1 indicate the compress-
ibili ty of the above constituents. In general, X s is by several orders of magni tude 
larger than /1' f. Considering Vs = (1 - 11 )g s and V w = ng 1, and ignoring the 
change o f soil porosity due to the change of p, we can rewri te Eqs. (5.14) and 
(5.15) as 

Of2s 

(5.16) __1p_ 1 
= 

k s ' f2s 

Of2! 

__1p_ 1 
= 

{!J fi .J 
(5.17) 
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Substituting Eqs. (5.16) and (5.17) in Eq. (5.12), we fin ally find the equatio n 
of mass balance in a desired form: 

(5.18) 

Denoting: 

(5.19) 

- + - - •J + w· · + t t · · = 0. ( n 1 - n) . . . 
l\.f A's r '·' '•' 

1 n 1 - n 
- = - + --r A"1 A's 

Eq. (5.18) is written as 

(5.20) 
1 . . . r P + w;,; + u ;,; = o. 

Equations (5.20) and (5.5) yield the following relations: 

(5.21) 

or 

(5.22) 1 • • a ( ap ) a ( 6 ) 
1
, p + tt;,i- -

0 
k;1-a + -

0 
kij {!J J 

.Tj .Tj Xj 

a [ ( '" JJtvJ )] - axi k jj {} j Uj + Dt = O. 

This is the fi nal equation governing the Oow of the pore fluid (water) through 
the soil and combines the axiom of mass co nservation and equation o f motion 
for the pore fluid . Presence of the term Di'v1j Dt in the above equation is sti ll an 
undesirable feature which inhibits a direct coupling o f Eq. (5.22) with E q. (3.5) 
in order to get a coupled systems of equations in terms o f u and p . However, 
it has been shown [49] that for the range of frequencies encountered in the 
earthquake loading, the relative acceleration of the pore water with respect to 
the soil skeleton is negligible. Therefo re by ignoring Dti;Jf Dt in Eq. (5.22), we 
find: 

(5.23) 1 . . a ( ap ) a c ) a c .. ) - p + u i ; - -. . - k;·- + - k; ·{! JU Ｍ Ｍｫ ｩＢｻ Ａ ｊ ｕ ｾ＠ = 0. 
r , a .T j J ax j Dx; J J ax; J J 

Equation (5.23) is written in terms of u and p and is suitable to be solved in 
combination with Eq. (3.5), for which we also neglect the Dti'i/ Dt term for the 
foregoing reasons. 
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6. Boundary conditions 

As it was mentioned in Sec. 2, we assume that four types of boundary con-
ditions are specified on different portions of the boundary surface t+Ll tS of the 
soil body at a generic time t + L1t. These boundary conditions are defined in the 
following sub-sections. 

6.1. Displacement boundary condition 

It is assumed that on a portion of the boundary surface t+Llts of the soil body, 
displacements of soil skeleton are specified as follows: 

(6.1) on t+Llts 
u, 

where t+Lltui is the specified value of displacement on the boundary surface 
t+LltSu at time t + L1t. 

6.2. Pore pressure boundary condition 

The pore water pressure boundary condition is defined on t+LltSP as fo llows: 

(6.2) on t+Llts 
p , 

where t+Lltp is the specified pressure o n the surface t+LltSP at time t + .J.l. 

6.3. Traction boundary condition 

We assume that on a portion of the boundary surface, there is a specified 
traction which must be in equilibrium with the internal total stresses, i.e. 

(6.3) t+Llt0 . ·n . = t+Llt ! S 
I ) ) I On t+Ll ts T, 

where the t+Llt!F is the specified traction on the surface t+LltsT with a unit normal 
of n, and t+Llta; 1 is the to tal Cauchy stress tensor acting on the neighborhood of 
the t+LltJr 

6.4. Water flow boundary condition 

It is assumed that on some portion of the boundary surface, the water flow 
boundary conditions are specifi ed. One o f the typical examples o f such boundary 
conditions is the impervious boundary. The water flow boundary condition follows 
from Eq. (5.8) and is expressed as a nux condition, i.e. 

(6.4) w;n; = ｛ Ｍ ｫ［ ｩ Ｚｾｊ ｩ＠ Ｋ ｫ ［ Ｑ ･ Ｑ ｢ ｪＭ ｫ ｩ ｩＦ＾ｊ Ｈ ｩ ｩ ｩ Ｋ ｄｄｾｩ Ｉ｝ ｮ ［＠ = t+Lltqs on t+Lltsq , 

where n; denotes the i -th component of the outward unit normal to the surface 
t+Llt Sq, and t+Lltqs is the prescribed fluid flow on the t+LltSq. 
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7. Constitutive equations for the soil skeleton 

The governing field equations developed in Sec. 3 (Eq. (3.5)) and in Sec. 5 
(Eq. (5.23)) along with the boundary conditio ns defin ed in Sec. 6 are not suffi-
cient to solve a boundary value problem in soil dynamics. For ten unknowns (3 
displacements of soil skeleton, pore pressure, and six components of stress tensor) 
in a boundary value problem, we have established only fo ur governing equations. 
Thus six constitutive equations are necessary to make the problem well-posed. 
Due to nonlinearity of soil behaviour, it is desirable to define the constitutive 
equations in a rate form relating an appropriate measure of stress to the rate 
of deformation. In a finit e deformation analysis, an objective stress rate must be 
used to ensure that the efTects of rigid body rotation are correctly considered. 
This criterion, however, does not determine completely which stress rate should 
be used. There are difTerent forms of stress rates which satisfy the objectivity 
requirement. The most commonly used objective stress rate is the JAUMANN [27, 

28] corotational rate of the Cauchy stress tensor, 6-;1, defined as fo llows: 

(7.1) 

where lJ ij is a Cartesian compo nent of the material (ti me) derivative of the 
Cauchy stress tensor, and J2;1 is a Cartesian component of the spin tensor, i.e. 

(7.2) 

Numerous application of the Jaumann stress rate have been reported in the 
fin ite deformatio n analysis of crystallin e soli ds in the crystal plasti city context (e.g. 
22, 35). In a crystal plasticity application, the material spin tenso r n is replaced 
by the rate of rotation or spin of the crystal lattice. However fo r non-crystallin e 
solids, a proper cho ice of the spin tensor is not clear. Previous study by NAGTEGAAL 
and D E JOND [34] has shown tha t a d irect appli cation of Eq. (7.2) in the large 
strain simple shear analysis of a material obeying a M ises-type kinematic harden-
ing plasticity results in an oscill atory response during mo notonic shearing. Such 
an unrealistic result has motivated several investigators (e.g. reference [13]) to 
explore the possibility of removing the stress oscill atio n by using difTerent spin 
tensors. Later the original suggestion by MANDEL [32] and KRATOCHVIL [29] for a 
decomposition of the spin tensor to an "elasti c" o r " rigid" part and a plastic part, 
and Mandel's concept of materi al underl ying substructure, motiva ted DAFALI AS 
[13, 14, 15] and LoRET [30] to propose some constitut ive equations for the p lastic 
spin in the case of anisotropic materials. These studies suggested that the "elastic" 
part of the spin tensor must be used in a Jaumann-type corotatio na l rate. 

The concept of plastic spin has received increasing attention in the recent 
years and many investigators have studied the efTect of plastic spin o n the large 
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deformation of solid ｭ｡ｾ･ｲｩ｡ｬｳ＠ (e.g. [44, 45]). One interesting point shown in 
the closed form analyti cal solutions presented by DAFAUAS [13, 14, 15] is that 
unless strong initial anisotropy preexists, the difference in the material response 
between using the substructure and material spin for a material which is initially 
isotropic becomes important only after very large strains (of the order of 100%) 
are developed. 

In the light of the above discussion and due to the lack of experimental data 
necessary for calibration of the constitutive equations for the plastic spin, we 
will use a corotational stress rate without restricting the formulation to particular 
choices of the spin tensor. 

Assuming an inelastic behaviour for the soil skeleton, we choose the following 

" incremental form to relate the corotational rate of the effective stress tensor O';j 

to the rate of deformation tensor dkl = 1j 2(o it!.)oxl + o iti/Dxk ), 

v 
(7.3) a ;i = Dij klrlkl , 

where D is the tangential stiffness tensor which may be a function of the current 
state of effective stresses, strains and some internal variables. 

The specific fo rm of the tangential stiffness tensor will depend upon the type 
of mathematical framework (e.g., elasticity, plasticity, viscoplasticity, etc.) that we 
choose to model the behaviour of the soil skeleton. Equation (7.3) is general 
enough to enclose a wide variety o f existing frameworks for the soil constitutive 
modeling. 

8. Expression of the virtual work equation in terms of the coordinates 
of the configuration at time t 

As mentioned in Sec. 3, all the integrals appeared in Eq. (3.5) must be written 
in terms of a known configuration, such as the initial configuration of the soil 
body (013) or its converged equilibrium positi on at the end of the previous time 
step el3). Here we choose the latter option and our aim in this section is to 
rewrite Eq. (3.5) in terms of the coordinates of the configuration at time t . 

Let us consider an infinit esimal cubic element of the soil body (Fig. 3) whose 
. 3 

volume in the configuration at time t can be expressed as 1dV = I1 d.xi. During 
i= l 

the motion o f soil from time L to time t + L11, the material enclosed in the cubic 
element 1dV will occupy a new volume of t+Ll tdV and the initial shape of the 
element will be distorted. Considering the axiom of mass balance, we can relate 
t+LltdV to 1dV by the followin g equation: 

(8.1) 
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where 0 g, 1g, and t+Llt(J are the mass densities per unit volume in the config urations 
at time 0, t, t + .dt, respectively. The 0d\l is the volume o f the infi nitesimal element 
in the initi al configuration at time 0 (013). 

FIG. 3. The soil body at two subsequent configurations. 

In general, the external loading, such as surface traction, external water press-
ure, gravitational and centrifugal loading are deformation-dependent. However, 
in most geotechnical structures, the aforementioned loading does not induce such 
a large displacement, large strain, or large ro tation which would require a finit e 
deformation analysis. Therefore, it is reasonable to assume that the magnitude 
and direction of surface force and body forces are independent of the current 
confi guration of the soil body, i.e. [3] 

(8.2) 
t +Lltb · 

I 

t + Ll tf is t + Ll td S 

= t +Lltb · 
t I l 

= t + Ll t1s ｴ ｲｾ ｳ＠
£ I · ) 

where t+ Llfbi and t +LllJi5 are respectively the body force and surface traction in 
the configuration at time t + .dt (l +Ll t13), and measured in the confi guration at 
time t (113 ). Combining Eqs. (8.1) and (8.2)1, we have: 

(8.3) 

If we further assume that the efTect of the pore water relative acceleration 
Diu 1 I Dt with respect to the soil skeleton is negli gible as compared to the in-
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ertial effect of the soil bulk mass, we can rewri te Eq. (3.5) by using Eqs. (8.1 ), 
(8.2) and (8.3): 

(8.4) t +<1 t w ; xt = j tfl t+ <1fb ; ou; tdv - j ofl t+<1t ｩ ｾ＠ 8n; od v 

' V nv 

+ j t+<1UP ouf 1d S . 

1ST 

The second integral on the r.h.s. in Eq. (8.4) is evaluated using the init ial configur-
ation Ｈ Ｐ ｾ Ｉ＠ and hence its contri bution can be calculated prio r to the incremental 
step-by-step analysis. 

As to the internal virtual work (Eq. (3.5) 1 ) , we fir st use the principle of effective 
stress (Eq. (4.1)) to rewrite (3.5)1 in terms of effective stresses. Thus, substituting 
Eq.(4.1) in Eq. (3.5)1 leads to 

or 

t+<1tw int _ j t+ <1ta·. , e·. t+<1tdV 
V - I) U t+;1t · IJ 

ｲ Ｋ Ｎ＼ＮＮｾｲｶ＠

= j ( t+<1tu; i - t+<1tp 8;1) o t+<1 teii t+ <1trtv 

t +:..ltV 

(8.5) ｴＫ＼Ｑｴｷｾ ｮｴ＠ = j t+ <1tUij o t+<1teij t+<1tdv- j t+ <1 t7J O;j O t+<1tPij t+<1tdv. 

t+dtV t+-.\qf 

We now need to refer the Cauchy effective stress tensor t+<1tu;1 and the infini tesi-
mal strain tensor t+<1t eij to the confi guration at time t ･ ｾ Ｉ Ｎ＠ It is well known that 
the second Piola - Kirch h off s tress tensor t+ <1fS;j and the G reen - Lagrange s train 

tensor t +<1 fc;1 are a work-conjugate pair of stress and strain measures which relate 
the t+ <1tUij and t+<1te;1 to the configuration at timet. The second Piola -Kir chhoff 
stress tensor t+ i1fS;1 is defined as [8]: 

(8.6) 
t n Atx· Atx · t+i1t _ <::" V · 1 _ V · ] 

t s ij - t+<1t fjt+ <1 t. amn ()t+<1t. . 
{! Xm Xn 

The Green - Lagrange strain tensor can be defi ned by considering the deformation 
of a generic line segment of the soil body whose lengths are denoted by 1ds and 
t+ <1 td s in the configurations at time t and t + dt , respectively. Wi thout giving the 
detail s of this derivation, we find [8]: 

(8.7) 
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Taking a variation of the both sides of Eq. (8.7), we have 

(8.8) 0 t+Lltc = ｾ＠ [o(ou;) + o(oui ) + o(ouk) auk + Duk o(buk)l 
t 2 ()txj ()tx; i)tx; ()txj ()t.'l:i ()txJ , 

where ou; is the variation (virtual displacement) in the displacement t+Llttt ; . We 
also note that: 

(8.9) 

Combining Eq. (3.2) and the above equation, we can relate the variation o t+Lll c ij 

to o t+Llt emn in the following manner: 

(8.10) 

Finally by using Eqs. (8.1 ), (8.6), and (8.10), we can write Eq. (8.5) as 

(8.11) t+Llt •v int = j t+ Ll ts .. , t+Llt .,. tdv -j ( t+Llt h . ·) 0 t+Llt ., .. tdv 
V U t t) U t "- t) t I ) l "- 1) > 

V 1 V 

where 

(8.12) 

Equation (8.11) together with Eq. (8.12) complete the virtual work expression 
in terms of the coordinates of the configuration at time t (1(3). However, in 
order to use this equation in an incremental analysis, it is necessary to establish 
its equivalent incremental form. Derivation of such incremental form will be 
discussed in the next section. 

9. Incremental form of the virtual work equation 

An incremental form o f the internal virtual work equation (8.11) can be es-
tablished by introducing truncated Taylor series expansions of the second Pi-
ola-Kirchhoff stress tensor and the h tensor, i.e. 

(9.1) 

t+Llts . . 
t t ) = ;s ij + ｛Ｈｾｬｴ＠ (S;j)L ..JI +higher order terms, 

= lh;j + [.!:._(h;j )J LJ.t +higher order terms, 
dt t 
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where 

(9.2) 

(9.3) 

:sij = 1CJij, 

: h ;J = t ]Jb;j . 

299 

Ignoring the higher order terms in Eqs. (9.1) and using Eqs. (9.2) and (9.3), we 
have 

(9.4) 
t+LlfS;i = tCi;j + [:t ( S;i )] t ...1t ' 

t+Llfh ;j = tpb;j + ｌｾｾｬＨｨ ［ｊ Ｉ｝ｴ＠ Llt. 

In order to evaluate the second terms on the r.h.s in Eqs. (9.4), we make use 
of the following kinemati c relationships [8] 

(9.5) d ( 
1

e ) 
Le 0t +Lltv; 

= t+ Ll te [) t+ Ll tx; ' ell t+Ll t g 

(9.6) d ( {)
1
x ; ) 

[)I+LltVk {) tx; 
= ' dt Dt + ,j t .'I:J [) t +..1t x i [)t+ .::J t.'Ck 

where t+ Lltvk denotes the velocity o f the soil mass in the direction of axis k. 
Utilizing Eqs. (9.5), (9.6) and (8.6), we find: 

(9.7) 

. T 
in which t+ Llt77 k l is the Truesdell rate o f the effective stress tensor ＷＷｾＬＬＮ Ｑ＠ and defined 
as 

(9.8) t + Ll t-
0
' r _ t+Llt -

0
' + t + Llt t+.::J k-

0 
t+Llt t + Ll k-

kl - kl Vm ,m kl - 1/[,m Okm 

t+ Llt
11 

t+Ll k-
0 k ,m m/· 

Since we seek to find ｛ ｾｬｴ＠ (S;j )] t' Eq. (9.7) should be evaluated at time I, i.e. 

(9.9) [ 
d ] 1.:... T t ' t t- t t - t t-
dl (Sij ) t = a ij = (j ij + llm m a ,j- Vj .m Oim- /li,m Omj. 

The Truesdell stress rate appearing in Eq. (9.9) can be related to the Jaumann 
stress rate by decomposing the velocity gradient 1/i,m to the sum of the rate of 
deformation tensor d;711 and the spin tensor Jt;711, i.e. 

(9.] 0) 
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Substituting (9.1 0) in Eq. (9.9), leads to 

(9.11) ｛ ｾ ｣ ｳｩｪＩ ｌ＠ = tifij + 1
vm,m 

1
CTij - (tdjm + t.ajm) 

1
aim 

- ( t dim + t f?;m) 

or by using Eq. (7.1), we find: 

(9.12) [ 
d (S )] t ｾ＠ + t t- t I t- td t-
dt i j t = Ojj 1/m,m Ojj - l jm a ;m - im Omj' 

'Q 

where 1 a;j is the Jaumann rate of the effective stress tensor. 
'Q 

Considering the general form o f the constitutive equation (7.3) applied to 1 a;j 

and substituting (9.12) in Eq. (9.4), we have: 

(9.13) t+Llts _ t - /\ . ( D 1 L 1 t- 11 t- t L t- ) t i j - Ojj + "-ll t ijk/ ( k / + 1/m,m Ojj- Gjm Oim- Gim Omj · 

It must be noted that the 1D ijk l appearing from now o n in the subsequent equa-
tions is the one which relates the rate of deformation tensor to the Jaumann 
rate of effective stress. However, if the initial formulation of the constitutive law 
calls for the use of a corotatio nal rate with respect to a different spin than 1 f?;j , 

then one must perform a subsequent transformation to a Jaumann rate for the 
effective stress with simultaneous change of the constitutive moduli which wil l be 
again defined by 1D;jkl after the transformation. 

Equation (9.13) can be written in a compact form by using the following 
relations: 

(9.14) 

where Llum is the m-th component of the incremental displacement at a generic 
point of the soil body. Thus Eq. (9.13) can be written as: 

(9.15) t+Llts _ t- 11 1 ij - Oij + t ijkl tekl , 

where 

(9.16) 

The 1A,j kl is the finite deformation tensor of tangent stiffness moduli and it 
includes the regular tangent stiffn ess moduli tensor and the effect of stresses at 
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the beginning of the step. It must be noted that if the components of the effective 
stress tensor are of the same order of magnitude as the t D ;jk /, contribution of 
the initial stresses to the 111;jkl tensor can be significant. 

Similarly to Eq. (9.9) fo r the rate of the second Piola-Kirchhoff stress tensor, 
one can write the following equation for the rate of the h mn, 

(9.17) [ 
d (h )] d ( J:: ) t t J:: t t . t t dl mn t = dl ]JUmn + Vk ,k P Umn - lln,m ]J - llm,n p 

recalling that 

(9.18) 

Eq. (9.17) can be written as 

(9.19) [ 
d (I )] t • c t t , 2 t t l dl Lmn t = ]J Umn + Vk,k fJ Prr111 - P ｾ＠ mn . 

Using Eqs. (9.20) and (9.14), we can now write (9.1)2 as 

(9.20) t+.1th - t • ( t ,\ J:: ) t • 2 t t mn - ]J Umn + LJ.]J llm11 + tCkk ]J Umn - P tCmn , 

where 

(9.21) 

R d. th . . . I G L . t . • t+.1t egar mg e vanat1on m t 1e reen - agrange stram ensor, I.e. u 1c ij, 
we note that: 

(9.22) 

where 

(9.23) 

and 

(9.24) 1 ( &uk &uk ) 
t 1]ij = 2 Dtx; &txj 

in which 7tk is the incremental displacement. 
Substituting Eqs. (9.15), (9.20), and (9.22) in Eq. (8.13), we find 

(9.25) 

'V 

- j (tPOmn + t L::.pbmn + tCkk 
1
]J0mn - 2 1P tCmn) (b tCmn + 0 t 1]mn) 

1dV. 

'V 



http://rcin.org.pl

302 M .T . NZARI 

This is the final form of the internal virtual work expression in terms f the 
coordinates of the configuration at time t. A more compact and computa tonally 
useful form of Eq. (9.25) can be obtained by utilizing Eq. (4.1) and corrbining 
the effective stress-related terms implicit in the 1 A ij kt tensor (Eq. (9.16)) wth the 
pore pressure-related terms in Eq. (9.25). We finally find: 

(9.26) t+ Ll twint = j (ta · . + L ) (' e + r 71 ) tdV v I ) t i jk/ tCk{ O t i j Ut•1ij 

'V 

- j (t Llp) (o 1e;; + o trt ri ) 1
dV, 

' V 

where 

(9.27) L D t r t r t r t 
t i j k/ = l ij k/ + C7j j Uk/ - C7j[ Ukj - Uj{ C7k j 

or by using Eqs. (3.5), we have: 

(9.28) 

'V 'V 

+ J t L ij kttCk t btrJij
1
dV + J 1a ;jO t7ij

1dV 
1 V 1V 

- j t (i1p) o t 1lii tdv = ｴ Ｋｌｬ ｴ ｷ ｾ ｸｴ Ｍ j t a ;J o t fij trl v . 

' V 1 V 

The last three terms on the left-hand side of E q. (9.28) are due to fi ni te deforma-
tion effects, and they may be omitted in a small deformation analysis. In the case 
of infin itesimal strains and small rotations, the 1 L ,jkt tensor will also redJce to 
the 1D ;j k/, tensor of tangent sti ff ness modul i. I t should be mentioned that in an 
incremental numeri cal solution, E q. (9.28) is normall y lin earized by ignori:1g the 
third and fi fth terms on the left -hand side in this equation. This lin eariza:ion is 
justifi ed due to small effects of these higher order terms in a regular earthquake 
engineering problem, where the time steps are generall y small if a plasticity-based 
consti tutive model is to be used. 

Here it must be noted tha t Eqs. (9.25) and (9.28) are incremental ar;proxi-
mations o f the internal virtual work at time I + ...J./. T hese equations, alo ng with 
equations governing the motion of the pore water (Eq. (5.23)), are used to calcu-
la te an incremental displacement and po re water pressure. The calculated incre-
mental values are then used to evaluate approximatio ns to the displacements of 
soil skeleton, strains, stresses, and pore water pressure at ti me t + Llt . T he calcu-
lated values of displacements can be employed to establish an approximation to 
the configuration at time L + .<:11. e + Ll tr3 , t+ .:ltv , t+ LltS ). Therefore it is possible 
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to calculate the difference between the internal virtual work evaluated with the 
calculated static and kinematic quantities at time t + L1t, and the external vir-
tual work. In general, linearization of Eq. (9.28) introduces some errors and the 
aforementioned difference may not be negligible. Thus, in order to reduce the 
difference between the estimated internal work and the external work, an itera-
tive solution strategy is necessary. Different schemes may he used for an iterative 
analysis. A full Newton- Raphson iteratio n scheme leads to the foll owing fo rm: 

(9.29) j tLijkl (m) L1 tekl(m) 6 te;/ m) 1dV - j 1 Llp(m) 6 1e;;(m) 1dV 

1 V 1 V 

+ j t Lijkl (m) L1tekl(m) 6 tTJ;/m) 1dV + j 1a; j 811 t1Ji/ m ) 1dV 
1 V 1 V 

_ j t (L1p)(m ) 8 t 1Jii(m) tdV = t+Ll tw;xt _ j ta;/ m-1) 8 1eJ m-l) tdV, 

rv rv<m-1) 

where m is the iteratio n number and the fi rst iteration (m = 1) corresponds to 
Eq. (9.28). The L11ed"' > in Eq. (9.28) is a component of the incremental strain 
tensor for iteration m, i.e. 

(9.30) 

Simil arly, the 6Ll t1J;/ m) is defin ed as 

(9.31) 

Iterations are repeated until the r.h.s. in Eq. (9.29) is negligible within a certain 
convergence to lerance. Aft er each iteration, the displacements and pore water 
pressure are updated. 

The full Newton scheme adopted in Eq. (9.29) is obviously expensive due to 
the necessity o f evaluation o f the constitutive tensor 1L;j kl at each iteration. A 
modified Newton scheme can be achieved by keeping the constitutive tensor 1L ij kl 
constant during each step of incremental soluti on, i.e. 

(9.32) j tLijkt Llt ek/m) 8 te;/"' ) 1dV- j 1Ll p(m)61e)"'>1dV 

rv rv 

+ j t Dijkt L1tek/m)8tTJ;/m) tdV + j 1a;j 8L1 1ry;/ m)trlV 

rv rv 

_ j t (L1p)(m) 8 t1Jii(m) tdV = t+Ll tw ; xt _ j ta ;/ m - l ) 8 1e;/m- 1) tdV. 

rv r y(m - 1) 
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Such a solution strategy has been successfull y used in some of the appli cations 
reported in [33]. 

As a final note in this section, it should be mentioned that the case of a 
deformation-dependent external loading can be conveniently handled by applying 
an iterative incremental procedure as described for Eq. (9.29). For example, in 
the case of centrifugal loading, the body force applied to an infinit esimal volume 
o f the soil is a function o f its current positi on, i.e. 

(9.33) 

In such a case, the corresponding term in Eq. (2.5)1 is approximated as follows: 

(9.34) 

where 

(9.35) 

;:::: j t + L1t
0

(m- 1) t + Ll tb i ( t +Llt x(m - 1)) ou; t+Ll tdV, 

ｴＫ ｾｴｹＨｭ Ｍ Ｑ Ｉ＠

The approximation introduced in Eq . (9.35) is only accurate fo r a small load in-
crement. Evidently, a better approximation for the finit e load increments can be 
achieved by linearizing t+Llt b;, as it was done fo r the second Piola - Ki rchhoff stress 
tensor and the Green - Lagrange strain tensor. Such a lineari zatio n, however, in-
troduces a new contribution to the stiff ness matrix and reduces the computational 
effici ency of the formulation, as mentioned in [3]. 

10. Integral form of the equation governing the flow of the pore water 

In Sec. 5 we have establi shed a di fierential equation (Eq. (5.23)) governing the 
fl ow of the pore water through the s.oil. For the purpose of numerical solutions, 
however, it is appropriate to develop an integral form of this equation which 
complements the virtual work equation developed in the previo us section. 

In order to establish an integral form o f Eq. (5.23), we recall that this equation 
is basically an expression of the axiom of mass balance implying that a tendency 
of volumetric strain in the soil skeleto n (first term in Eq. (5.23)) is counteracted 
by a change in pore pressure (second term), and by the fl ow o f the pore water 
through the soil (the last three terms). Therefore, a weak form of Eq. (5.23) can be 
generated by using the Galerkin weighted residual method and recognizing that 
the pore water pressure is the appropriate weighting functio n on the volumetri c 
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strain rate, i.e. 

(10.1) J { 1 t+ Ll t • t+Llt tl .. r JJ + ,,, 
l +L11V 

where b t+ Ll tp is a virtual pore water pressure analogous to the virtual displace-
ment bu previously used in the virtual work expression (Eq. (5.1)). 

An expanded form of Eq. (10.1) can be written as 

(10.2) 

Applying the Green's theo rem to the last integral, we have: 

(10.3) 

+ j ( t+Lltk ·. a t+ Ll tP _ t+Llt k ·. t+Llt{! t+ Ll tb . 
1J at+ .1tx . IJ j J 

I +.C>tV J . 

Ｋ ｴＫ ｌｬ ｴ ｾＮ［ Ｎ ｴ Ｋ ｌｬ ｴ ｮ＠ t +Llti" ·) a (ot+Llt , ) t + Llt l\1 
•J o:! lJ at+ Ll tx; p c 

+ j (- t+Llt k · . a t+ !l tP + t+Lltk· . t+ Ll t t+Llt b . 
•Jat+.1tx · •J {!J J 

r+d<S · J 

_ t+ Ll tk ij t+ !l te1 t+ Ll tiiJ ) .n; 0 t+ !l tp t+LltdS = o, 

where n; is the component of outward unit normal vector to the surface t+ Ll tS in 
the direction of x; axis. 
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Utilizing the water flow boundary condition (Eq. (6.4)), we can write Eq. (10.3) 
in the form 

(10.4) j t+Lltu. i,io t +LltP t+L\tdv + j ｾ＠ t+L\IP 6 t+LliP t+Lltdv 

t+LltV t+Ll<V 

+ J ( t +Lltk · . {) t+ Lltp - t+Lltk ·. t+Llt(! t+ Lltb . 
'l f)t+Lltx · 11 f 1 

t+Ll<V 
1 

+ t+ L\ tk ·. t+Lltf2 t+ L\ tii ·) a ( o t+Lltp) t+.Jtdv 
' 1 f J {)t+Lltxi 

+ j t+Lltq
5 8 t+L\ tP t+Lltds = o. 

t+Ll<Sq 

Equation (1 0.4) is written in terms of the coordinates of the current configura-
tion t+Llt l3, whose equilibrium position is to be calculated while proceeding from 
time t to t + £11 in the incrementa l solution. By applying the chain rule and using 
Eq. (8.1), we can write Eq. (10.2) in terms of the coordinates o f the confi guratio n 

· l A · at tune t, ..... , t.e. 

(10.5) 

+ j _!_g__ [ t+ Lltk . t+Llt(! t+Llt .. . a (o t+LltP)] 
t+Lltg •J f uJ D '·x, 

t+Ll<V 

+ j t+Llfqsot+ Ll tptds = o, 
'Sq 

where t+Llfq 5 was assumed to be a deformation-independent flow on t+Ll tSq, so 
that 

(10.6) t+Llt -( t+ Llt 15' _ t+Llt 7 t(LS' I ( - t'ls · · 

It is noted that due to the presence of t+Lltg 1 , t+ Lltk;j , and the inverse of the de-
formation gradient tensor, (8 1x1)/ (8 t+Lltx ; ), in Eq. (10.5), most of the integrals in 
this equation cannot be evaluated without further simplifying assumptions. Similar 
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to the procedure adopted in Sec. 8, one may utilize linearization technique to re-
duce Eq. (1 0.5) to a suitable form for incremental iterative analysis. Linearization 
of Eq. (10.5), however, leads to a very complicated equation which significantly 
reduces the computational efficiency of the formulation. Therefore, in order to 
avoid such a difficulty, it is suggested to use some reasonable approximation for 
the aforementioned redundant terms (I+Ll te 1• t+Ll tk ;j, ... ) . For example, in the 
first iteration, one may utilize the values obtained from the previous time step. 
Corrections to the results of the first iteration can be achieved by establishing 
approximate position of the configuration at time t + Llt. The new configuration 
can be used in iterative solution of Eq. (10.4) written in the following form: 

(10.7) 

+ J t+Llt k ; .(m-1) [ EJ t+Lltp _ t+.:lt{! (m- 1) t+ .:l tb (m- 1) 
J i) t+Lltx (m- 1) 1 J 

t+.:ltV(m- 1) ) 

+ t+.:lt {m- 1) t+Lil"] D(bt+!llp) t+.:ltlV 
{!1 ll j ｾ ｴＫＮＺｬｴＮ＠ {m- 1) ( 

U X; 

+ J t+Lltfisbt+Lltpt+LltdS= O, 

t+:.ltSq(m-1) 

where the right superscript (m - 1) refers to the iteration number (m- 1), and 
the case m = 1 is defined as 

(10.8) 

and t+.:lt{! Jm- l) is calculated hy using the fol lowing equation: 

(10.9) 

In Eq. (10.9), we assumed that the change of soil porosity during the time incre-
ment was negligible. This assumption is used to prevent the need for iteration 
over porosity. 

Equation (10.7) has a number of special characteristics which distinguish 
it from the virtual work expression, i.e. Eq. (9.25). First, the dependence of 
the acceleration term on t+.:!. tf! 1 and t+ .:l tk ij requires that the corresponding 
"mass" matrix in a discretized solution procedure should be calculated in every 
iteration. Similar situation renders the body force contri bution in Eq. (1 0.7) a 
deformation-dependent loading. It is also noted that components of the effective 
permeability tensor are variable quantities which may change due to the change 
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of fabric in the soil skeleton. Unfortunately, experimental data in order to char-
acterize such a change in the soil fabric is very limit ed. 

In so far as the permeability tensor is concerned, it is important to note that 
in a finite deformation regime, a generic element of the soil system may undergo 
large rotations. Therefore, special care is necessary to defin e the coeffici ents of the 
permeability tensor in terms of the coordinates of the Cartesian reference system 
used in the Lagrangian formulation. Assuming that the permeability coefficients 
are intrinsic to the soil element, it can easily be shown [7] that the matrix of the 
permeability coefficients obeys the following transformation: 

(10.10) 

where ko is the matrix of permeability coeffi cients in the initial positi on and R 
is the matrix characterizing the rotation of the soil element with respect to the 
reference Cartesian coordinates. 
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