mgr inż. Radosław Kasztelan


Ostatnie publikacje
1.Rojek J., Kasztelan R., Tharmaraj R., Discrete element thermal conductance model for sintered particles, POWDER TECHNOLOGY, ISSN: 0032-5910, DOI: 10.1016/j.powtec.2022.117521, Vol.405, pp.117521-1-10, 2022

Streszczenie:

A discrete element thermal conductance model suitable for the modelling of heat flow between sintered particles has been proposed. The model is formulated using the sintering geometry consisting of two spheres connected with a cylindrical neck. The calculation of the neck size is based on the criterion of volume conservation. Therefore the neck obtained is more accurate than that of the popular Coble's model. The thermal conductance is determined for different neck sizes by the finite element simulations of the heat flow in half of the sintering geometry. The numerical results are fitted with a linear relationship which is the basis to determine the equivalent conductance between two sintered particles. The model can be used in the pipenetwork formulation of the discrete element method for simulation of heat conduction problems in powder sintering or in sintered porous materials.

Słowa kluczowe:

sintering, particles, discrete element method, thermal conductance, pipe-network model, volume conservation, heat conduction

Afiliacje autorów:

Rojek J.-IPPT PAN
Kasztelan R.-IPPT PAN
Tharmaraj R.-IPPT PAN
140p.

Abstrakty konferencyjne
1.Rojek J., Kasztelan R., Ramakrishnan T., Nosewicz S., Kaszyca K., Chmielewski M., DETERMINATION OF THERMAL CONDUCTIVITY OF POROUS MATERIALS MANUFACTURED BY FAST/SPS BY DEM SIMULATION, CMM-SolMech 2022, 24th International Conference on Computer Methods in Mechanics; 42nd Solid Mechanics Conference, 2022-09-05/09-08, Świnoujście (PL), pp.1, 2022