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Summary

This thesis presents several aspects of micromechanics of interfaces, inter-
face layers, and materials with propagating phase transformation fronts.
Two application areas are addressed, namely contact of rough bodies and
martensitic microstructures in shape memory alloys. The objective is to
develop micromechanical modelling tools suitable for the analysis of this
class of problems and also to provide several specific applications motivated
by scientific and technological interest.

Chapter 1 has an introductory character and outlines the micromechan-
ical point of view adopted in this thesis, as well as the scope and the objec-
tives of the work.

Chapter 2 presents selected basic concepts, definitions, and relationships
which are frequently referred to throughout the thesis. The interior-exterior
decomposition and the compatibility conditions are introduced. Further-
more, elements of homogenization with the specification for simple lami-
nates, including explicit micro-macro transition relations, are provided as a
basis for the micromechanical analysis of evolving martensitic microstruc-
tures. The introduction to homogenization serves also as a reference for
the micromechanical analysis of boundary layers carried out in Chapters 4
and 5.

The first part of the thesis, Chapters 3, 4, 5, and 6, is concerned with
the micromechanics of contact interactions of rough bodies. Chapter 3 is
mostly devoted to modelling of evolution of real contact area in metal form-
ing processes. An introductory discussion of thin homogeneous layers is
also provided and constitutive relations in a mixed form are introduced for
elastic, elasto-plastic, and rigid-plastic material models. This formalism is
next applied to derive a phenomenological model of real contact area evo-
lution which accounts for the effect of macroscopic plastic deformations on
asperity flattening. The phenomena and effects discussed in Section 3.3 con-
stitute one of the motivations of the subsequent micromechanical analysis
of contact boundary layers, which is presented in Chapters 4, 5, and 6.

Boundary layers induced by micro-inhomogeneous boundary conditions
are studied in Chapter 4. The notion of the macro- and micro-scale is
introduced and the method of asymptotic expansions is applied in order
to derive the equations of the corresponding macroscopic and microscopic
boundary value problems. While contact of rough bodies is the main interest
of this part of the thesis, two simpler, but closely related, cases of prescribed
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micro-inhomogeneous tractions and displacements are considered in detail,
in addition to the case of frictional contact of a rough body with a rigid and
smooth obstacle.

In Chapter 5, a micromechanical framework is developed for the anal-
ysis of the boundary layers discussed in Chapter 4. A special averaging
operation is defined, and several properties of the corresponding averages
of the boundary layer fields are derived. As an illustration, the framework
is applied to analyze the boundary layer induced in an elastic body by a
sinusoidal fluctuation of surface traction.

The finite element analysis of contact boundary layers, carried out in
Chapter 6, concludes the first part of the thesis. Implementation issues are
discussed, and two representative asperity interaction problems of asper-
ity ploughing and asperity flattening in elasto-plastic solids are analyzed.
In the latter case, a real three-dimensional topography of a sand-blasted
surface is considered, and experimental verification of the developed finite
element model is performed. In the numerical examples, attention is paid
to the interaction of the homogeneous macroscopic deformation with the
deformation inhomogeneities within the boundary layer, and the related ef-
fects of the macroscopic in-plane strain on the macroscopic contact response
are studied.

Chapters 7, 8, and 9, constituting the second part of the thesis, are
concerned with modelling of martensitic microstructures in shape memory
alloys (SMA). Chapter 7 is a brief introduction to the topic. Basic con-
cepts and phenomena are introduced, and the crystallographic theory of
martensite is outlined for both the internally twinned and internally faulted
martensites.

In Chapter 8, micromechanical modelling of evolving laminated mi-
crostructures in SMA single crystals is carried out. The martensitic trans-
formation under stress is assumed to proceed by the nucleation and growth
of parallel martensitic plates. The corresponding micromechanical model
is developed by combining a micro-macro transition scheme with a rate-
independent phase transformation criterion based on the local thermody-
namic driving force on the phase transformation front. Macroscopic con-
stitutive rate-equations are derived for the case of an evolving rank-one
laminate. Finally, the macroscopic pseudoelastic response of single crystals
of Cu-based shape memory alloys is studied along with the corresponding
evolution of the microstructure, including the effects related to detwinning.
A simple model of the stress-induced martensitic transformation in macro-
scopically adiabatic conditions is also discussed. In the modelling and in
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the applications, full account is taken for distinct elastic anisotropy of the
phases which leads to the redistribution of internal stresses and to the re-
lated softening effect during progressive transformation.

In Chapter 9, an approach is developed for prediction of the microstruc-
ture of stress-induced martensitic plates at the initial instant of transfor-
mation. Microstructural parameters and the transformation stress are ob-
tained as a solution of the minimization problem for load multiplier, and
the predicted microstructures are, in general, different from those following
from the classical crystallographic theory of martensite. The approach is
then applied for CuZnAl single crystals undergoing stress-induced cubic-
to-monoclinic transformation, and the effects of the stacking fault energy,
loading direction, and temperature on the predicted microstructures are
studied.
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Chapter 1

Introduction

Micromechanical analysis of heterogeneous materials allows prediction of
their macroscopic behaviour from the known properties, microstructure, and
interaction mechanisms of the constituents at the micro-scale. At the same
time, it allows determination of the microscopic response at each point of
a macroscopic body subjected to external loading. The micromechanical
analysis involves thus, at least, two different scales of observation. The
actual characteristic dimensions at these scales are, in fact, arbitrary, as
long as they differ sufficiently, so that the two scales can be separated.

In the mechanics of continuous media, the mathematical notion of a
surface, i.e. a two-dimensional manifold embedded in a three-dimensional
space, is an idealization, i.e. a model, of a more complex reality. Depending
on the scale of observation, the actual interface can usually be considered
as a surface of zero thickness or as a layer of some finite thickness, possibly
with a microstructure. The first point of view can then be regarded as
macroscopic while the second one is microscopic.

At the macro-scale, the interface is thus seen as a surface, however, some
properties of this surface or some properties related to this surface may
depend on the microstructure of the interface layer and on the phenomena
that occur at the micro-scale. The micromechanics of interfaces deals thus
with the transition between these two scales, and its purpose is to determine
the relations between the macroscopic and microscopic quantities.

The corresponding micro-macro transition applied to contact interac-
tions of rough bodies is the main concern of the first part of this thesis. The
microstructure of a contact layer is formed by surface asperities, but, in a
sense, also by micro-inhomogeneity of strains and stresses induced by asper-
ity interaction. The macroscopic contact response may involve phenomena
such as contact compliance, friction, wear, lubrication, heat transfer, etc.,
described in terms of the corresponding macroscopic variables. The purpose
of the micromechanical analysis is then to predict the macroscopic contact
behaviour and to identify the influential macroscopic quantities.

Micromechanics of interfaces may also be understood differently, namely
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12 Chapter 1

as the analysis, carried out at different scales, of materials that contain in-
terfaces, and in which these interfaces significantly influence the behaviour
of the material. This context is much closer to the classical homogenization,
as the interfaces are common components of composite materials. However,
it is not always the case that the local properties of the interfaces, or the
interfacial phenomena, determine the macroscopic behaviour of a hetero-
geneous material. For example, as long as the constituents of a composite
material are perfectly bonded, the interfaces separating the constituents
have no effect on the effective properties of the composite. The situation
changes when the interfaces have considerable thickness, or when debonding
along the interfaces occurs, so that the deformations within the interfaces
significantly contribute to the macroscopic deformation.

Pronounced effects can also be expected when the interfaces propagate
through the material, as, for instance, in materials undergoing phase trans-
formations. Propagation of phase transformation fronts is then associated
with evolution of microstructure, so that the local phenomena at phase
transformation fronts may, in fact, govern the macroscopic behaviour. Re-
lated phenomena are studied in the second part of this thesis, which is de-
voted to micromechanical analysis of evolving martensitic microstructures.
Specifically, the micro-macro transition is carried out for laminated mi-
crostructures in shape memory alloys undergoing the stress-induced marten-
sitic transformation.

As mentioned above, two application areas (contact of rough bodies and
evolving martensitic microstructures) are addressed in this thesis. While the
two areas are rather different, there are several reasons to discuss them to-
gether. First of all, in both cases, interfaces and interfacial phenomena are
dealt with. Furthermore, in both cases, the analysis of interfaces involves
the corresponding layers: either the layer is a microscopic counterpart of a
macroscopic surface, as in the case of contact layers; or the interfaces appear
as the entities separating the layers of parent and product phases, as in the
case of martensitic microstructures. The specific problems analyzed in this
thesis are also complementary in the sense that they address several impor-
tant aspects of micromechanics of interfaces and layers: homogeneous and
inhomogeneous layers; layers of finite and infinitesimal thickness; given and
unknown interface orientations; microstructure evolution associated with
propagation of interfaces. Finally, and this is one of the conclusions of the
present thesis, the compatibility conditions, see Section 2.4, appear in dif-
ferent forms in each specific problem analyzed in this work as an essential
element of the respective description.
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The objective of the present thesis is to develop micromechanical mod-
elling tools that are suitable for the analysis of the class of problems dis-
cussed above. The importance and scientific relevance of this objective
seems quite obvious, since micromechanics, due to its predictive capabili-
ties, is a very attractive modelling approach which proved highly successful
in many areas of mechanics. The importance of the addressed topics stems
also from the scientific and technological motivations of the specific appli-
cations analyzed in this work.

The contact phenomena of friction, wear, lubrication, etc., are very com-
plex and still not fully understood. This is because of the vast diversity of
contact pairs (each surface is characterized by possibly different material,
topography, and oxide, contaminant, and lubricant layers) and contact con-
ditions (contact pressure, sliding distance and velocity, temperature), e.g.
Bowden and Tabor [16], Rabinowicz [102], Persson [93]. At the same time,
friction controls or affects many processes, both in a desired and undesired
way (c.f. car brakes and friction losses in engines, to mention just the most
obvious examples), while the economic losses due to friction and wear have
been estimated at 5 per cent of the gross national product, cf. Feeny et
al. [30]. Importantly, the complexity and importance of the related phe-
nomena is in contrast with the simplicity of the models used to quantify
them, such as the classical Coulomb law of friction and Archard’s wear
model.

Consider, for instance, metal forming processes, which naturally involve
tool-workpiece contact interactions. In these processes, friction controls the
material flow, again with positive and negative effects. On the other hand,
contact phenomena affect surface finish of the product, wear determines the
service life of tools, while the most efficient lubricants (e.g. chlorinated paraf-
fin oils) have negative impact on the environment. The related problems
of roughness evolution, lubricant film breakdown, pick-up and galling, cf.
Ref. [28], constitute one of the motivations of the micromechanical analysis
of contact layers, which is carried out in this thesis.

The present analysis of contact layers is focused on asperity interaction
and on the related inhomogeneities of deformation within thin subsurface
layers. The aim is to study the interaction of these inhomogeneities with the
homogeneous macroscopic deformation and, specifically, to predict the effect
of the macroscopic deformation on the contact response. While these topics
are recognized as important in metal forming processes in which the macro-
scopic deformations are plastic, the related effects have not yet attracted
sufficient attention in the case of the elasto-plastic asperity deformation
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regime, cf. Chapters 3, 4, 5, and 6.
The second part of the present thesis, Chapters 7, 8, and 9, is concerned

with micromechanical modelling of shape memory alloys (SMA) undergo-
ing stress-induced martensitic transformations. Shape memory alloys, with
their unique behaviour, belong to the group of so-called smart materials.
The interesting properties of shape memory alloys (shape memory effect,
pseudoelasticity, and others) are related to development and evolution of
microstructures which accompany the martensitic phase transformation, cf.
Bhattacharya [13], Otsuka and Wayman [87]. Consequently, shape mem-
ory alloys are very attractive materials for advanced applications, such as
micro-devices (e.g. pumps, engines, valves), actuators, joints, etc. Medical
applications (blood vessel stents, orthodontic wires, and others) constitute
another important application area of shape memory alloys. The need for
accurate models of their thermomechanical behaviour is thus obvious.

The macroscopic behaviour of a polycrystalline SMA specimen is gov-
erned by transformations of atomic structure at the crystal lattice scale.
A complete micromechanical model requires thus a multi-scale analysis ac-
counting for the following microstructural elements and corresponding scales
(starting from the lowest level): twins, martensitic plates, complex marten-
sitic microstructures at a single crystal level, and crystal aggregates in a
polycrystal. While attempts are made to develop such complete models, e.g.
Patoor et al. [89], Thamburaja and Anand [140], there is still need for re-
fined micromechanical modelling of the phenomena occurring at each of the
scales involved. Clearly, the phenomenological modelling, preferably based
on micromechanical considerations, cf. Raniecki and Lexcellent [104, 105],
is still the main approach to describe the complex macroscopic behaviour
of SMA polycrystals.

This work is concerned with the micromechanical analysis of martensitic
microstructures in SMA single crystals. A class of nested laminated mi-
crostructures is considered, and the micro-macro transition is performed for
an evolving microstructure. The crystallography of transformation and dis-
tinct elastic anisotropy of the phases are fully accounted for in the present
micromechanical model. The related computational scheme is developed
and, subsequently, applied to simulate the macroscopic response of SMA
single crystals.

The content and the organization of the present thesis are briefly out-
lined below. In Chapter 2, selected basic concepts, definitions and relation-



Introduction 15

ships are introduced, including the interior-exterior decomposition, compat-
ibility conditions, and elements of homogenization.

In Chapter 3, the mixed form of constitutive equations, applicable, for
instance, for thin, homogeneous layers is introduced, and this formalism is
next used to develop a phenomenological model of real contact area evolu-
tion in metal forming. In Chapter 4, the method of asymptotic expansions
is applied to derive the equations of boundary layers which are induced by
micro-inhomogeneous boundary conditions, e.g. by contact of rough bodies.
In Chapter 5, micromechanical analysis of boundary layers is carried out by
introducing a special averaging operation, and properties of the correspond-
ing averages are derived. Finally, in Chapter 6, the finite element analysis
of contact boundary layers is carried out. Asperity ploughing and flattening
processes are analyzed, and the effect of macroscopic in-plane strain on the
contact response is studied.

A brief introduction to martensitic microstructures in shape memory
alloys is provided in Chapter 7. In Chapter 8, a micromechanical model of
evolution of laminated microstructures in single crystals undergoing stress-
induced transformation is developed by combining micro-macro transition
relations with a rate-independent phase transformation criterion. Macro-
scopic constitutive rate-equations are derived, and several applications are
provided for Cu-based alloys undergoing the cubic-to-monoclinic and cubic-
to-orthorhombic transformation. In Chapter 9, an approach is developed for
the prediction of the microstructural parameters of stress-induced marten-
sitic plates. The problem is formulated as a constrained minimization prob-
lem, and the approach is applied to study the effect of the stacking fault
energy, load axis orientation, and temperature on microstructural param-
eters of internally faulted martensitic plates in a CuZnAl shape memory
alloy.

The thesis addresses several aspects and methodologies related to the
micromechanics of contact and interphase layers, ranging from the rigorous
method of asymptotic expansions to the practical application of the finite
element method. Dedicated measurements of the elasto-plastic normal con-
tact compliance of a sand-blasted surface have also been performed in order
to verify the finite element model developed for the corresponding contact
boundary layer.

Practical applications of developed micromechanical models, including
numerical computations, constitute an important part of the present thesis.
Detailed discussion of the related computational aspects is not provided in
the thesis. However, since these aspects have a significant influence on the
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overall success of implementation of the developed models, some remarks
are provided below.

Symbolic algebra systems, such as Mathematica [154], provide tools for
symbolic derivation of formulae, including symbolic differentiation. As long
as the complexity of expressions is moderate, Mathematica proves to be an
efficient and convenient environment for combined symbolic and numerical
computations. However, with increasing complexity of problems tackled,
symbolic formulae grow in an uncontrolled way. This makes the symbolic
systems unusable for problems such as derivation of the finite element formu-
lae (element residual vector, tangent matrix, etc.) in nonlinear mechanics.
The same problem was encountered in the course of numerical implemen-
tation of the micromechanical model of evolving laminated martensitic mi-
crostructures, cf. Chapters 8 and 9. Accordingly, AceGen [63], a symbolic
code generation system, has been used in order to overcome the problem
of severe complexity of expressions and to efficiently derive the numerical
codes.

The symbolic code generator AceGen is a Mathematica package which
extends the algebraic and symbolic capabilities of Mathematica with the au-
tomatic differentiation technique, simultaneous optimization of expressions,
and theorem proving by stochastic evaluation of expressions, cf. Korelc [65].
As a result, the usual problem of the uncontrolled growth of expressions
can be avoided. At the same time, efficient and robust implementation
is possible due to the high-level symbolic description employing the pro-
gramming language of Mathematica. Accordingly, AceGen proves to be a
very efficient tool for generation of numerical codes for problems of high
complexity, such as nonlinear finite element codes including complex ma-
terial models, advanced contact formulations, and sensitivity analysis, cf.
Korelc [65], Krstulović-Opara et al. [70], Stupkiewicz et al. [123, 125].

Mathematica supplemented with AceGen was thus the main environ-
ment for the numerical simulations reported in Chapters 8 and 9. Also
the finite element codes used in Chapter 6 were derived using AceGen.
The finite element computations of Chapter 6 were performed within the
Computational Templates [64] environment which is closely integrated with
AceGen.

Chapters 3–6 and 8–9 of this thesis contain original research results of
the present author; the list of the original contributions is provided in Chap-
ter 10. Both unpublished and published results are reported in the thesis.
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In the latter case, reference to the respective papers is always given. Sec-
tion 3.3, concerned with modelling of real contact area evolution in metal
forming processes, presents the results of the joint work with Professor
Zenon Mróz. Similarly, micromechanical modelling of pseudoelasticity in
shape memory alloys, reported in Chapter 8, is the joint work with Profes-
sor Henryk Petryk.

Measurements of the normal contact compliance, Section 6.4, have been
performed at the Institute of Fundamental Technological Research (IPPT)
by Dr. Stanis law Kucharski and Dr. Grzegorz Starzyński, while the three-
dimensional topography of the sand-blasted surface is due to Mrs. Anna
Bartoszewicz. Finally, Dr. Petr Šittner and Dr. Vaclav Novák from the
Institute of Physics, Academy of Sciences of the Czech Republic, Prague,
kindly provided their results of compression tests on CuAlNi single crystals.
These contributions are gratefully acknowledged.





Chapter 2

Fundamentals of micromechanics

Abstract In this chapter, selected basic concepts, definitions, and relationships

are introduced as a basis for further developments. The majority of the mate-

rial as well as the exposition are quite standard and well recognized. However,

the explicit micro-macro transition relations for simple laminates, provided in

Section 2.6 and in Appendix A.4, are not easily found in the literature.

2.1. Notation

With the exception of Chapter 3 and Appendix A, where the matrix no-
tation is used, the tensor notation is used throughout this work. When it
is needed for clarity, the index notation is also provided and, by default,
the summation rule over repeated indices is applied. The bold-face symbols
are used for vectors and tensors, and basic tensor operations are listed in
Table 2.1.

The infinitesimal strain format is used throughout this work. As an
exception, the kinematically exact form of the crystallographic theory of
martensite, employing the finite deformation framework, is provided in Sec-
tion 7.2.

Table 2.1. Basic tensor operations: notation.

AB AijBj or AijBjk or AijklBkl or AijklBklmn

A ·B AiBi or AijBij

A⊗B AiBj or AijBkl

AT (AT)ij = Aji or (AT)ijkl = Aklij

I δij (Kronecker delta)

19
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2.2. Interior-exterior decomposition

A second-rank symmetric tensor T can be uniquely decomposed into its
interior part TP and exterior part TA relative to a locally smooth surface
represented by its normal n, so that

T = TP + TA, TPn = 0. (2.1)

The operators of this decomposition are the fourth-rank tensors ΠP and
ΠA,

TP = ΠPT, TA = ΠAT, (2.2)

being functions of the normal n. Their components in a Cartesian coordi-
nate system are given by (Hill [47])

(ΠP)ijkl = 1
2 (δik − nink)(δjl − njnl) + 1

2 (δjk − njnk)(δil − ninl),

(ΠA)ijkl = 1
2 (δiknjnl + δjkninl + δilnjnk + δjlnink)− ninjnknl,

(2.3)

where δij is the Kronecker delta.
In an intrinsic Cartesian coordinate system, such that components of

the normal vector n are (n1, n2, n3) = (0, 0, 1), the components of TP and
TA are

(TP)ij =

 T11 T12 0
T12 T22 0
0 0 0

 , (TA)ij =

 0 0 T13

0 0 T23

T13 T23 T33

 , (2.4)

where Tij are the components of T in this intrinsic coordinate system. It
is seen that operator ΠA preserves the components that contain an index 3
(out-of-plane components) and removes the others (in-plane components).
Operator ΠP acts oppositely.

It can easily be verified that the following property holds for arbitrary
symmetric tensors S and T,

SA ·TP = 0. (2.5)

The importance of the interior-exterior decomposition is clearly seen in
Section 2.4 below, where the compatibility conditions at a bonded interface
are compactly expressed in terms of interior and exterior parts of strain and
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stress tensors. We also note that, in the case of contact interface with n
being the outward normal, the contact traction t = σn is solely related to
the exterior part of the stress tensor σA, namely

t = σn = σAn. (2.6)

This is also seen in terms of components in the intrinsic coordinate system,

ti =

 tT1

tT2

tN

 , σij =

 σ11 σ12 tT1

σ12 σ22 tT2

tT1 tT2 tN

 , (2.7)

where tN is the normal contact traction, while tT1 and tT2 are the compo-
nents of the tangential contact traction (friction stress).

2.3. Elements of homogenization

In this section, some basic concepts of the homogenization theory of het-
erogeneous inelastic materials are briefly introduced in order to provide the
reference for the developments in Chapters 4, 5, and 8. The presented re-
sults are rather standard, and the respective derivations and proofs, omitted
here, can be found in numerous works on homogenization, e.g. Aboudi [3]
Hill [45, 46], Suquet [137], Willis [150]. The exposition below is mostly
based on that of Suquet [137].

Let us consider a body made of a heterogeneous material. When the
size of the heterogeneities is small compared to the size of the body, it is
natural to introduce two different scales: the macro-scale and the micro-
scale with, respectively, x and y being the corresponding spatial variables,
and to establish the macroscopic (effective) properties of the material at the
macro-scale. This procedure, called homogenization, is only possible when
the material is statistically homogeneous, i.e. when a representative volume
element can be chosen. The choice of the r.v.e. is an important part of
micromechanical modelling, and is strongly related to the homogenization
approach used.

At a macroscopic point x, two families of variables are considered: the
macroscopic variables that describe the state of the equivalent homogeneous
body at the macro-scale, and the microscopic ones which are related to the
local states within the r.v.e. Below, the dependence of all these variables
on x is not indicated explicitly.
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Under the assumptions of displacement continuity and mechanical equi-
librium, the macroscopic strain E and stress Σ are the averages1 of the
respective microscopic quantities ε(y) and σ(y),

E = {ε}, Σ = {σ}, {·} ≡ 1
|V |

∫
V

(·) dV, (2.8)

where |V | =
∫

V
dV .

The localization problem, i.e. the inverse of the homogenization proce-
dure, is to determine the microscopic quantities, such as ε(y) and σ(y),
knowing the macroscopic ones E or Σ. The corresponding boundary value
problem to be solved on the r.v.e. is the following

div σ = 0 (micro equilibrium)
{ε} = E or {σ} = Σ
microscopic constitutive law
boundary conditions

(2.9)

with E or Σ being the data. Three types of boundary conditions are clas-
sically applied for the above localization problem:

i. linear displacement on the boundary,

u = Ey on ∂V ; (2.10)

ii. uniform traction on the boundary,

σn = Σn on ∂V, (2.11)

where n is the unit outward normal;

1In a more general setting, valid also in case of cracked or granular media, the macro-
scopic strain and stress are defined in terms of the boundary data

E =
1

|V |

∫
∂V

1

2
(n⊗ u + u⊗ n) dS, Σ =

1

|V |

∫
∂V

1

2
(t⊗ y + y ⊗ t) dS,

where u is the displacement, t the surface traction, and n the unit outward normal.
Expressions (2.8) are recovered for a coherent material in equilibrium (i.e. assuming con-
tinuity of displacements and mechanical equilibrium) by applying the divergence theorem.
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(a) (b) (c)

y− y +

Figure 2.1. Deformation of a r.v.e. for different boundary conditions: (a) lin-

ear displacement on ∂V , (b) uniform traction on ∂V , (c) periodic displacement

fluctuations.

iii. periodicity condition,

ũ(y+) = ũ(y−) and σ(y+)n+ = −σ(y−)n−, (2.12)

where ũ is the displacement fluctuation defined up to a rigid displace-
ment, so that

u = Ey + ũ, (2.13)

and the boundary ∂V is decomposed into two parts ∂V = ∂V −∪∂V +,
such that n+ = −n− at two associated points y+ ∈ ∂V + and y− ∈
∂V −.

These three types of boundary conditions, illustrated in Fig. 2.1, are not
equivalent unless the r.v.e. is sufficiently large so that the influence of the
surface layer affected by the boundary conditions is negligible, cf. Hill [45].

It can be shown that a very important property, often called the Hill’s
lemma, cf. Hill [45], holds for a strain field ε, derived from an admissible
displacement field, and for an admissible stress field σ, viz.

{σ · ε} = Σ ·E, (2.14)

where a displacement field and a stress field are called admissible when
they satisfy one set of boundary conditions (2.10) or (2.11), or (2.12) and,
additionally, the stress field satisfies the micro equilibrium (2.9)1.

Consider first the homogenization problem for heterogenous elasticity,
i.e. the situation when the elastic stiffness and compliance tensors L and
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M, respectively, depend on the position within the r.v.e., so that the con-
stitutive law is

σ(y) = L(y)ε(y), ε(y) = M(y)σ(y), M = L−1. (2.15)

Under the usual assumptions of positive definiteness of L and M, the solu-
tion of the localization problem (2.9) can be written in the following form

ε(y) = A(y)E, σ(y) = B(y)Σ, (2.16)

depending on whether E or Σ is given. Here, the fourth-rank tensor A is
the strain concentration tensor , and B is the stress concentration tensor.
The concentration tensors are obtained by solving the respective boundary
value problems on the r.v.e.1

The homogenization can now be performed by averaging the constitutive
relations (2.15) using the solution of the localization problem (2.16). As a
result, the effective (overall) elastic moduli tensors L̃ and M̃, relating the
macroscopic stress and strain,

Σ = L̃E (given E), E = M̃Σ (given Σ), (2.17)

are found in the form

L̃ = {LA} (given E), M̃ = {MB} (given Σ). (2.18)

With account of the Hill’s lemma (2.14), the symmetry of L̃ and M̃ can eas-
ily be verified by considering the macroscopic elastic strain energy density,
namely

W = {w} =
1
2
{ε · Lε} =

1
2

E · {AT LA}E =
1
2

E · L̃E, (2.19)

and similarly for the complementary energy 1
2 σ ·Mσ, so that we have

L̃ = {LA} = {AT LA}, M̃ = {MB} = {BTMB}. (2.20)

1Often, the strain concentration tensor A is associated with boundary conditions
(2.10) or (2.11), and the stress concentration tensor B is associated with (2.12). This
is because the macroscopic strain E directly appears in (2.10) and (2.13), while the
macroscopic stress Σ appears in (2.11).
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It can be shown that the effective elastic moduli tensors L̃ and M̃, ob-
tained for the same set of boundary conditions (2.10) or (2.11), or (2.12), are
equivalent in a sense that L̃ = M̃−1, cf. Suquet [137]. However, the effective
moduli associated with different boundary conditions are not identical, al-
though the difference decreases with increasing size of the r.v.e. Moreover,
the different effective stiffness tensors can be ordered in the following way

E · L̃ΣE ≤ E · L̃perE ≤ E · L̃EE, (2.21)

where L̃E, L̃Σ, and L̃per correspond to boundary conditions (2.10), (2.11),
and (2.12), respectively.

At the end of this section, let us consider the case of a heterogeneous
inelastic solid. The microscopic constitutive relation of elasticity with eigen-
strain is

εe(y) = M(y)σ(y), ε(y) = εe(y) + εt(y), (2.22)

where the total strain ε is decomposed into elastic εe and inelastic εt parts.
The eigenstrain εt can be, for instance, the plastic strain, however, its actual
origin and the evolution law need not be specified for the present purposes.

It can be shown that the macroscopic constitutive relation is also that
of elasticity with eigenstrain,

E = M̃Σ + Et, Et = {BTεt}, (2.23)

but the inelastic macro-strain Et is not a simple average of the inelastic
micro-strains. In equation (2.23), the effective elastic compliance tensor M̃
is that of a heterogeneous elastic material, cf. Eq. (2.20).

Let us decompose the micro-stress σ into a self-equilibrated residual
stress σr and the remaining part BΣ that would occur if the material were
elastic,

σ(y) = B(y)Σ + σr(y). (2.24)

The macroscopic elastic strain energy density,

W = {w} =
1
2
{(ε− εt) · L(ε− ε)t} =

1
2
{σ ·Mσ}, (2.25)

can now be written as a sum of the elastic strain energy of macro-strains
1
2 Σ · M̃Σ and the stored elastic energy associated with residual stresses
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1
2{σ

r ·Mσr}, namely

W =
1
2

Σ · M̃Σ +
1
2
{σr ·Mσr}. (2.26)

2.4. Compatibility conditions at a bonded interface

Consider an interface that separates two phases denoted by ‘+’ and ‘−’.
The material properties may be discontinuous across the interface, however,
perfect bonding is assumed, so that the displacement field is continuous. As
a result, the stress and the strain may suffer discontinuity at the interface.

The assumption of continuity of displacements implies the well-known
geometrical compatibility condition restricting the jump of strain ∆ε to be
in the form of the symmetrized diadic product of the interface normal n
and arbitrary vector c, namely

∆ε =
1
2

(c⊗ n + n⊗ c), (2.27)

where
∆(·) = (·)− − (·)+. (2.28)

Furthermore, the assumption of mechanical equilibrium implies continuity
of the normal traction vector, namely

∆σn = 0. (2.29)

In the case of interface moving from ‘−’ to ‘+’ side with a normal speed
vn > 0, ∆(·) is the forward jump with respect to time, cf. Petryk [95], being
the usual spacial jump with a minus sign, ∆(·) = −[·]. In that case, vector
c in (2.27) has a clear physical interpretation, namely it is related to the
velocity jump by vnc = [v].

Using the interior-exterior decomposition (2.1), the compatibility condi-
tions (2.27) and (2.29) can be rewritten in the form

∆εP = 0, ∆σA = 0. (2.30)

Now, accounting for the property (2.5), it follows that

∆σ ·∆ε = 0. (2.31)
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2.5. Interfacial relationships

Assume that the constitutive equations of linear isothermal anisotropic elas-
ticity with eigenstrain hold for the materials at both sides of the disconti-
nuity surface,

ε± = M±σ± + εt±, σ± = L±(ε± − εt±), (2.32)

where M± and L± = (M±)−1 are the elastic moduli tensors that possess
usual symmetries and are positive definite. The eigenstrain εt± may result
from phase transformation, plastic deformation, thermal strain, etc., but
here its origin and evolution law (if any) may be left unspecified.

Assuming that the state in the ‘+’ phase is known, the compatibility
conditions (2.27) and (2.29) provide six equations sufficient to determine
the state in the ‘−’ phase. As a result, the stress and strain in the ‘−’
phase are expressed in terms of the ‘+’ values by the following interfacial
relationships

∆ε = −P0(∆Lε+ −∆σt),

∆σ = −S0(∆Mσ+ + ∆εt),
(2.33)

where σt± = L±εt±, and P0 and S0 are fourth-rank tensors that depend on
the elastic properties of the ‘−’ phase and on the orientation of the interface,
specified by its normal n.

A slightly different form of the interfacial relationships (2.33) and the
coordinate-invariant expressions for the operators P0 and S0 can be found
in Hill [47]. Explicit expressions for P0 and S0, expressed in the intrinsic
coordinate system, are also provided in Appendix A.3.

2.6. Micro-macro transition for simple laminates

Consider now a two-phase (two-component) laminate with the volume frac-
tions of two homogeneous ‘−’ and ‘+’ phases being, respectively, η− = η
and η+ = (1 − η), where 0 ≤ η ≤ 1, cf. Fig. 2.2. Such microstructure will
be referred to as a simple laminate. The parallel interfaces separating the
two constituents are characterized by the normal vector n.

A peculiar property of laminates is that the stresses and strains are
uniform within all layers of the same component, so that the interfacial
relationships (2.33) hold not only locally at the interfaces but in the whole
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n η

1−η

−

−

+

+

Figure 2.2. Simple laminate.

volume.1 Spatial arrangement of the layers is thus fully irrelevant (a periodic
layout may be chosen to fix the attention), and the microstructure is fully
characterized by the volume fraction η. Similarly, the spatial variation
of strains, stresses and other fields, i.e. their dependence on the position
y within the r.v.e., is not relevant, and it is sufficient to distinguish the
respective quantities within each phase by a superscript ‘−’ or ‘+’.

In view of the compatibility conditions (2.27) and (2.29), relating now
the strains and stresses within each phase, it can easily be verified that the
Hill’s lemma (2.14) holds automatically for the laminate fields. For this
reason the choice of the r.v.e. is quite arbitrary. To fix the attention, as the
r.v.e., we adopt an oblique cylinder with an arbitrary base at yn = y · n =
const, and of sufficient height.

Let us specify the free energy density function of each phase, per unit
volume, consistent with the constitutive stress-strain relations of anisotropic
elasticity with eigenstrain, Eq. (2.32), in the form

φ± = φ±0 +
1
2

(ε± − εt±) · L±(ε± − εt±) = φ±0 +
1
2

σ± ·M±σ±, (2.34)

where φ±0 is the free energy density in the stress-free state.

Applying the averaging rules (2.8) and the compatibility conditions (2.27)
and (2.29), the following macroscopic constitutive relation for the laminate

1In the case of a multi-component laminate, the interfacial relationships (2.33) hold
between any two layers, not necessarily the adjacent ones.
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is obtained,1

E = M̃Σ + Et, Σ = L̃(E−Et), (2.35)

as a specification of the general expressions provided in Section 2.3, with

Et = {BTεt} = η (B−)Tεt− + (1− η) (B+)Tεt+. (2.36)

Furthermore, the local stresses within the phases are found to be equal to

σ− = B−Σ + (1− η) S(εt+ − εt−),

σ+ = B+Σ + η S(εt− − εt+),
(2.37)

and the dual expressions for the local strains are

ε− = A−E− (1− η) P(σt+ − σt−),

ε+ = A+ E− η P(σt− − σt+).
(2.38)

Here A± and B± are, respectively, the strain and stress concentration ten-
sors (constant within the layers), and P and S are fourth-rank tensors.
Finally, the macroscopic free energy is given by

Φ = {φ} = Φ0 +
1
2

(E−Et) · L̃(E−Et) = Φ0 +
1
2

Σ · M̃Σ, (2.39)

with

Φ0 = ηφ−0 + (1− η)φ+
0 +

1
2

η(1− η)(εt+ − εt−) · S(εt+ − εt−), (2.40)

where the last term on right-hand side of (2.40) is recognized to be the
elastic energy associated with the residual stresses, cf. Eq. (2.26).

The fourth-rank tensors M̃, L̃, A±, B±, P, and S depend on the elas-
ticity tensors M± and L±, the volume fraction η, and the interface normal
n. The respective analytic formulae in the matrix form are given in Ap-
pendix A.4. Note that it is not easy to find in the literature a reference with

1As the strains and stresses in the laminate are piecewise constant, solution of the
localization problem (2.9) is straight-forward and amounts to solution of a system of
linear algebraic equations.



30 Chapter 2

a complete set of those formulae, although the approach to derive them is
rather standard. For instance, the expressions for the effective elastic stiff-
ness tensor in the case of arbitrary anisotropy of the layers can be found in
Ga lka et al. [32], and an expression analogous to (2.40), but in a different
notation, was given by Roytburd [112].

Remark 2.1 For η = 0, the operators P and S in equations (2.37) and
(2.38) reduce to the respective operators P0 and S0 which appear in the
interfacial relationships (2.33), see Appendix A.

Remark 2.2 The compatibility conditions (2.30) imply that the interior
part of the local strain and the exterior part of the local stress are continuous
and equal to the respective parts of the macroscopic variables, thus

EP = {εP} = ε+
P = ε−P , ΣA = {σA} = σ+

A = σ−A . (2.41)

This property is the basis of an alternative method of computing the effec-
tive moduli of laminated microstructures. As shown by El Omri et al. [27],
homogenization of laminates of arbitrary constitutive behaviour can conve-
niently be carried out using the constitutive equations in the mixed form,
cf. Section 3.2. In fact, having the local constitutive equations in the mixed
form, the mixed form of the macroscopic constitutive equations is obtained
by simple averaging of the local ones.



Chapter 3

Homogeneous surface layers

Abstract Mixed form of constitutive relations of thin homogeneous layers is

derived for elastic, elastic-plastic, and rigid-plastic material models. This formal-

ism is then applied to derive a phenomenological model of real contact evolution

in metal forming processes. The predictions of the model are compared to other

models and to available experimental data. Remarks are also provided regard-

ing the application of the derived evolution law to modelling of friction in metal

forming processes.

3.1. Motivation and preliminaries

The main part of this chapter is devoted to the phenomenological modelling
of evolution of real contact area in metal forming processes. The model
of Stupkiewicz and Mróz [130] is presented in Section 3.3 and, following
Stupkiewicz and Mróz [128, 129], its application to modelling of friction in
metal forming processes is discussed in Section 3.3.7. In the present phe-
nomenological modelling, workpiece asperities and a thin subsurface layer
of inhomogeneous deformation induced by their flattening (the boundary
layer in the terminology of Chapters 4 and 5) is assumed to be represented
by an equivalent homogeneous layer. A constitutive law is then postulated
for the surface layer with the aim of describing the effect of macroscopic
(bulk) plastic deformation on asperity flattening and the related evolution
of the real contact area.

However, thin, homogeneous layers are met in the engineering practice
also in other applications such as coatings, epitaxial layers, etc. There-
fore, in Section 3.2 below, the thin layers are first discussed from a broader
perspective.

The analysis is restricted to the case of infinitesimally thin layers, so
that the stress and strain in the substrate are not affected by the presence
of the layer, while the deformation of the layer is fully determined by the

31
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deformation of the substrate. This also implies that the thickness of the
layer is negligible compared to the radius of curvature of the surface.

In view of the thin layer assumption and in view of homogeneity of the
layer, the stresses and the strains are constant across the layer. Perfect
bonding of the layer to the substrate is also assumed, so that the compati-
bility equations (2.27) and (2.29) are satisfied at the surface layer-substrate
interface. Denoting by σ and ε the stress and strain in the surface layer and
by Σ and E the stress and strain in the substrate in the vicinity of the sur-
face layer-substrate interface, the compatibility conditions (2.27) and (2.29)
can be written as

εP = EP, σA = ΣA, (3.1)

where the subscripts (·)P and (·)A denote, respectively, the interior and
exterior parts, cf. the interior-exterior decomposition, Section 2.2.

As shown below, using the compatibility conditions (3.1) combined with
the constitutive relations of the layer, the stress and strain within the layer
can be fully determined in terms of EP and ΣA, the latter being directly
related to the contact traction, cf. Section 2.2. This leads to the mixed
form1 of constitutive relations, cf. El Omri et al. [27].

Below, the constitutive equations in the mixed form are provided for
elastic, elastic-plastic, and rigid-plastic layers. Special attention is paid
to the rigid-plastic case as a background for the phenomenological model
discussed in Section 3.3.

As the interior-exterior decomposition is an essential tool of the present
analysis, the Kelvin matrix notation, which allows a convenient application
of this decomposition in the intrinsic coordinate system, cf. Appendix A, is
used throughout this chapter.

3.2. Mixed form of constitutive equations

3.2.1. Elastic layer

Consider first an elastic layer, and denote by εt the eigenstrain, so that
the stress-free configuration of the layer does not correspond to a zero total
strain. The corresponding constitutive equation, written using the matrix
notation in the intrinsic Cartesian coordinate system, cf. Eq. (A.7), takes
the form {

σP

σA

}
=

[
LPP LPA

LAP LAA

]{
εP − εt

P

εA − εt
A

}
. (3.2)

1Or the hybrid form in the terminology of El Omri et al. [27].
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The partial inversion of (3.2) gives the following mixed form of the consti-
tutive equation

{
σP

εA − εt
A

}
=

[
LPP − LPAL−1

AALAP LPAL−1
AA

−L−1
AALAP L−1

AA

] {
EP − εt

P

ΣA

}
,

(3.3)
where, in view of the compatibility conditions (3.1), εP and σA have been
replaced by the respective components of the substrate strain and stress.
Positive definiteness of L guarantees that LAA is also positive definite, so
that LAA can be inverted.

3.2.2. Elastic-plastic layer

Consider now an elastic-plastic layer. The total strain rate ε̇ is decomposed
into elastic part ε̇e and plastic part ε̇p, so that the rate of stress is given by

σ̇ = Lε̇e = L(ε̇− ε̇p). (3.4)

The yield condition of Huber-von Mises plasticity with isotropic hardening
is

F (σ, εp) =

√
3
2

σ ·Πdσ − σy(εp) ≤ 0, (3.5)

where σy is the yield stress, given as a function of the effective plastic strain
εp, and Πd is the projection matrix onto the deviatoric space,

Πd =
1
3


2 −1 −1 0 0 0

2 −1 0 0 0
2 0 0 0

3 0 0
3 0

symmetric 3

 , (3.6)

given here in the form corresponding to the arrangement of the stress vector
components as in equation (A.1). The plastic strain rate ε̇p is given by the
associated flow rule

ε̇p = γ µ, µ =
∂F

∂σ
=

3
2σy

Πdσ, γ ≥ 0, (3.7)
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where γ is the plastic multiplier, and the effective plastic strain εp is defined
by

ε̇p = γ =

√
2
3

ε̇p · ε̇p. (3.8)

Finally, the plastic flow with γ > 0 is only possible if F = 0, and this is
expressed in the form of the complementarity condition,

γF = 0. (3.9)

Following the classical argument of the plasticity theory, e.g. Hill [44],
Simo and Hughes [120], the constitutive rate-equations are given by

σ̇ = Ltε̇, (3.10)

where Lt is the matrix of tangent moduli: Lt = L if the state is elastic,
and Lt = Lep if the state is plastic. Here, Lep is the matrix of elastoplastic
tangent moduli,

Lep = L− 1
g

λ⊗ λ, g = σ′y + µ · Lµ, λ = Lµ. (3.11)

Similarly to the elastic case, after the interior and exterior components
of stress and strain rates are introduced, the mixed form of the constitutive
equation (3.10) is obtained by partial inversion, viz.{

σ̇P

ε̇A

}
=

[
Lt

PP − Lt
PA(Lt

AA)−1Lt
AP Lt

PA(Lt
AA)−1

−(Lt
AA)−1Lt

AP (Lt
AA)−1

]{
ĖP

Σ̇A

}
. (3.12)

Clearly, the above partial inversion is only possible if sub-matrix Lt
AA is

not singular, det Lt
AA 6= 0. This is guaranteed by simple ellipticity of Lt.

Moreover, if Lt is strongly elliptic, then Lt
AA is positive definite, cf. Hill [47].

Note that Lt
AA is, essentially, a representation of the acoustic tensor nLtn

with the rows and columns corresponding to shear components multiplied
by
√

2. It thus inherits many properties of the acoustic tensor.

3.2.3. Rigid-plastic layer

Consider finally the case of a rigid-perfectly plastic layer. The yield con-
dition and the flow rule of the associative Huber-von Mises plasticity are
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specified by

F (σ) =

√
3
2

σ ·Πdσ − σy ≤ 0, ε̇ = γ
∂F

∂σ
=

3γ

2σy
Πdσ, γ ≥ 0, (3.13)

with the complementarity condition (3.9). Below, the case of plastic flow
with γ > 0 is only considered.

After the flow rule (3.13)2 is expressed in terms of interior and exterior
components, namely

{
ε̇P

ε̇A

}
=

3γ

2σy

[
Πd

PP Πd
PA

Πd
AP Πd

AA

] {
σP

σA

}
, (3.14)

it can be partially inverted to yield

{
σP

ε̇A

}
=

[
2σy
3γ (Πd

PP)−1 −(Πd
PP)−1Πd

PA

Πd
AP(Πd

PP)−1 3γ
2σy

[Πd
AA −Πd

AP(Πd
PP)−1Πd

PA]

] {
ĖP

ΣA

}
,

(3.15)
where, additionally, the compatibility conditions σA = ΣA and ε̇P = ĖP

have been used. Note that, although the projection operator Πd is singular,
the sub-matrix Πd

PP is not singular and thus it can be inverted.
In order to express the plastic multiplier γ in terms of the control vari-

ables ĖP and ΣA, the effective strain rate ε̇, defined as

ε̇ = γ =

√
2
3

ε̇ · ε̇, (3.16)

is split into interior and exterior contributions, namely

ε̇ =
√

(ε̇P)2 + (ε̇A)2, ε̇P =

√
2
3

ε̇P · ε̇P, ε̇A =

√
2
3

ε̇A · ε̇A. (3.17)

Adopting a coordinate system such that x1- and x2-axes are the principal
directions of the interior strain rate component ε̇P (so that ε̇12 = 0), an
angle φ can be introduced, such that

tan φ =
ε̇22

ε̇11
, ε̇P =

√
3
2

ε̇P{cos φ, sin φ, 0}. (3.18)
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For instance, φ = 0 in the plane strain conditions, ε22 = 0.
Now, the following relation between the effective total strain rate ε̇ and

its interior component ε̇P follows from the flow rule (3.13)2,

ε̇ = ε̇P

√
2 + sin 2φ

1− (TT/k)2
, (3.19)

where TT =
√

Σ2
13 + Σ2

23 is the norm of the tangential component of sur-
face traction vector (i.e. the friction stress if the contact surface layer is
considered), and k = σy/

√
3 is the yield stress in shear.

Equation (3.19) allows expressing the plastic multiplier γ = ε̇ in terms
of ĖP and ΣA, so that σP and ε̇A are expressed by equation (3.15) solely
in terms of ĖP and ΣA. The mixed form of the yield condition can finally
be derived by combining (3.13)1 and (3.15), namely

F ∗(ΣA, ĖP) =

√
3
2

ΣA ·Π∗
AAΣA +

2σ2
y

3γ2
ĖP · (Πd

PP)−1 ĖP−σy ≤ 0, (3.20)

where

Π∗
AA = Πd

AA −Πd
AP(Πd

PP)−1Πd
PA =

 0 0 0
0 1 0
0 0 1

 , (3.21)

and

γ =

√
2
3

ĖP · ĖP
2 + sin 2φ

1− (TT/k)2
. (3.22)

It follows from (3.21) that the normal contact traction component TN = Σ33

does not directly affect the yield condition in the mixed form (note the zeros
at the corresponding positions of Π∗

AA).

3.3. Phenomenological model of evolution of real con-
tact area in metal forming

3.3.1. Real contact area and friction in metal forming

Contact phenomena play a fundamental role in metal forming processes
since the frictional contact interactions between the workpiece and the tool-
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Figure 3.1. Basic asperity interaction modes in metal forming: (a) rough

workpiece-smooth tool; (b) smooth workpiece-rough tool.

ing, in fact, control the deformation of the workpiece. Moreover, surface
finish of the product, service life of tools, impact of toxic lubricants on the
environment, etc., are important economic issues related to contact phe-
nomena. Therefore, accurate modelling of these phenomena is essential for
reliable and accurate simulations of forming processes.

Contact of rough bodies occurs at small spots, called real contacts, which
usually constitute a small fraction of the nominal contact area. This strongly
affects the contact phenomena, such as friction and heat flow between bod-
ies in contact. For instance, in simple models of friction, the macroscopic
friction stress is determined by the shear resistance of adhesive junctions
and by the real contact area fraction, cf. Bowden and Tabor [16]. The real
contact area fraction is also a fundamental parameter that affects the heat
flow through the contact surface, cf. Cooper et al. [23].

At the micro-scale, the contact phenomena are governed by interaction
of surface asperities. The two basic mechanisms of friction, i.e. adhesion
and ploughing, can be associated with two basic asperity interaction mech-
anisms illustrated in Fig. 3.1. In metal forming processes, flattening of
workpiece asperities is the main asperity interaction mechanism. A respec-
tive micromechanical model of friction has been proposed by Wanheim and
Bay [10, 147] who considered the adhesive friction mechanism and rigid-
plastic flattening of workpiece asperities according to the rough workpiece-
smooth tool (RW-ST) interaction mode, cf. Fig. 3.1(a). In that model, the
friction stress is proportional to the real contact area which, in turn, is
related to the normal contact pressure. Accordingly, at low contact pres-
sures, the friction stress is proportional to the contact pressure, like in the
Coulomb law, and, at high contact pressures, a threshold friction stress is
obtained, as the real contact area fraction approaches then unity.

The ploughing friction mechanism is associated with plastic deforma-
tions induced by hard asperities or abrasive particles which, upon relative
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motion of the surfaces, plough through the softer surface, cf. the smooth
workpiece-rough tool (SW-RT) interaction mode, Fig. 3.1(b). Correspond-
ing models have been developed using the slip line field technique or the
upper bound method, cf. Challen and Oxley [21], Petryk [94], Avitzur and
Nakamura [5], Azarkin and Richmond [6].

The two basic asperity interaction modes have been combined by Mróz
and Stupkiewicz [78] by assuming separation of scales. In that model, the
workpiece asperities are flattened according to the RW-ST model, and, at
a lower scale, the tool asperities plough through the plateaus of flattened
workpiece asperities. The model accounts for contact memory effects and
transient states, and the real contact area fraction is a contact state variable
representing the irreversible asperity flattening process. Additional contact
state variables, such as accumulated friction work and sliding distance, have
been included in the modelling by de Souza Neto et al. [25] and Gearing
et al. [33], and hard particles of oxide layer have been accounted for by
Stupkiewicz and Mróz [127].

The models discussed above neglect an important effect of macroscopic
plastic deformations. In fact, severe plastic deformations of the workpiece
constitute an essential and distinctive feature of contact conditions in metal
forming operations. Both experiment and theory predict that asperities are
flattened more easily if the underlying bulk material deforms plastically.
Respective micro-mechanical models have been developed on the basis of
the slip line method (Sutcliffe [138]), the upper bound approach (Wilson
and Sheu [151, 153], Kimura and Childs [59]), and finite element solutions
(Korzekwa et al. [66], Ike [50]). In these micro-mechanical models, idealized
process conditions and contact geometries are assumed as required by the
applied solution techniques.

A phenomenological model of real contact area evolution accounting for
the effects of macroscopic plastic deformations has been developed by Stup-
kiewicz and Mróz [130]. In this model, a thin, homogeneous surface layer is
considered which is assumed to represent the subsurface layer of inhomoge-
neous deformations induced by deforming asperities. Constitutive equations
of this equivalent surface layer are developed in a phenomenological way,
although a micromechanical reasoning is utilized to reduce the number of
adjustable functions and parameters. Next, following in essence the scheme
outlined in Section 3.2.3, the mixed form of the constitutive equations is de-
rived, which provides a relation between the contact tractions, real contact
area fraction, and macroscopic plastic strain. This model is outlined in the
subsequent sections, and its application to modelling of friction is provided.
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Figure 3.2. Homogeneous surface layer representing workpiece asperities and a

thin subsurface layer of inhomogeneous deformation.

3.3.2. Basic assumptions

The basic idea of the model is to replace workpiece asperities and a thin
subsurface layer of inhomogeneous plastic deformations by an equivalent
homogeneous surface layer, cf. Fig. 3.2. Since the thickness of the layer is
small, as compared to the characteristic dimensions of the workpiece, the
stress σ and the strain ε are assumed constant across the layer. These quan-
tities should be understood as phenomenological representations of averaged
stresses and strains within the real surface layer (or boundary layer, in the
terminology of Chapters 4 and 5). By Σ and E, we denote the macroscopic
stress and strain at the points adjacent to the surface layer. In view of dis-
placement continuity and stress equilibrium, the compatibility conditions
(3.1) are assumed to hold at the surface layer-substrate interface.

In the present approach, asperity flattening and evolution of real contact
area are modelled by postulating a constitutive law for the homogeneous sur-
face layer. A central assumption is that the surface layer is weakened, with
respect to the bulk material, due to the inhomogeneity of plastic deforma-
tions at the micro-scale. This in agreement with the experimental results
of Sutcliffe [138], and also with the micromechanical predictions presented
in Section 5.3.2.

The tool surface in contact with the workpiece is assumed smooth which
corresponds to the RW-ST interaction mode, cf. Fig. 3.1(a). Accordingly,
the real contact area fraction is used as a measure of the workpiece asperity
flattening process. The real contact area fraction, denoted by α, is defined
as the ratio of the total area Ar of real contacts to the nominal area An,
α = Ar/An.

As the model is specialized for metal forming processes, the elastic
strains are neglected in the present modelling, and both the bulk mate-
rial and the surface layer are assumed to be rigid-plastic and obeying a
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rate-independent constitutive law. Further, material properties and surface
roughness are assumed to be isotropic, so that there are no privileged direc-
tions of plastic straining and friction slip. Behaviour of the bulk material is
thus assumed to be governed by the constitutive equations (3.13) of a rigid-
perfectly plastic material, expressed in terms of Σ and E. Constitutive
equations of the surface layer are specified below.

3.3.3. Asperity flattening condition

Weakening of the surface layer is directly related to the deformation induced
by asperity flattening. The yield condition of the layer is thus assumed to
additionally depend on the real contact area fraction α which is a measure
of the flattening. The asperity flattening condition, i.e. the yield condition
of the surface layer, is adopted in a form analogous to (3.13), namely

F l(σ, α) =

√
3
2

σ ·Πl(α)σ − σl
y(α) = 0, (3.23)

where Πl and σl
y are assumed to depend on α. Furthermore, an associated

flow rule is assumed, thus

ε̇ = γl ∂F l

∂σ
=

3γl

2σl
y

Πlσ, γl ≥ 0. (3.24)

There is some freedom in choosing a particular form of the operator Πl

in (3.23), but clearly this choice is crucial for the predicting capabilities of
the model. The following form of Πl,

Πl = Πd + g1(α)Πc, Πc = diag[0, 0, 2
3 , 0, 1, 1], (3.25)

proved to provide satisfactory results. Here, Πd is the projection matrix
onto the deviatoric space, cf. Eq. (3.6), Πc is a diagonal matrix, and the non-
zero terms in Πc are exactly the diagonal terms of Πd which correspond to
the exterior part of the stress, i.e. to the components of the contact traction
vector. Furthermore, let σl

y(α) = g2(α)σy, where σy is the yield stress of
the bulk material, so that the yield condition of the surface layer becomes

F l(σ, α) =

√
3
2

σ · [Πd + g1(α)Πc]σ − g2(α)σy = 0. (3.26)
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Constitutive functions gi(α) in (3.26) are specified later. It is, however,
required that, for completely flattened asperities (i.e. for α = 1), the yield
condition (3.26) of the surface layer reduces to the yield condition (3.13)1
of the bulk material. This implies that g1(1) = 0 and g2(1) = 1.

Remark 3.1 The associated low rule (3.24) with Πl defined by (3.25)
generates non-zero volumetric strain. Thus, in the present modelling, the
surface layer can be treated as a fictitious porous body. The porosity is re-
lated to surface roughness and decreases in the deformation process under
the action of contact tractions. The surface layer exhibits thus configura-
tional hardening due to decreasing porosity until the strength of the bulk
material is recovered for completely flattened asperities.

3.3.4. Evolution law for the real contact area fraction

Following the approach presented in Section 3.2.3, the strain rate and the
stress in the surface layer can be expressed in terms of the macroscopic
quantities, specifically in terms of ΣA = σA and ĖP = ε̇P. The yield
condition (3.26) can be transformed to the mixed form analogous to that
given by equation (3.20), and, for the particular form (3.25) of Πl, the yield
condition can be written as, cf. Stupkiewicz and Mróz [130],

F l
v(PN, PT, Ev, α) =

√
g1

3g2
2

[1 + g1(1− P 2
T)E2

v ] P 2
N +

1 + g1

g2
2

P 2
T − 1 = 0,

(3.27)
where PN and PT are the dimensionless contact stresses, and Ev is the
dimensionless macroscopic (bulk) strain rate, i.e. the effective macroscopic
strain rate Ė normalized by the volumetric strain rate ε̇v, namely

Ev =
Ė
ε̇v

, Ė =

√
2
3

Ė · Ė, ε̇v = −tr ε̇ =
g1PN√

3g2

γl. (3.28)

Note that the effective macroscopic strain rate Ė enters the yield condition
(3.27) through equation (3.19) relating Ė and its interior part ĖP. Using
(3.28), it can be checked that for g1 = 0 and g2 = 1, i.e. for α = 1, the yield
condition (3.27) becomes an identity, since for α = 1 we have γl = Ė.

In equation (3.27), the components of ΣA are replaced by the com-
ponents of the contact traction vector T = Σn (TN = Σ33, TT1 = Σ13,
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TT2 = Σ23). The normal contact pressure and the friction stress are then
normalized using the yield stress in shear, k = σy/

√
3, so that

PN = −TN

k
, PT =

TT

k
, TT =

√
T 2

T1 + T 2
T2. (3.29)

In order to close the model, the real contact area fraction α must be
related to the deformation of the surface layer. Based on simple geometric
considerations the following relation has been proposed by Stupkiewicz and
Mróz [130],

α̇ =
ε̇v

εmax
v

, εmax
v = log

η + tan θ

η + ν tan θ
≈ (1− ν)θ

η
, (3.30)

where εmax
v is the maximum volumetric strain in the surface layer. Param-

eters θ and ν depend on the initial roughness: θ is the average asperity
slope; and 1−ν is the “porosity” of the layer contained between the highest
asperity summits and the deepest asperity valleys, for instance, ν = 1

2 in
the case of two-dimensional wedge-like asperities. The phenomenological
parameter η denotes the thickness of the surface layer relative to the char-
acteristic asperity spacing. Alternatively, εmax

v can directly be used as a
phenomenological parameter of the model without specifying parameters θ,
ν, and η.

The dimensionless macroscopic strain rate Ev can now be determined
from the yield condition (3.27), viz.

Ev = Êv(PN, PT, α) =

√
3g2

2 − g1P 2
N − 3(1 + g1)P 2

T

g2
1P 2

N(1− P 2
T)

. (3.31)

Finally, using (3.28)1, (3.30)1, and (3.31), the evolution law for the real
contact area fraction is obtained in the form

α̇ =
Ė

εmax
v Êv(PN, PT, α)

. (3.32)

According to this evolution law, α̇, the rate of the real contact area fraction,
is proportional to the effective macroscopic plastic strain rate Ė, and the
proportionality factor depends on the dimensionless contact stresses PN and
PT, and on the real contact area fraction α.
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3.3.5. Specification of constitutive functions gi(α)

The constitutive functions gi(α) must satisfy some physical constraints.
Firstly, as already discussed, g1(1) = 0 and g2(1) = 1. Secondly, in the
case of no macroscopic deformation (Ev = 0), we require that, at α = 0,
the effective dimensionless hardness H, defined as

H =
PN

α
, (3.33)

is equal to H = 2 + π, which is a classical result of the rigid-plastic inden-
tation problem, cf. Hill [44], Szczepiński [139]. The following functions g1

and g2,

g1(α) = 1− α, g2(α) = α2 +
2 + π√

3
α(1− α), (3.34)

satisfy the above conditions, and have been found to provide satisfactory
prediction at zero macroscopic strain, as illustrated below.

Consider thus flattening of asperities in frictionless conditions, PT = 0,
and in the absence of macroscopic deformation, Ev = 0. The following
relation between PN and α is obtained from the asperity flattening condi-
tion (3.27),

PN =
√

3
g2(α)√
g1(α)

. (3.35)

Figure 3.3 presents the real contact area fraction α as a function of the
dimensionless contact pressure PN, as predicted by equations (3.34) and
(3.35). This relation is compared to the respective prediction of the mi-
cromechanical model of Wanheim et al. [147], and a good agreement of
the two models is clearly seen in Fig. 3.3. It is shown in Stupkiewicz and
Mróz [130] that the present model reasonably agrees with the model of
Wanheim et al. [147] also in the case of non-zero friction, PT 6= 0.

3.3.6. Model predictions

The evolution law (3.32) for the real contact area fraction α, resulting from
the present model, has been successfully verified against the existing mi-
cromechanical models and available experimental data, see Stupkiewicz and
Mróz [130]. Selected results are provided below.

Wilson and Sheu [153] analysed a two-dimensional periodic indentation
problem of a macroscopically deforming rigid-plastic half-space indented by
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Figure 3.3. Real contact area fraction α as a function of dimensionless normal

contact pressure PN in the case of zero macroscopic strain, Ev = 0 (Stupkiewicz

and Mróz [130]).

a periodic array of rigid indenters. The solution, obtained using the upper
bound method, has been approximated with an analytical function relating
the effective hardness H to the real contact area fraction α and dimension-
less macroscopic strain rate Ef . The effective hardness H, Eq. (3.33), has
an interpretation of the average contact pressure at real asperity contacts.
The dimensionless macroscopic strain rate Ef = Ėl/vf is the effective macro-
scopic plastic strain rate Ė normalized using the flattening velocity vf and
the characteristic asperity spacing l. Assuming that the asperities have the
form of wedges with constant asperity slope θ, it follows that

Ef =
1− ν

η
Ev =

1
2η

Ev, (3.36)

where, for wedge-like asperities, we have ν = 1
2 , and the flattening velocity

is given by vf = α̇l tan θ.
In Figure 3.4, predictions of the present model, corresponding to η = 1,

are compared to predictions of the micromechanical model of Wilson and
Sheu [153]. The agreement is considered satisfactory, particularly, in view
of the idealized asperity layout assumed by Wilson and Sheu [153], and in
view of other assumptions of that model.

The present model predicts that the effective hardness decreases with
increasing dimensionless macroscopic strain rate Ef , cf. Fig. 3.4. This is
also seen in Fig. 3.5, where the hardness H is shown as a function of macro-
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Figure 3.4. Effective hardness H as a function of the fraction α of real contact
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Figure 3.5. Effective hardness H as a function of the friction stress PT for

α = 0.5.

scopic friction stress PT. According to the present model, friction induces
additional decease of the effective hardness.

Predictions of the present model have also been compared to the exper-
imental data of Sutcliffe [138] and Wilson and Sheu [153]. In the asperity
crushing experiment of Sutcliffe [138], copper bars with ridges machined
across opposite faces were compressed on the ridged surfaces by two flat
and smooth dies and, subsequently, stretched in the perpendicular direc-
tion, cf. Fig. 3.6. Two series of experiments were conducted with ridges
perpendicular to the straining direction (transverse roughness, as illustrated
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Figure 3.6. Asperity crushing experiment of Sutcliffe [138].

in Fig. 3.6) and with ridges parallel to the straining direction (longitudinal
roughness). A constant macroscopic normal pressure was prescribed, and at
each load increment the real contact area fraction was measured. Geometry
of the specimen was appropriate to adopt the plane strain assumption. The
case of longitudinal roughness was also studied experimentally by Wilson
and Sheu [153] who measured the real area of contact as a function of the
macroscopic strain in rolling.

Once the history of contact tractions (here, PN = const and PT = 0)
is prescribed, the evolution equation for α, equation (3.32), can be inte-
grated to yield the real contact area fraction α as a function of macroscopic
deformation; in the present case, as a function of macroscopic strain E11.
The model involves one adjustable parameter, namely the relative thickness
of the surface layer η, while ν and θ are known. The values of parame-
ter η, which provide best fit of each set of experimental data, are given
in Table 3.1. The values corresponding to transverse roughness are 2–3
times higher than those corresponding to longitudinal roughness. This is
in a qualitative agreement with the finite element solutions of Korzekwa et
al. [66] who predicted minimum effective hardness for transverse roughness
and significantly higher effective hardness for longitudinal roughness. The
values of η providing the best fit of experimental data for highly anisotropic
roughness formed by two-dimensional ridges are between 1.2 and 1.88 for
bulk straining direction perpendicular to the ridges (transverse roughness)
and between 0.46 and 0.68 in the case of longitudinal roughness. The value
of parameter η in the case of isotropic asperity layout is thus expected to
be close to unity.

In Figure 3.7, the predicted growth of the real contact area with increas-
ing macroscopic strain E11 is compared to the transverse roughness results
of Sutcliffe [138]. The model predictions in Fig. 3.7 correspond to only one
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Table 3.1. Thickness parameter η providing best fit of experimental data.

PN η εmax
v

Transverse roughness, Sutcliffe [138] 0.8 1.50 0.12
1.32 1.88 0.09
2.0 1.20 0.15

Longitudinal roughness, Sutcliffe [138] 1.2 0.46 0.38
2.0 0.48 0.36

Longitudinal roughness, Wilson & Sheu [153] 2.0 0.68 0.13
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Figure 3.7. Real contact area fraction α as a function of macroscopic strain E11.

Transverse roughness results of Sutcliffe [138] and model predictions for η = 1.20

(Stupkiewicz and Mróz [130]).

value of parameter η, the value which provides the best fit for PN = 2,
namely η = 1.20.

Weakening due to asperity flattening and due to related inhomogeneity
of plastic deformation in the surface layer plays a central role in the present
modelling. In practice, the typical asperity dimensions and the thickness
of the surface layer are small compared to the dimensions of the workpiece.
Thus weakening of the surface layer has a negligible effect on the overall
deformation of the workpiece, both in bulk and sheet forming operations.
However, in the experiments of Sutcliffe [138], the initial thickness of the bar,
2h0 = 10 [mm], was only four times greater than the initial ridge spacing,
2l0 = 2.6 [mm], so that the weakening effect of deformation inhomogeneity
was observed and measured.
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Figure 3.8. Relation between the real contact area fraction α and the sum

of applied stresses needed to flatten transverse asperities under constant normal

pressure PN = 1.32.

Assuming that the bar is in tension, Ė11 > 0, the plane strain yield
condition of the bulk material is given by Σ11−Σ33 = 2k, which corresponds
to the frictionless case, Σ13 = TT1 = 0. Similarly, the stress in the surface
layer can be obtained from the yield condition (3.23) using the flow rule
(3.24) corresponding to the plane strain conditions, ε̇22 = 0, so that

Σ11/2k = 1− PN/2, σ11/2k =

√
[g2(α)]2 − 1

3
g1(α)P 2

N − PN/2. (3.37)

The average stress in the bar, Σav
11, can now be estimated from the following

expression,

Σav
11 =

hbΣ11 + hlσ11

hb + hl
, (3.38)

where hl = (η+tan θ)l0 is the thickness of the surface layer, and hb = h0−hl

is the thickness of the remaining bulk material. For simplicity, the variation
of hl and hb during deformation of the bar has been neglected in equation
(3.38), as this variation has a minor effect on Σav

11.
Figure 3.8 presents the real contact area fraction α as a function of the

sum of applied stresses, PN/2+Σ11/2k. The prediction of the present model
corresponding to η = 1.20 (solid line in Fig. 3.8), as specified by equations
(3.37) and (3.38), is compared to the experimental data (PN = 1.32) and to
the slip-line solution of Sutcliffe [138].
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v
workpiece

tool

Figure 3.9. Combined asperity interaction mode: workpiece asperities are flat-

tened according to the RW-ST interaction mode, and much smaller tool asperities

plough through the plateaus of the flattened workpiece asperities.

Both the present model and the Sutcliffe’s model predict that for α =
1, i.e. for completely flattened asperities, the sum of normalized applied
stresses is equal to unity, which is a correct result corresponding to a ho-
mogeneous deformation in plane strain conditions. Note, however, that
the experimentally measured stresses, normalized here by the initial yield
stress k, are significantly higher than unity. This has been explained by Sut-
cliffe [138] to result from strain hardening. Indeed, a simple extension of the
present model to account for the strain hardening effects provides an excel-
lent agreement with experimental data, cf. Krasniuk and Stupkiewicz [69].
The corresponding diagram is also included in Fig. 3.8 (dashed line). Note
that the hardening curve of the bulk material, which has been measured
and reported by Sutcliffe [138], is the only additional input required by the
extended model of Krasniuk and Stupkiewicz [69].

3.3.7. Friction model

As an application of the evolution law (3.32), a friction model is briefly
outlined below. The model, proposed by Stupkiewicz and Mróz [128, 129],
is based on the assumption that the tool asperities are much smaller than
the workpiece asperities, so that the combined asperity interaction mode,
cf. Mróz and Stupkiewicz [78], Wilson [151], can be adopted, cf. Fig. 3.9.

The average dimensionless local contact stresses at workpiece asperity
contacts are given by

P a
N =

PN

αw
, P a

T =
PT

αw
, (3.39)

where αw is the measure of flattening of workpiece asperities. Asperity
flattening is assumed to proceed according to the RW-ST interaction mode,
cf. Fig. 3.1(a), and the evolution law for αw is thus specified by equation
(3.32) with α replaced by αw. Note that, in the assumed two-scale asperity
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PN

PT
0 αwf =

Figure 3.10. Evolution of the limit friction surface.

interaction mode, the real contact area fraction is given by α = αwαt,
where αt is the local real contact area fraction at the workpiece asperity
plateaus, according to the SW-RT mode in Fig. 3.1(b), see also Mróz and
Stupkiewicz [78].

Frictional interaction at workpiece asperity contacts is assumed to be
governed by adhesion and ploughing of tool asperities through the plateaus
of flattened workpiece asperities. The corresponding local friction law is
assumed in the form of a simple nonlinear law, cf. Stupkiewicz [122],

fa(P a
N, P a

T) = |P a
T| −m tanh

(
µP a

N

m

)
≤ 0, (3.40)

where µ is the friction coefficient at low contact pressures, and m is the so-
called friction factor, so that P a

T = m at high contact pressures. Combining
equations (3.40) and (3.39), the following limit friction condition is obtained

f(PN, PT, αw) = |PT| − αwm tanh
(

µPN

αwm

)
≤ 0. (3.41)

This condition involves a state variable αw with evolution law specified by
equation (3.32). Note that αw is not a unique function of the current con-
tact state, but it depends on the history. Surface roughening due to plastic
deformations, cf. Wilson and Lee [152], is not accounted for by the evolu-
tion law (3.32), thus αw increases monotonically. With increasing αw, the
limit friction surface f = 0 grows in a self-similar manner, as schematically
illustrated in Fig. 3.10.

As the applicability of the present model for finite element simulations
is concerned, it should be noted that the effective macroscopic plastic strain
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rate Ė, occurring in the evolution law (3.32) for αw, is a non-standard
contact variable that cannot be handled by the usual finite element for-
mulations of contact. A possible approach to treat this problem has been
proposed by Stupkiewicz and Mróz [128]. The approach relies on the rela-
tion (3.19) between the effective macroscopic plastic strain rate Ė and its
interior contribution ĖP. The latter one can be, in fact, determined from
surface data. For instance, in plane strain conditions (φ = 0), the increment
of the (logarithmic) in-plane strain component ∆E11 and the increment of
total effective plastic strain ∆E can be approximated by

∆E11 = log(An+1/An), ∆E =
2|∆E11|√
3(1− P 2

T )
, (3.42)

where An+1 and An denote the equivalent area of a contact integration point
at, respectively, the current time increment and at the previous one. The
above approximation can effectively be handled using the extended node-
to-segment contact element developed by Stupkiewicz [122]. Results of a
representative finite element simulation, employing the friction model (3.41)
with the evolution law (3.32), can be found in Stupkiewicz and Mróz [128].

3.4. Conclusions

A new approach to describe the effect of macroscopic (bulk) plastic defor-
mations on asperity flattening and on evolution of real contact area in metal
forming processes has been presented in this chapter. The phenomenologi-
cal framework, presented first by Stupkiewicz and Mróz [130], is based on
the assumption that the surface asperities and the underlying thin layer of
inhomogeneous deformation can be represented by an equivalent homoge-
neous surface layer. A micromechanical approach to treat inhomogeneous
deformations within contact layer is developed in Chapters 4, 5, and 6.

As the first step of the present modelling, rigid-plastic constitutive equa-
tions are postulated for the surface layer. The yield condition of the sur-
face layer, is then expressed in the mixed form, i.e. in terms of macroscopic
quantities only. This condition, together with the heuristic postulate (3.30),
provides a closed-form relationship between the rate of the real contact area
fraction, the contact state variables (the contact stresses and the real contact
area fraction), and the macroscopic effective plastic strain rate. The effec-
tive hardness predicted by the model increases with increasing real contact
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area fraction and decreases with increasing dimensionless macroscopic effec-
tive plastic strain rate. Despite many simplifying assumptions, the model
provides a good agreement with existing micromechanical models and with
available experimental data.

The model predicts that, under constant normal pressure, the real con-
tact area grows asymptotically to unity with increasing bulk strain, cf.
Fig. 3.7. This is consistent with the predictions of the model of Wilson
and Sheu [153]. However, qualitatively different behaviour is predicted by
Sutcliffe [138] and also by Kimura and Childs [59]. The model of Sut-
cliffe [138] predicts that α = 1 is attained at a finite value of bulk strain.
On the other hand, persistence of longitudinal asperities is predicted by
Kimura and Childs [59]. Their results suggest that there exists a limit real
contact area fraction (which depends on the contact conditions, e.g. fric-
tion) between 0.75 and 0.95 according to their theory (based on the upper
bound method) and between 0.6 and 0.8 according to the experiment. Each
of the two effects might be included in the present model by refining the
evolution law for the real contact area. However, as the effects are opposite,
additional experimental evidence would first be required.

The model involves one adjustable parameter, namely the relative thick-
ness η of the surface layer. Alternatively, if roughness characteristics (aver-
age asperity slope θ and “porosity” parameter ν) are not known, then the
maximum volumetric strain εmax

v can be adopted as a phenomenological pa-
rameter. The expected value of parameter η in the case of isotropic asperity
layout is close to unity, as the values providing the best fit of experimental
data for highly anisotropic roughness formed by two-dimensional ridges are
between 1.2 and 1.88 for transverse roughness and between 0.46 and 0.68
for longitudinal roughness.

The model can easily be extended to account for the effects of strain
hardening in the bulk material and in the surface layer by adopting re-
spective yield conditions with isotropic-type hardening, cf. Krasniuk and
Stupkiewicz [69]. The resulting structure of the model is similar to that
presented in Section 3.3. While the predicted evolution of real contact area
is not much affected by strain hardening, the weakening effect can be mod-
elled more accurately, cf. Fig. 3.8.



Chapter 4

Boundary layers induced by
micro-inhomogeneous boundary conditions

Abstract Boundary layers induced by micro-inhomogeneous boundary condi-

tions are studied. The notion of macro-scale and micro-scale is introduced and

the method of asymptotic expansions is used to derive the equations of the cor-

responding macroscopic and microscopic boundary value problems for an elastic

body in two dimensions. Three specific cases of micro-inhomogeneous bound-

ary conditions are considered in detail: prescribed surface traction, prescribed

displacement, and frictional contact of a rough body with a rigid and smooth

obstacle.

4.1. Motivation

In the case of contact of rough bodies, the characteristic dimension of
roughness is typically much smaller than that of the contacting bodies,
see Fig. 4.1. Thus two points of view can be adopted. At the micro-scale,
the stress transfer is concentrated at small spots, so-called real contacts,
and the distribution of contact traction is highly inhomogeneous. These
inhomogeneities govern the interaction and deformation of surface asperi-
ties. Furthermore, a thin subsurface layer of inhomogeneous deformation is
induced. At the macro-scale, it is the slowly-varying average (macroscopic)
contact traction that determines the overall deformation of the contacting
bodies.

While frictional interactions are governed by the local phenomena at the
micro-scale, the friction laws are typically formulated in terms of the nor-
mal and tangential components of the macroscopic contact traction vector
t = σn, where σ is the macroscopic stress tensor at the contact surface, and
n is the unit outward normal. Consequently, only the exterior part of the
stress tensor σ, cf. Section 2.2, is involved in the description, and the com-
plete stress and strain state in the vicinity of the contact surface is typically

53
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L l

inhomogeneous
   deformation

Figure 4.1. Contact of rough bodies: macro- and micro-scale.

not accounted for. However, in some situations, the interior (in-plane) parts
of stress or strain significantly affect friction and other contact phenomena,
particularly, if the deformation in the subsurface layer is inhomogeneous.
This is, for example, the case of metal forming processes where the surface
asperities are flattened more easily in the presence of macroscopic plastic
deformation. This leads to high real contact area fractions, even at mod-
erate contact pressures; refer to Section 3.3 for a more detailed discussion.
Depending on the lubrication regime, this can result in an increased adhe-
sive friction component or affect lubrication conditions. A closely related
effect is also observed in hardness indentation testing, where the in-plane
stresses affect the force-penetration response, cf. Giannakopoulos [34].

It seems that the effects associated with deformation inhomogeneities
within subsurface contact layers and the interaction of these inhomogeneities
with the macroscopic stresses and strains have not attracted sufficient at-
tention in the literature yet. The aim of this chapter is thus to develop a
micromechanical framework that would allow a consistent analysis of these
effects and, in a broader perspective, would help to develop improved con-
stitutive laws of contact phenomena.

The importance of surface roughness in the mechanics of contact inter-
actions is, of course, very well recognized. The area of real contact of rough
bodies, which is directly related to interaction of surface asperities, usu-
ally constitutes only a small fraction of the nominal contact area, and the
related effects at the micro-scale govern the contact phenomena (friction,
wear, contact compliance, heat transfer, lubrication, etc.) observed at the
macro-scale.

For instance, local deformations of deforming asperities and the related
contact compliance may, in some situations, affect the overall deforma-
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tions of rough bodies in contact. Contact compliance of a rough surface,
or of a pair of rough surfaces, can be obtained by determining the re-
sponse of a single (representative) asperity, and by subsequent averaging
over statistical distribution of asperity heights, radii, etc., cf. Greenwood
and Williamson [35], Whitehouse and Archard [149], Kucharski et al. [71].
As a result, Winkler-type contact laws are obtained, which relate the con-
tact pressure and the relative approach of the nominal surfaces. Contact
laws of this type can be readily used in finite element computations, e.g.
Buczkowski and Kleiber [19], Oden and Martins [82], Wriggers et al. [157].
Another approach to include the effect of roughness into macro modelling of
contact interactions has been proposed by Pauk and Woźniak [90]. In that
approach, so-called micro-shape and decay functions, which are assumed a
priori, are used to model inhomogeneous displacements at the micro-scale,
see also Woźniak [155].

In this chapter, the boundary layer approach is used to derive equations
governing the deformation in the subsurface layer in the limit of ε = l/L →
0, where l is the characteristic dimension of the inhomogeneities, e.g. the
characteristic dimension of roughness, and L is the characteristic dimension
of the macroscopic contact zone, cf. Fig. 4.1. The resulting boundary value
problem of the boundary layer is formulated for a half-space subjected to
some periodic loading, e.g. surface traction, contact interaction, etc. In fact,
the available micromechanical models of asperity interaction are often based
on the analysis of a half-space with a periodic arrangement of asperities, e.g.
Avitzur and Nakamura [5], Sutcliffe [138], Wanheim et al. [147], Wilson and
Sheu [153], and many others. In all those cases, the simplified problem
of a rough half-space is introduced in an intuitive way. The boundary
layer analysis presented below allows derivation of the governing equations
in a more rigorous way, and, importantly, provides the framework for the
analysis of effects of macroscopic stresses and strains, which is carried out
in Chapters 5 and 6.

The boundary layer analysis is a classical approach within the field of
micromechanics and homogenization of heterogeneous materials, see, for in-
stance, Sanchez-Palencia [118], Pruchnicki [100], Luciano and Willis [75]. In
composite materials, the boundary layers appear because the micro-periodic
solutions, predicted by the homogenization theory, are not valid in the vicin-
ity of the boundaries. This is because the micro-periodic solutions satisfy
the boundary conditions only in an average sense, and, secondly, the as-
sumption of periodicity in the direction normal to the boundary is no longer
valid. These effects are accounted for by considering additional correction
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terms in the mechanical fields in the vicinity of boundaries and edges.
A different application of the boundary layer analysis is presented in

this chapter. Boundary layers are considered, which are induced in homoge-
neous bodies subjected to micro-inhomogeneous boundary conditions, as, for
instance, in the case of contact of rough bodies. The formalism of boundary
layer analysis, adopted below, is based on that of Sanchez-Palencia [118].

The content of the present chapter is the following. Boundary layers as-
sociated with a micro-inhomogeneous prescribed surface traction are intro-
duced in Section 4.2. Next, in Section 4.3, the case of micro-inhomogeneous
prescribed displacements is briefly discussed. Finally, contact and friction
conditions are analyzed in Sections 4.4 and 4.5 for the case of a rough body
in contact with a smooth rigid obstacle.

4.2. Micro-inhomogeneous surface traction

4.2.1. Problem statement

Consider a homogeneous body occupying domain Ω, and assume that the
surface traction tb prescribed on the boundary Γt is micro-inhomogeneous.
By micro-inhomogeneity of tb we understand that it consists of a slowly
varying average field t̄b and its micro-periodic fluctuation t̃b. The wave-
length of the fluctuation field l is assumed small compared to the length
L of the boundary Γt and small compared to the overall dimensions of
the body. In order to keep the exposition and the notation as simple as
possible, the discussion in this chapter is restricted to a two-dimensional
elasticity problem—in order to fix the attention let us assume the plane
strain conditions.

The background boundary value problem is thus to find the displacement
field u(x) satisfying the following set of equations

div σ = 0, x ∈ Ω
σ = Le(u), x ∈ Ω
σn = tb, x ∈ Γt

u = ub, x ∈ Γu

(4.1)

where

e(u) =
1
2

[grad u + (grad u)T ] (4.2)



Boundary layers induced by micro-inhomogeneous boundary conditions 57

is the infinitesimal strain, n the unit outward normal, ub the prescribed
displacement, and the micro-periodic surface traction tb is given by

tb(ξ) = t̄b(ξ) + t̃b(ξ) = t̄b(ξ) + tb
a(ξ) p̃(ξ), (4.3)

where ξ ∈ (0, L) is the macroscopic arc-length parameter that parameterizes
the boundary Γt. The local average t̄b(ξ) and the local amplitude tb

a(ξ) of
the traction tb are slowly varying functions while p̃(ξ) is a periodic, purely
oscillating function,

p̃(ξ) = p̃(ξ + l),
∫ ξ+l

ξ

p̃(ξ′)dξ′ = 0. (4.4)

As the material is assumed to be homogeneous, the elastic stiffness tensor
L does not depend on the position within Ω.

Direct solution of the problem defined above, e.g. by the finite element
method, may be difficult or even impossible because of the two scales in-
volved, so that discretization accounting for the fluctuations of surface trac-
tion would be prohibitively fine. As an alternative, the boundary layer
analysis can be carried out. The idea of this approach is briefly outlined
below.

By the Saint-Venant’s principle, inhomogeneity of deformation induced
by the micro-inhomogeneous boundary condition is confined to a thin sub-
surface layer along Γt, while the thickness of this layer is of the order of l,
the fluctuation period of tb.

The macroscopic problem, i.e. a boundary value problem corresponding
to the average, micro-homogeneous surface traction t̄b, can thus be posed.
However, the macroscopic stresses, following from the solution of the macro-
scopic problem, satisfy the micro-inhomogeneous boundary condition (4.1)3
of the background problem in the average only. A correction of the solu-
tion in the subsurface layer is thus necessary. Within the boundary layer
approach, this correction follows from the microscopic problem, which is
obtained by scaling the coordinates and then considering the form that the
equations take as ε = l/L tends to zero. The background problem with
micro-inhomogeneous surface traction is thus replaced by the macroscopic
problem with micro-homogeneous surface traction accompanied by the mi-
croscopic problem at each point x ∈ Γt, cf. Fig. 4.2. Importantly, the
microscopic problem is formulated for a simplified geometry, namely for a
periodically loaded half-space. Details of the above scheme are provided in
subsequent sections.
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Figure 4.2. Boundary layers induced by micro-inhomogeneous boundary condi-

tions: the idea of the proposed approach.

The present approach is largely based on that of Sanchez-Palencia [118],
who analyzed boundary layers and edge effects in composites. Also, the
mathematical background of the asymptotic methods, which are extensively
used in the homogenization theory and which are a basic tool of the present
analysis, can be found in [118].

4.2.2. Macroscopic problem

Let us first formulate the macroscopic problem with the unknown macro-
scopic displacement field u0(x), viz.


div σh = 0, x ∈ Ω
σh = Le(u0), x ∈ Ω
σhn = t̄b, x ∈ Γt

u0 = ub, x ∈ Γu

(4.5)

which corresponds to the micro-homogeneous surface traction t̄b on Γt, and
σh(x) denotes the macroscopic stress.

Considering the background problem (4.1), solution u0(x) of the macro-
scopic problem (4.5) is not a solution of the background problem as the
boundary condition (4.1)3 is not satisfied by u0(x), though it is satisfied in
the average sense. Thus a boundary layer must appear along Γt with ex-
tra terms in the displacement field. The solution u0(x) of the macroscopic
problem (4.5) is thus valid everywhere within Ω, except in the vicinity of
boundary Γt.



Boundary layers induced by micro-inhomogeneous boundary conditions 59

0
y1

y3

V

S L

y− y +

Figure 4.3. Strip V —the unit cell for the boundary layer analysis.

4.2.3. Two-scale description and asymptotic expansions

In order to study the micro-inhomogeneous fields within the boundary layer,
two spatial variables are introduced in the usual spirit of the homogenization
theory: the macro variable x and the micro variable y, the latter is scaled
according to

y = x/ε, (4.6)

where ε = l/L � 1 is a small parameter.
Next, the asymptotic expansion of the displacement field is introduced

in the vicinity of the boundary Γt, the corresponding part of Ω is denoted
by Γ+

t , so that

uε(x) = u0(x) + εu1(x′, y) + O(ε2), x ∈ Γ+
t , x′ ∈ Γt, y ∈ V, (4.7)

where u1(x′, y) is the first-order boundary layer correction term, x′ is the
orthogonal projection1 of x onto Γt, and O(εn) is the classical order symbol,
so that f = O(εn) means that |f | < Aεn for some constant A. The micro
variable y runs in the strip V , cf. Fig. 4.3,

V = {(y1, y3): y1 ∈ (0, L); y3 ∈ (0, +∞)}, (4.8)

and it is represented in the intrinsic coordinate system with its y3-axis
normal to the boundary and directed inwards.

The displacement correction term u1 is V -periodic, i.e. periodic with
respect to y1 = η but not with respect to y3,

u1(x′, y−) = u1(x′, y+), (4.9)

1Regular boundaries are only considered, so that the projection is assumed to be
unique for points x in the vicinity of Γt.
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where y− = (0, y3) and y+ = (L, y3), cf. Fig. 4.3, and the period in the
micro variable y1 is L = l/ε. Accordingly, the expansion (4.7) is almost
periodic in the micro variable y1, cf. Sanchez-Palencia [118]. Furthermore,
the gradient of u1 with respect to the micro variable y vanishes far from
the boundary,

gradyu1 y3→+∞−→ 0, (4.10)

so that the expansion (4.7) matches the macroscopic field far in the micro
variable y from the boundary.

The asymptotic expansion for strain is obtained by taking the sym-
metrized gradient of the displacement field (4.7). When taking the spatial
derivatives of the fields that depend on the two spatial variables, as for exam-
ple u1(x′, y) does, the following rule1 is applied, cf. Sanchez-Palencia [118],

grad(·) = gradx(·) +
1
ε

grady(·). (4.11)

The asymptotic expansion of the strain field is thus

eε(x) = e0(x′, y) + εe1(x′, y) + O(ε2), (4.12)

where the leading term e0(x′, y) is given by

e0(x′, y) = ex(u0) + ey(u1), (4.13)

and e1(x′, y) = ex(u1) + ey(u2), where u2(x′, y) is the second-order cor-
rection term in (4.7). Here, ex and ey denote the strains in, respectively, x
and y variables,

ex(u) =
1
2

[ gradxu + (gradxu)T ], ey(u) =
1
2

[ gradyu + (gradyu)T ].

(4.14)
The leading term e0 in the expansion of the strain field is thus a sum of
the the macroscopic strain ex(u0) and a correction term ey(u1) associated
with the displacement correction u1.

1Consider function f(x) defined by f(x) = g(x, y) with y = x/ε. The derivative of f
is then given by df/dx = ∂g/∂x + (1/ε) ∂g/∂y, cf. Eq. (4.11).
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The asymptotic expansion of the stress follows from the constitutive
equation σε = Leε, so that

σε(x) = σ0(x′, y) + εσ1(x′, y) + O(ε2), (4.15)

with
σ0(x′, y) = Le0(x′, y), σ1(x′, y) = Le1(x′, y). (4.16)

Finally, the equilibrium equation is evaluated for σε, namely

div σε = ε−1 divyσ0 + (divxσ0 + divyσ1) + O(ε) = 0. (4.17)

The micro-periodic prescribed traction tb, Eq. (4.3), can now be written
in the form

tb(ξ, η) = t̄b(ξ) + tb
a(ξ) p̃ε(η), (4.18)

where η = ξ/ε is the microscopic counterpart to the the macroscopic arc-
length parameter ξ, and p̃ε(η) = p̃(εη) is a periodic, purely fluctuating
function with the period L = l/ε. The boundary condition (4.1)3, expressed
in terms of σε, becomes thus

σ0(x′, y)n + εσ1(x′, y)n + O(ε2) = t̄b(ξ(x′)) + tb
a(ξ(x′)) p̃ε(η(y)), (4.19)

where y ∈ S and S is the microscopic representation of the boundary Γt,
cf. Fig. 4.3.

4.2.4. Microscopic problem

The equations of the boundary layer, i.e. the microscopic problem, are now
obtained by considering only the leading terms, i.e. the terms with the lowest
exponent of ε, of the governing equations (equilibrium equation, constitu-
tive equation, and boundary condition on Γt) evaluated in terms of uε, eε,
and σε. The resulting boundary value problem is to find a V -periodic dis-
placement correction term u1(x′, y) that satisfies condition (4.10) and the
following set of equations

divyσ0 = 0, x′ ∈ Γt, y ∈ V

σ0 = L[ex(u0) + ey(u1)], x′ ∈ Γt, y ∈ V

σ0n = t̄b(ξ(x′)) + tb
a(ξ(x′)) p̃ε(η(y)), x′ ∈ Γt, y ∈ S

(4.20)
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Regardless of the shape of domain Ω, the microscopic problem (4.20) is
solved for a simple geometry, i.e. for a half-plane. Furthermore, due to V -
periodicity of u1, it is sufficient to consider only the strip V as a periodic
unit cell. At the same time, x′ ∈ Γt plays the role of parameter, and the
macroscopic strain ex(u0), determined by the macroscopic problem (4.5),
constitutes the input.

Remark 4.1 In view of the condition (4.10), the solution u1 is only defined
up to an additive vector (rigid translation).

Remark 4.2 The microscopic problem (4.20) can be written in a simpler
form by subtracting the constant macroscopic stress σh = Lex(u0) from
the microscopic stress σ0. However, here and in the subsequent sections,
we formulate the microscopic problem in terms of the total microscopic
stress σ0 because of its direct physical meaning in the case of contact and
friction conditions studied in Sections 4.4 and 4.5.

4.2.5. Average stress in the boundary layer

Let us introduce the following averaging operation

〈ϕ〉(x′, y3) =
1
L

∫ L

0

ϕ(x′, y) dy1, (4.21)

which averages an arbitrary field ϕ(x′, y) over the period L = l/ε at a fixed
distance y3 from the boundary.

Consider now the average of the equilibrium equation (4.20)1, namely

0 = 〈divyσ0〉 = divy〈σ0〉 =
d

dy3
(〈σ0〉n), (4.22)

where the last transformation is due to the fact that 〈σ0〉(x′, y3) depends
only on y3. In view of (4.22), (4.20)3, and (4.5)3, we conclude that

〈σ0〉n = σhn = t̄b(ξ) = const(ξ), (4.23)

which also means that, at fixed x′ ∈ Γt, the exterior part of the average
stress 〈σ0〉(x′, y3) is constant, i.e. it does not depend on y3,

〈σ0〉A = σh
A = const(ξ). (4.24)
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Conditions (4.23) and (4.24) will prove useful in the case of contact bound-
ary layers, considered below, and are also discussed in more detail in Chap-
ter 5.

4.3. Micro-periodic prescribed displacement

For completeness, let us briefly discuss the boundary value problem defined
by equations (4.1) with a micro-periodic displacement ub prescribed on Γu,

ub(ξ) = ūb(ξ) + ub
a(ξ)p̃(ξ), (4.25)

where p̃(ξ) is a l-periodic, purely oscillating function. Introducing the macro
and micro spatial variables the prescribed displacement can be rewritten in
the form

ub(ξ, η) = ūb(ξ) + εub
a(ξ)p̃ε(η), (4.26)

where, similarly to the case of micro-periodic surface tractions, ξ ∈ (0, L)
and η = ξ/ε parameterize the boundary Γu, ūb(ξ) and ub

a(ξ) are, respec-
tively, the average and the amplitude, both slowly varying functions, and
p̃ε(η) = (1/ε)p̃(ξ/ε) is a L-periodic, purely oscillating function. Note that,
in order to keep the strains in the boundary layer bounded, the oscillating
term in the prescribed displacement ub is now scaled by ε, cf. Eq. (4.26).

The macroscopic problem is obtained by prescribing micro-homogeneous
displacement ūb on Γu, namely

div σh = 0, x ∈ Ω
σh = Le(u0), x ∈ Ω
σhn = tb, x ∈ Γt

u0 = ūb, x ∈ Γu

(4.27)

which is solved for the unknown macroscopic displacement field u0(x).
Again, the solution of this problem is valid everywhere within Ω, except
in the vicinity of boundary Γu.

The asymptotic expansion of the displacement field in the vicinity of
the boundary Γu is given by (4.7) with Γt and Γ+

t replaced by Γu and Γ+
u ,

respectively. The correction term u1(x′, y) is V -periodic, and its gradient
vanishes far from the boundary, cf. Eq. (4.10). However, in the present case,
the boundary condition on Γu, uε = ub, uniquely defines the correction term
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along the boundary,

u1(x′, y) = ub
a(ξ(x′)) p̃ε(η(y)), x′ ∈ Γu, y ∈ S (4.28)

in contrast to the case of micro-inhomogeneous tractions, where the correc-
tion term is defined up to an additive vector, cf. Remark 4.1.

Following the procedure outlined in Section 4.2, the following micro-
scopic problem is obtained: find a V -periodic displacement correction term
u1(x′, y) that satisfies condition (4.10) and the set of equations

divyσ0 = 0, x′ ∈ Γu, y ∈ V

σ0 = L[ex(u0) + ey(u1)], x′ ∈ Γu, y ∈ V

u1(x′, y) = ub
a(ξ(x′)) p̃ε(η(y)), x′ ∈ Γu, y ∈ S

(4.29)

Again, this problem is parameterized by x′ ∈ Γu and ex(u0) is the input
known from the macroscopic problem (4.27).

4.4. Frictionless contact with a rigid obstacle

4.4.1. Problem statement

Consider now the problem of an elastic body in contact with a rigid obstacle,
Fig. 4.4(a). The body occupies domain Ωr, and the potential contact sur-
face Γr is assumed to be rough (i.e. micro-undulated). We will also consider
the nominal (smooth) contact surface Γn which is a part of the boundary
of the corresponding smooth domain Ωn, cf. Fig. 4.4(b). In the present
context, “smoothness” refers to the lack of roughness, while a rough (i.e.
non-smooth) surface may be smooth in the mathematical sense (i.e. contin-
uous and differentiable).

Let the equation of the nominal contact surface Γn be denoted by x̂n(ξ),

Γn = {x: x = x̂n(ξ); ξ ∈ (0, L)}, (4.30)

and the equation of the actual rough contact surface Γr by x̂r(ξ),

Γr = {x: x = x̂r(ξ); ξ ∈ (0, L)}, x̂r(ξ) = x̂n(ξ)− p̃(ξ) n(ξ), (4.31)

where n(ξ) is the unit outward normal to Γn and

p̃(ξ) ≥ 0, p̃(ξ) = p̃(ξ + l), P0 = {ξ: p̃(ξ) = 0} 6= Ø. (4.32)
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Figure 4.4. Contact of a rough body Ωr with a smooth and rigid obstacle Γ0:

(a) rough contact surface Γr and (b) smooth nominal contact surface Γn with the

corresponding domain Ωn.

Here, p̃(ξ) is a non-negative, l-periodic function, and P0 is a non-empty set
of points ξ at which p̃(ξ) = 0. Thus, in the present setting, the nominal
surface Γn is an outer envelope of the rough surface Γr, and Ωr ⊂ Ωn.
Finally, the rigid obstacle is represented by surface Γ0,

Γ0 = {x: x = x̂0(ξ); ξ ∈ (0, L)}, x̂0(ξ) = x̂n(ξ) + g0(ξ) n(ξ), (4.33)

where g0(ξ) is the initial normal gap between the obstacle Γ0 and the nom-
inal contact surface Γn.

We assume that the displacements are small. Accordingly, in the poten-
tial contact zone, the difference between the unit vectors normal to surfaces
Γr, Γn, and Γ0 is neglected. The normal gap gN in the deformed state is
thus defined by

gN(ξ) = [x̂0(ξ)− x̂r(ξ)− u(x̂r(ξ))] · n(ξ)

= g0(ξ) + p̃(ξ)− u(x̂r(ξ)) · n(ξ), (4.34)

and the normal contact traction tN(ξ) is defined by

tN(ξ) = n(ξ) · σ(x̂r(ξ))n(ξ). (4.35)

In the case of frictionless contact, we have additionally tT = τ · σn = 0
and σn = tNn, where τ is the unit vector tangential to the nominal contact
surface Γn.

The normal gap gN and the contact traction tN are related by the uni-
lateral contact (impenetrability) condition which can be written in the form
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of the classical Signorini condition

gN ≥ 0, tN ≤ 0, gNtN = 0. (4.36)

Accordingly, three contact states can be distinguished:

i. separation: gN > 0, tN = 0,

ii. contact: gN = 0, tN < 0,

iii. grazing contact: gN = 0, tN = 0.

The boundary value problem of frictionless contact of the rough body,
the background problem, is to find displacement field u(x), x ∈ Ωr, satisfying

div σ = 0, x ∈ Ωr

σ = Le(u), x ∈ Ωr

σn = tb, x ∈ Γt

u = ub, x ∈ Γu

σn = tNn + tTτ , x ∈ Γr

gN ≥ 0, tN ≤ 0, gNtN = 0, x ∈ Γr

tT = 0, x ∈ Γr

(4.37)

4.4.2. Macroscopic problem

The macroscopic problem is obtained by replacing the rough surface Γr with
the smooth nominal surface Γn. The problem is defined on the correspond-
ing (smooth) domain Ωn, namely

div σh = 0, x ∈ Ωn

σh = Le(u0), x ∈ Ωn

σhn = tb, x ∈ Γt

u0 = ub, x ∈ Γu

σhn = thNn + thTτ , x ∈ Γn

gh
N ≥ 0, thN ≤ 0, gh

NthN = 0, x ∈ Γn

thT = 0, x ∈ Γn

(4.38)

where u0(x), x ∈ Ωn, is the unknown macroscopic displacement. The com-
ponents of the macroscopic contact traction th = thNn + thTτ are given by

thN = n · σhn, thT = τ · σhn (4.39)
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Finally, the macroscopic normal gap gh
N is defined by

gh
N(ξ) = [x̂0(ξ)− x̂n(ξ)− u0(x̂n(ξ))] · n(ξ)

= g0(ξ)− u0(x̂n(ξ)) · n(ξ). (4.40)

4.4.3. Asymptotic expansions

Introducing the small parameter ε = l/L � 1, and the micro variable
η = ξ/ε, the function describing the micro-periodically undulated contact
surface Γr can be rewritten in the form

x̂r(ξ, η) = x̂n(ξ)− εp̃ε(η) n(ξ), p̃ε(η) = p̃(εη)/ε. (4.41)

According to (4.41)2, the roughness is scaled with ε homothetically, i.e. the
ratio of asperity height and spacing is preserved.

The asymptotic expansion of the displacement field in the vicinity of the
boundary Γr is next introduced,

uε(x) = u0(x) + εu1(x′, y) + O(ε2), x ∈ Γ+
r , x′ ∈ Γn, y ∈ V, (4.42)

where x′ is the orthogonal projection of x onto the nominal contact sur-
face Γn, and Γ+

r denotes the vicinity of Γr. Although the domains of the
background problem (4.37) and of the macroscopic problem (4.38), Ωr and
Ωn, respectively, are different, the expansion (4.42) is well defined for all
x ∈ Γ+

r , because Ωr ⊂ Ωn.
The correction term u1(x′, y) is V -periodic, and its gradient vanishes

far from the surface, cf. Eq. (4.10). The strip V , see Fig. 4.5, is now defined
by

V = {(y1, y3): y1 = η; y3 ≥ p̃ε(η); η ∈ (0, L)}, (4.43)

and the undulated surface Sr, i.e. the contact surface at the micro-scale, is
given by

Sr = {(y1, y3): y1 = η; y3 = p̃ε(η); η ∈ (0, L)}. (4.44)

The asymptotic expansion of the normal gap function gN(ξ) is obtained
by combining (4.42) and (4.34), namely

gε
N(ξ) = g0

N(ξ) + εg1
N(ξ, η) + O(ε2), (4.45)
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Figure 4.5. Strip V —the unit cell of the rough boundary layer.

where

g0
N(ξ) = g0(ξ)− u0(x̂n(ξ)) · n(ξ), (4.46)

g1
N(ξ, η) = p̃ε(η)− u1(x̂n(ξ), ŷr(η)) · n(ξ), (4.47)

and ŷr(η) is the parametric representation of surface Sr. Comparing (4.46)
and (4.40), we notice that

g0
N(ξ) = gh

N(ξ). (4.48)

In fact, g0
N(ξ) is the gap between the nominal microscopic contact surface

Sn and plane S0, parallel to Sn, which represents the rigid obstacle Γ0 at
the micro scale, cf. Fig. 4.5.

The expansion of the contact traction follows from the expansion of the
stress, Eq. (4.15), namely

tεN(ξ) = t0N(ξ, η) + εt1N(ξ, η) + O(ε2), (4.49)

where
t0N(ξ, η) = n(ξ) · σ0(x̂n(ξ), ŷr(η))n(ξ). (4.50)

In view of the impenetrability condition (4.38)6 at the macro scale, the
potential contact surface Γn is divided into the macroscopic contact zone
(with thN < 0) and the macroscopic separation zone (with gh

N > 0). Below,
it is shown that the boundary layer equations are different within these two
zones. It is also shown that, in the present context, the points of macroscopic
grazing contact can be included into the separation zone.
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4.4.4. Macroscopic contact zone

In the macroscopic contact zone, the macroscopic normal gap is equal to
zero, gh

N = 0, and in view of (4.45)–(4.48) we have

gε
N(ξ) = εg1

N(ξ, η) + O(ε2), (4.51)

so that now g1
N constitutes the leading term of gε

N. The microscopic unilat-
eral contact condition takes thus the form

g1
N(ξ, η) ≥ 0, t0N(ξ, η) ≤ 0, g1

N(ξ, η) t0N(ξ, η) = 0, (4.52)

with g1
N and t0N given by (4.47) and (4.50), respectively.

The microscopic problem is thus specified by the following set of equa-
tions 

divyσ0 = 0, x′ ∈ Γn, y ∈ V

σ0 = L[ex(u0) + ey(u1)], x′ ∈ Γn, y ∈ V

σ0n = t0Nn, x′ ∈ Γn, y ∈ Sr

g1
N ≥ 0, t0N ≤ 0, g1

Nt0N = 0, x′ ∈ Γn, y ∈ Sr

(4.53)

with unknown displacement u1(x′, y) which is a V -periodic correction term
satisfying (4.10). As pointed out in Section 4.2, in the case of micro-
inhomogeneous traction, the displacement correction term u1 is only defined
up to an additive vector. In the present case, the normal component of u1,
which affects the normal gap g1

N, is constrained by the requirement that
the average contact pressure at the micro-scale is equal to the macroscopic
contact pressure,

〈t0N〉(ξ) = thN(ξ). (4.54)

As a result, the solution u1 is defined up to an additive vector tangential to
the nominal contact surface, as the contact condition (4.53)4 is not sensitive
to tangential displacements, cf. Eq. (4.47).

Note that constraint (4.54) need not be enforced separately, since, from
(4.10) and (4.53)2, it follows that σ0(x′, y) → σh(x′) as y3 →∞, and then
condition (4.54) follows from (4.23) and (4.39).

Solution of the microscopic problem (4.53) divides the microscopic con-
tact surface Sr into microscopic separation and contact zones. In contact
mechanics, the latter is usually referred to as the real area of contact, and
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is characterized by the real contact area fraction α,

α(ξ) =
1
L

∫ L

0

I(g1
N(ξ, η)) dη, I(g1

N) =
{

1 if g1
N = 0,

0 if g1
N > 0,

(4.55)

i.e. the ratio of the area of microscopic contact zones to the area of the
nominal contact surface Sn. By definition 0 ≤ α ≤ 1.

4.4.5. Macroscopic separation zone

In the macroscopic separation zone, the macroscopic gap is greater than
zero, gh

N = g0
N > 0. This implies that for ε → 0 separation occurs also at

the micro scale, cf. Eq. (4.45), so that the unilateral contact conditions are
automatically satisfied.

Accordingly, the microscopic problem is a purely elastic problem of equi-
librium of strip V with zero surface traction prescribed on Sr. The problem
is thus to find a V -periodic displacement u1(x′, y) satisfying (4.10) and


divyσ0 = 0, x′ ∈ Γn, y ∈ V

σ0 = L[ex(u0) + ey(u1)], x′ ∈ Γn, y ∈ V

σ0n = 0, x′ ∈ Γn, y ∈ Sr

(4.56)

where, consistently with the adopted assumptions, the difference between
nr, the local normal to Sr, and n has been neglected. The solution, u1, is
only defined up to an additive vector, as in the case of micro-inhomogeneous
surface traction, Section 4.2.

From the point of view of the present boundary layer analysis, the points
of macroscopic grazing contact (i.e. such that gh

N = 0 and thN = 0) do not
require separate treatment, and the boundary layer equations (4.56) of the
macroscopic separation zone apply also in that case. Indeed, in view of
the no-tension condition, t0N(ξ, η) ≤ 0, condition of vanishing macroscopic
contact traction, thN(ξ) = 0, implies that the microscopic contact traction
vanishes along Sr, i.e. t0N(ξ, η) = 0 for all η, and this implies boundary
condition (4.56)3.
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4.5. Frictional contact

4.5.1. Problem statement

Let us finally consider the case of frictional contact. Since friction is a path-
dependent phenomenon, the displacement must be considered as a function
of time t. The discussion below is restricted to the case of rate-independent
friction laws, so that t stands for any time-like parameter, e.g. the load
multiplier. Moreover, the changes in time are assumed sufficiently slow for
the inertia forces to be neglected (quasi-static problem).

The friction law relates the sliding velocity ġT and the friction stress tT.
The sliding velocity ġT is the tangential component of the relative velocity
at the contact point,

ġT(ξ, t) = −u̇(x̂r(ξ), t) · τ (ξ), (4.57)

where u̇(x, t) = ∂u/∂t is the velocity of a point x ∈ Ωr, and τ is the unit
vector tangential to the nominal contact surface Γn. For simplicity, the
velocity of the obstacle is assumed to be equal to zero. The friction stress
tT is the tangential component of the contact traction vector t, so that

t = σn = tNn + tTτ , tT = τ · σn. (4.58)

Both definitions (4.57) and (4.58) rely on the assumption that the displace-
ments are small.

The boundary value problem of quasi-static frictional contact is to find
the displacement field u(x, t), x ∈ Ωr, t ∈ (0, T ), satisfying equations of the
frictionless contact problem (4.37) with the condition tT = 0, Eq. (4.37)7,
replaced by the following friction law

|tT| ≤ τs if gN = 0, ġT = 0
tT = τs sign(ġT) if gN = 0, ġT 6= 0
tT = 0 if gN > 0

 on Γr (4.59)

where τs is the threshold friction stress.
Since the friction law relates the friction stress and the velocity u̇, cf.

Eq. (4.57), the resulting boundary value problem is, in fact, a rate problem.
Thus, given the solution in the time interval (0, t), the rate u̇(x, t) is to be
found by solving the rate form of the governing equations (4.37) and (4.59).
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The detailed form of the rate equations is omitted here, and can be found,
for example, in Klarbring [60].

To fix the attention, we assume that the threshold friction stress τs

is the sum of the classical Coulomb friction component, with the friction
coefficient µ ≥ 0, and the adhesive friction component τa ≥ 0, namely

τs = τa + µ|tN| = τa − µtN ≥ 0. (4.60)

A purely adhesive friction law is obtained for µ = 0, and the Coulomb law
is recovered for τa = 0. The Coulomb-like component may be regarded
as a representation of frictional interactions at the scale smaller than the
micro-scale in the present analysis.

4.5.2. Macroscopic problem

As in the frictionless case, the macroscopic problem corresponds to the nom-
inal contact surface Γn and to the associated domain Ωn. The unknown is
the displacement field u0 = u0(x, t), x ∈ Ωn, t ∈ (0, T ), which satisfies
equations (4.38) with condition (4.38)7 replaced by the macroscopic friction
law

|thT| ≤ τh
s if gh

N = 0, ġh
T = 0

thT = τh
s sign(ġh

T) if gh
N = 0, ġh

T 6= 0
thT = 0 if gh

N > 0

 on Γn, (4.61)

where τh
s is the macroscopic threshold friction stress. The macroscopic

sliding velocity and friction stress derive from (4.57) and (4.58), namely

ġh
T(ξ, t) = −u̇0(x̂n(ξ), t) · τ (ξ), (4.62)

and
thT(ξ, t) = τ (ξ) · σh(x̂n(ξ), t)n(ξ). (4.63)

Because of the friction law (4.61), the macroscopic problem is a rate bound-
ary value problem.

Let us anticipate a result obtained in Sections 4.5.4 and 4.5.5 below. Due
to the particular form (4.60) of the friction law, the macroscopic threshold
friction stress τh

s depends on the solution of the microscopic problem, and
is given by

τh
s = ατa − µthN, (4.64)
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where α is the fraction of the real contact area, cf. Eq. (4.55). As a result,
the macroscopic problem is coupled with the microscopic one, so that both
problems must be solved in parallel. This is in contrast to the cases discussed
in the previous sections, where the macroscopic problem can be solved by
assuming homogeneous boundary or contact conditions without referring to
the solution in the boundary layer.

4.5.3. Asymptotic expansions

Accounting for the time-dependence, the asymptotic expansion of the dis-
placement field in the vicinity of Γr is assumed in the form

uε(x, t) = u0(x, t)+εu1(x′, y, t)+O(ε2), x ∈ Γ+
r , x′ ∈ Γn, y ∈ V, (4.65)

where the correction term u1 is defined on the strip V . This implies the
following expansion of the velocity

u̇ε(x, t) = u̇0(x, t) + εu̇1(x′, y, t) + O(ε2), (4.66)

and from (4.57) the expansion of the sliding velocity is

ġε
T(ξ, t) = ġ0

T(ξ, t) + εġ1
T(ξ, η, t) + O(ε2), (4.67)

where

ġ0
T(ξ) = −u0(x̂n(ξ)) · τ (ξ), (4.68)

ġ1
T(ξ, η) = −u1(x̂n(ξ), ŷr(η)) · τ (ξ). (4.69)

As in the case of the normal gap, cf. Eq. (4.48), we have

ġ0
T(ξ) = ġh

T(ξ). (4.70)

The expansion of the friction stress follows from (4.15) and (4.58), viz.

tεT(ξ) = t0T(ξ, η) + εt1T(ξ, η) + O(ε2), (4.71)

where
t0T(ξ, η) = τ (ξ) · σ0(x̂n(ξ), ŷr(η))n(ξ). (4.72)
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As discussed in Section 4.4, the potential nominal contact surface Γn is
divided into macroscopic contact and separation zones. In the case of fric-
tional contact, the macroscopic contact zone is further divided into macro-
scopic sliding and sticking zones. The corresponding boundary layer equa-
tions are discussed below. The macroscopic separation zone does not require
separate analysis, as the discussion of Section 4.4.5 fully applies also in the
present case.

4.5.4. Macroscopic sliding zone

The macroscopic sliding zone is a part of the macroscopic contact zone with
non-zero sliding velocity, ġh

T 6= 0. Thus, in view of (4.67) and (4.70), in the
macroscopic sliding zone, we have ġε

T 6= 0 for ε → 0, and sliding occurs at
all the points of the microscopic contact zone.

The microscopic problem is thus obtained by combining the boundary
layer equations (4.53) of the frictionless case with the condition of sliding
friction, namely

divyσ0 = 0, x′ ∈ Γn, y ∈ V

σ0 = L[ex(u0) + ey(u1)], x′ ∈ Γn, y ∈ V

σ0n = t0Nn + t0Tτ , x′ ∈ Γn, y ∈ Sr

g1
N ≥ 0, t0N ≤ 0, g1

Nt0N = 0, x′ ∈ Γn, y ∈ Sr

t0T =
{

τ0
s sign(ġh

T) if g1
N = 0

0 if g1
N > 0

x′ ∈ Γn, y ∈ Sr

(4.73)

where
τ0
s (ξ, η) = τa − µt0N(ξ, η). (4.74)

The unknown in (4.73) is a V -periodic displacement correction u1(x′, y)
satisfying (4.10). Since the sliding velocity is determined by the macroscopic
problem, the boundary value problem (4.73) is not a rate problem. As in the
frictionless case, the normal component of u1 is constrained by the unilateral
contact condition (4.73)4, while neither the unilateral contact condition nor
the friction condition (4.73)5 are sensitive to the tangential component of
u1. Thus, the solution u1 is defined up to an additive vector tangential to
the nominal contact surface.

By an argument similar to that justifying (4.54) we have

〈t0N〉(ξ) = thN(ξ), 〈t0T〉(ξ) = thT(ξ), (4.75)
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and the macroscopic threshold friction stress τh
s can be obtained from (4.74)

and (4.75), namely

thT = 〈t0T〉 = (ατa − µthN) sign(ġh
T) = τh

s sign(ġh
T). (4.76)

The macroscopic friction law (4.61) and the expression (4.64) for the macro-
scopic friction stress τh

s are thus verified in the case of macroscopic sliding,
ġh
T 6= 0.

4.5.5. Macroscopic sticking zone

The macroscopic sticking zone is characterized by ġh
T = ġ0

T = 0, so that

ġε
T(ξ, t) = εġ1

T(ξ, η, t) + O(ε2), (4.77)

and ġ1
T is now the leading term of ġε

T.
The microscopic problem is thus specified by the following equations

divyσ0 = 0, x′ ∈ Γn, y ∈ V

σ0 = L[ex(u0) + ey(u1)], x′ ∈ Γn, y ∈ V

σ0n = t0Nn + t0Tτ , x′ ∈ Γn, y ∈ Sr

g1
N ≥ 0, t0N ≤ 0, g1

Nt0N = 0, x′ ∈ Γn, y ∈ Sr

|t0T| ≤ τ0
s if g1

N = 0, ġ1
T = 0

t0T = τ0
s sign(ġ1

T) if g1
N = 0, ġ1

T 6= 0

t0T = 0 if g1
N > 0

 x′ ∈ Γn, y ∈ Sr

(4.78)

with u1(x′, y, t) as the unknown V -periodic displacement correction term
satisfying (4.10). The friction condition (4.78)5 relates the leading terms of
the microscopic friction stress t0T and sliding velocity ġ1

T, and τ0
s is given by

(4.74). Thus the boundary value problem (4.78) is a rate problem. Because
both the normal component and the tangential component of the velocity
u̇1 affect the contact and friction conditions, equations (4.75) enforce a
constraint on u̇1. Thus, in the macroscopic sticking zone, the solution u̇1 is
uniquely defined by the boundary layer equations (4.78).

The macroscopic friction stress thT has to be specified from the solution
of the microscopic problem (4.78). It can easily be checked that the average
microscopic friction stress satisfies the following inequality

− (ατa − µ〈t0N〉) ≤ 〈t0T〉 ≤ ατa − µ〈t0N〉. (4.79)
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Thus, in view of (4.75), the macroscopic friction condition (4.61) with τh
s

specified by (4.64), is verified in the case of macroscopic sticking, ġh
T = 0.

4.6. Conclusions

In this chapter, a general methodology for the analysis of boundary layers
induced in linear elastic solids by micro-inhomogeneous boundary condi-
tions has been presented. In addition to the case of micro-inhomogeneous
traction and displacement boundary conditions, the consequences of enforc-
ing unilateral contact and friction conditions have been studied for a rough
body in contact with a smooth and rigid obstacle. The main results and con-
clusions following from the analysis in the present chapter are summarized
below.

1. The displacement in the boundary layer is formed by a macroscopic de-
formation u0(x) with a superimposed correction term u1(x′, y) which
is V -periodic, and its gradient vanishes far from the boundary. As a
result, the microscopic strain is the sum of the macroscopic strain,
ex(u0), and the strain associated with the displacement correction
term, ey(u1), cf. Eq. (4.13).

2. The microscopic problem of the boundary layer is formulated for a half-
space. However, in view of periodicity the strip V is the actual domain
(periodic unit cell) of the microscopic problem.

3. If the macroscopic friction stress depends on the solution of the mi-
croscopic problem, as, for instance, in the case of non-zero adhesive
friction component, the macroscopic problem and the microscopic one
are coupled and must be solved in parallel.

Otherwise, the macroscopic problem can be solved independently of
the microscopic problem. The microscopic problem is then, merely, a
post-processing task for which the solution of the macroscopic problem,
i.e. the macroscopic strain ex(u0), constitutes the input.

4. In the case of micro-inhomogeneous surface traction, the displacement
correction u1 in the boundary layer is only defined up to an additive
vector.

In the macroscopic contact zone, the unilateral contact condition en-
forces a constraint on the normal component of u1. Otherwise, in the
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macroscopic separation zone, the solution is defined up to an additive
vector.

In the case of frictional contact, the macroscopic contact zone is divided
into sticking and sliding zones. In the macroscopic sticking zone, the
microscopic problem is a rate problem, and the velocity u̇1 is fully
constrained. In the macroscopic sliding zone, the microscopic problem
is no longer a rate problem, and only the normal component of the
displacement correction u1 is then constrained.

Finally, the displacement correction term u1 is uniquely defined if a
micro-inhomogeneous displacement is prescribed.

As discussed in Point 3 above, in some cases the macroscopic problem
and the microscopic one are coupled, so that both problems must be solved
simultaneously. If the finite element method was used at both scales to solve
the corresponding boundary value problems, the resulting micromechanical
scheme would resemble that of the two-scale finite element method, see, for
instance, Feyel and Chaboche [31] and Kouznetsova et al. [67].

Alternatively, and this is a common approach in contact mechanics, the
analysis of a contact boundary layer can be carried out without referring to
a specific macroscopic problem. The effective properties of the contact layer
can then be obtained for some typical prescribed loading programs, e.g. by
prescribing contact tractions or relative motions of contacting surfaces. The
corresponding response of the boundary layer can then be used to derive
macroscopic contact laws. This approach is used also in this work, and
some examples of micromechanical analysis of contact boundary layers are
provided in Chapter 6.

If the Coulomb friction law is assumed to hold at the micro-scale (τa =
0), then the macroscopic friction law is also of Coulomb type with the
macroscopic friction coefficient equal to the microscopic one, cf. Eq. (4.64).
This result is obtained for an elastic body in contact with a smooth obsta-
cle. Clearly, if these two assumptions were dropped, then the macroscopic
friction coefficient would not necessarily be equal to the microscopic one.
Moreover, it might depend on the normal contact pressure, cf. the analysis
of asperity ploughing in Section 6.3.

With the aim of keeping the notation and the exposition as simple as
possible, the boundary layer analysis has been carried out in this chapter
for the simplified case of an elastic body in two-dimensions. The present
micromechanical framework is further developed in the next chapter for
a more general class of problems. In particular, the averaging procedure
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(4.21) is extensively used, and the properties of the corresponding averages
are studied.



Chapter 5

Micromechanics of boundary layers

Abstract A micromechanical framework is developed for the analysis of defor-

mation inhomogeneities within boundary layers. The main idea is to average the

inhomogeneous fields along the surface, but to preserve the dependence of the

averages on the distance from the surface. Several properties of such averages are

derived. Finally, the analysis of the boundary layer induced in an elastic body by

a sinusoidal fluctuation of surface traction is provided as an illustrative example

for which analytical solution exists.

5.1. Preliminaries

The present chapter is devoted to micromechanical analysis of boundary
layers. The focus is on the microscopic problem of the boundary layer,
the macroscopic problem is only referred to as a source of the macroscopic
strain. Based on the experience gained in Chapter 4, the equations govern-
ing the microscopic problem corresponding to a three-dimensional elasto-
plastic body subjected to micro-periodic surface traction1 are anticipated
without detailed derivation. A special averaging operation is also intro-
duced as a basic tool of the present micromechanical analysis, and several
properties of boundary layer fields are derived. Finally, in order to illustrate
the approach, a simple example of the boundary layer induced in an elastic
body by a sinusoidal fluctuation of surface traction is analyzed.

Two results of the boundary layer analysis of Chapter 4 are of particular
importance. Firstly, the microscopic boundary value problem is analyzed in
a simplified geometry, namely in the half-space, and, in view of periodicity,
it is sufficient to consider only the strip V as a unit cell. This is very natu-
ral and has been intuitively assumed in numerous micromechanical studies

1For brevity, the formulations corresponding to the case of prescribed micro-periodic
displacement and to the case of contact interaction with rigid obstacle are not discussed
in this chapter.
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of asperity interaction, as already mentioned in Section 4.1. The second
result, namely the form of the displacement and strain fields within the
boundary layer is less obvious. It provides the link between the macro- and
the micro-scale, and thus it enables the analysis of the interaction between
the phenomena at the two scales.

In the subsequent sections, the boundary layer equations derived in
Chapter 4 are rewritten using a simpler and more natural notation, which
is also consistent with the notation used throughout the major part of this
thesis. The analysis is carried out in the scaled spatial variable y = x/ε, and
the boundary layer correction of displacement, corresponding to u1(x′, y)
in Chapter 4 and denoted here by w(y), is also a scaled displacement—the
physical displacement is obtained by multiplying the boundary layer cor-
rection by ε, cf. Eq. (4.7). Furthermore, the dependencies on the spatial
macro variable x are not accounted for, and these dependencies are omitted
in the present simplified notation. The spatial derivatives are taken directly
by differentiating the fields with respect to y, thus the special rule (4.11),
applicable in the case of two-scale analysis, is not used. For instance, the in-
finitesimal strain associated with a scaled displacement field u(y) is simply
the symmetrized gradient with respect to y,

e(u) =
1
2

[grad u + (grad u)T ]. (5.1)

Finally, only the leading terms are accounted for, and thus the superscripts
indexing the terms of the asymptotic expansions are dropped. The symbols
used in the present chapter, and also in Chapter 6, are listed in Table 5.1
together with the equivalent symbols of Chapter 4.

As shown in Chapter 4, the microscopic problem is a boundary value
problem of a homogeneous half-space subjected to a periodic loading on
the boundary. Consider thus a half-space in the intrinsic coordinate system
such that the boundary surface is given by y3 = 0 and the y3-axis is directed
into the half-space. Further, denote by S the unit surface element within
the (y1, y2)-plane and by η = (y1, y2) the position within the (y1, y2)-plane.
A function f(η) will be called S-periodic if

f(η+) = f(η−), η+ ∈ ∂S+, η− ∈ ∂S−, (5.2)

where, the boundary ∂S is divided into two parts, ∂S+ and ∂S−, and
η+ ∈ ∂S+ and η− ∈ ∂S− are two associated points with opposite outward
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Table 5.1. Correspondence between the simplified notation used in the present

chapter and the notation of Chapter 4.

Notation of Simplified Description
Chapter 4 notation

u1(x′,y) w(y) displacement correction in the boundary layer
e0(x′,y) ε(y) microscopic strain
ex(u0) E macroscopic strain
ey(u1) e(w) strain due to displacement correction

σ0(x′,y) σ(y) microscopic stress

σh(x) Σ macroscopic stress
divyσ0 = 0 div σ = 0 equilibrium equation
t0, t0N, t0T t, tN, tT microscopic contact tractions

th, thN, thT T, TN, TT macroscopic contact tractions

y1

y3

y2

n

V

y+y−

y1

y2

S

−ηη ηη+

Figure 5.1. Unit surface element S and strip V in three-dimensional case.

normals, cf. Fig. 5.1. The unit surface element S defines the unit element
of the half-space, namely the half-infinite strip V , cf. Fig. 5.1,

V = {y = (η, y3): y3 ≥ 0, η ∈ S}. (5.3)

A function f(y) defined on the strip V will be called V -periodic if

f(y+) = f(y−), y+ = (η+, y3), y− = (η−, y3). (5.4)
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5.2. Averaging and micromechanical relations

5.2.1. Averaging operation

Let us define an averaging operation over the unit surface element S, which,
for a field ϕ(y), y ∈ V , introduces the average ϕ̄(y3), corresponding to a
fixed distance y3 from the boundary y3 = 0, and the fluctuation ϕ̃(y),
namely

ϕ(y) = ϕ̄(y3) + ϕ̃(y), ϕ̄ = 〈ϕ〉, 〈ϕ̃〉 = 0, (5.5)

where

〈ϕ〉(y3) ≡ 1
|S|

∫
S

ϕ(η, y3) dS, |S| =
∫

S

dS, (5.6)

see also Section 4.2.5.
Consider also a slice Vh(y′3) of thickness h > 0, positioned at y3 = y′3,

so that y′3 ≤ y3 ≤ y′3 + h, and introduce a volume average within Vh(y′3),
defined by

{ϕ}h(y′3) ≡ 1
h|S|

∫
Vh(y′3)

ϕ(y) dV =
1

h|S|

∫ y′3+h

y′3

∫
S

ϕ(η, y3) dS dy3. (5.7)

Hence in the limit,
〈ϕ〉(y3) = lim

h→0
{ϕ}h(y3). (5.8)

5.2.2. Kinematically admissible displacement field

As shown in Section 4.2, the strain in the boundary layer (the leading term
of the asymptotic expansion) is a sum of the macroscopic strain and the
strain associated with the displacement correction, cf. Eq. (4.12)–(4.13). In
the present notation this is written as

ε(y) = E + e(w(y)), (5.9)

where E is the macroscopic strain, w(y) is the V -periodic displacement cor-
rection, and e(w) is the strain component associated with the displacement
correction w(y), cf. Eq. (5.1).

Referring to the boundary layer analysis of Chapter 4, the displace-
ment field w(y) is a boundary layer correction superimposed on the micro-
homogeneous macroscopic displacement field. However, the macroscopic
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displacement affects the microscopic problem only through the macroscopic
strain E. Accordingly, for the present purpose, the total displacement u(y)
within the boundary layer can be formed by considering only the linear term
of the macroscopic displacement, namely

u(y) = u0 + Hy + w(y), (5.10)

where
H = E + Ω, Ω = −ΩT . (5.11)

Here u0 is an arbitrary vector, and Ω is an arbitrary antisymmetric tensor
associated with rigid body rotation, see also Remark 5.1. The analogous
term related to w(y) is ruled out by V -periodicity of w(y). Clearly, the
strain ε(y) in the form specified by (5.9) derives from the displacement field
(5.10), so that

ε(y) = e(u). (5.12)

The boundary layer correction w(y), y ∈ V , will be called a kinemat-
ically admissible correction, and the displacement field u(y) of the form
(5.10) will be called a kinematically admissible displacement, if

i. w(y) is V -periodic,

ii. and its gradient vanishes far from the surface, cf. Eq. (4.10),

grad w(y)
y3→+∞−→ 0. (5.13)

It follows from (5.9) and (5.13) that the strain ε(y) = e(u) derived from
a kinematically admissible displacement u(y) satisfies

ε(y)
y3→+∞−→ E, (5.14)

i.e., far from the boundary, the strain ε(y) in the boundary layer matches
the macroscopic strain E.

Consider now the average strain ε̄(y3) in the boundary layer, which is
obtained by averaging ε(y), cf. Eq. (5.9), namely

ε̄(y3) = 〈ε〉(y3) = E + e(w̄(y3)). (5.15)
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Since w̄ depends only on y3, its derivatives with respect to y1 and y2 vanish.
Accordingly, e(w̄) can be expressed as a symmetrized diadic product,

e(w̄) = 1
2 (w̄,3 ⊗ n + n⊗ w̄,3), (5.16)

where w̄,3 = dw̄/dy3, and thus the interior part of e(w̄) vanishes, cf. Sec-
tion 2.2. This can be written in the form of the following compatibility
condition,

ε̄P(y3) = EP = const, (5.17)

which is a fundamental property of the kinematics of boundary layers.
Since w = w̄ + w̃, the strain fluctuation ε̃(y) is found to be the strain

derived from w̃(y), i.e. from the fluctuation of displacement correction w(y),

ε̃(y) = e(w̃(y)). (5.18)

Remark 5.1 The choice of Ω in (5.11) is arbitrary. However, in some
situations, e.g. in the case of contact boundary layers studied in Chapter 6,
it is convenient to assume Ω in the following form

Ω = (En)⊗ n− n⊗ (En), (5.19)

so that in terms of components we have

Hij =

 E11 E12 2E13

E12 E22 2E23

0 0 E33

 . (5.20)

Then, the part of the y3-displacement that is related to the macroscopic
strain E does not depend on y1 and y2. The corresponding deformation of
the strip V is schematically shown in Fig. 5.2.

5.2.3. Statically admissible stress field

A stress field σ(y) will be called statically admissible if

i. σ(y) satisfies the equilibrium equation within the strip V ,

div σ = 0; (5.21)
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u0 + Hy u0 + Hy + w̄(y3) u0 + Hy + w(y3)

Figure 5.2. Displacement field within the boundary layer (schematic).

ii. the surface tractions t± = σ±n± are anti-periodic,

σ(y+)n+ = −σ(y−)n−, y+ = (η+, y3), y− = (η−, y3), (5.22)

where n+ and n− = −n+ are outer normals to ∂V at, respectively, y+

and y−, and η+ ∈ ∂S+ and η− ∈ ∂S−;

iii. σ(y) satisfies the boundary condition at y3 = 0,

σ(y)n = tb(η) for y3 = 0, η ∈ S, (5.23)

where tb(η) is a prescribed S-periodic surface traction.

An important property of statically admissible stress fields has been
derived in Section 4.2, see Eq. (4.24). In the present notation, equation
(4.24), reads

σ̄A(y3) = ΣA = const, (5.24)

and expresses the overall equilibrium of the strip V or any slice Vh(y3).
Equation (5.24) can be equivalently written in the following form,

σ̄(y3)n = Σn = t̄b, (5.25)

as a counterpart to equation (4.23), where t̄b = 〈tb〉 is the average (macro-
scopic) surface traction.

By averaging the equilibrium equation (5.21), and by decomposing a
statically admissible stress field σ(y) into its average σ̄(y3) and fluctuation
σ̃(y), we observe that both fields are statically admissible. Indeed, we have

div σ̄ = 0, div σ̃ = 0, (5.26)
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the periodicity condition (5.22) is trivially satisfied by both σ̄ and σ̃, and
the boundary condition at y3 = 0 is satisfied in the following sense,

σ̄(y3)n = t̄b, σ̃(y)n = t̃b(η) for y3 = 0, η ∈ S, (5.27)

where tb(η) = t̄b + t̃b(η).

5.2.4. Compatibility conditions for averages

Let ∆σ and ∆ε denote the change of, respectively, stress and strain in the
boundary layer with respect to the corresponding macroscopic values, viz.

∆ε = ε−E, ∆σ = σ −Σ. (5.28)

The compatibility conditions for averages, specified by equations (5.17)
and (5.24), which hold for a kinematically admissible displacement field and
for a statically admissible stress field, respectively, can now be written in
the form

∆ε̄P = 0, ∆σ̄A = 0, (5.29)

or in an equivalent form

∆ε̄ = ∆ε̄A, ∆σ̄ = ∆σ̄P, (5.30)

where, in view of (5.16),

∆ε̄ = e(w̄) = 1
2 (w̄,3 ⊗ n + n⊗ w̄,3). (5.31)

Furthermore, the above compatibility conditions imply that ∆ε̄ and ∆σ̄ are
orthogonal, cf. the property (2.5) of the interior-exterior decomposition, so
that

∆σ̄ ·∆ε̄ = 0. (5.32)

We note that the compatibility conditions (5.29) and the orthogonality
condition (5.32) formulated for the average stress and strain in the boundary
layer are formally identical to the respective conditions that hold locally for
the jumps of stress and strain at a bonded interface, cf. Eq. (2.30) and
(2.31).
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5.2.5. Average work

Let us now consider the average work of a statically admissible stress σ(y)
on strain ε(y) derived from a kinematically admissible displacement u(y).
In view of 〈σ̄ · ε̃〉 = σ̄ · 〈ε̃〉 = 0 and 〈σ̃ · ε̄〉 = 〈σ̃〉 · ε̄ = 0, we have

〈σ · ε〉 = σ̄ · ε̄ + 〈σ̃ · ε̃〉. (5.33)

In order to evaluate the term 〈σ̃ · ε̃〉 in (5.33), we consider the weak
form of the equilibrium equation formulated for stress fluctuation σ̃(y). It
has been shown that, if a stress field σ(y) is statically admissible, so is its
fluctuation σ̃(y), cf. Eq. (5.26)2. Adopting w̃ as a test function, the weak
form of equilibrium of a slice Vh(y3) is∫

Vh(y3)

σ̃ · ε̃ dV =
∫

∂Vh(y3)

t̃ · w̃ dS, (5.34)

where ε̃ = e(w̃), t̃ = σ̃n′, and n′(y) is the outer normal to Vh(y3). Dividing
(5.34) by the volume of Vh(y3), we obtain

{σ̃ · ε̃}h(y3) =
1

h|S|

∫
∂Vh(y3)

t̃ · w̃ dS. (5.35)

We shall now consider the limit of (5.35) as h → 0. In view of (5.8) the
left-hand side of (5.35) becomes

lim
h→0

{σ̃ · ε̃}h(y3) = 〈σ̃ · ε̃〉(y3). (5.36)

The integral on the right-hand side of (5.35) can be split into four parts,

1
h|S|

∫
∂Vh(y3)

t̃ · w̃ dS =
1
h
〈w̃ · σ̃n〉(y3)

− 1
h
〈w̃ · σ̃n〉(y3 + h)

+
∫ y3+h

y3

∫
∂S+

t̃ · w̃ ds dy′3

+
∫ y3+h

y3

∫
∂S−

t̃ · w̃ ds dy′3. (5.37)
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Here, the first and the second term correspond to the parts of the boundary
∂Vh(y3) parallel to the surface, so that the normal vector is n′ = ±n. The
remaining terms, corresponding to lateral faces of ∂Vh(y3), cancel each other
due to periodicity of w̃ and anti-periodicity of t̃. Thus, in the limit of h → 0,
we have

lim
h→0

1
h|S|

∫
∂Vh(y3)

t̃ · w̃ dS = − d
dy3

〈w̃ · σ̃n〉, (5.38)

and equations (5.34)–(5.38) yield

〈σ̃ · ε̃〉 = − d
dy3

〈w̃ · σ̃n〉. (5.39)

Finally, by combining (5.33) and (5.39), the average work is obtained in the
form

〈σ · ε〉 = σ̄ · ε̄− d
dy3

〈w̃ · σ̃n〉. (5.40)

Note that, unlike in the classical micromechanics, cf. the Hill’s lemma (2.14),
the average work is not equal to the work of averages.

5.3. Boundary value problem

5.3.1. Linear elasticity

Using the notion of the kinematically admissible displacement and statically
admissible stress fields, the boundary value problem can be stated by simply
requiring that stress and strain fields satisfy the constitutive equation. In
the case of a linear elastic body, the microscopic problem is thus to find a
kinematically admissible correction w(y), y ∈ V , such that the stress field
σ(y), given by

σ(y) = Lε(y), ε(y) = E + e(w), (5.41)

is statically admissible, where the macroscopic strain E and the S-periodic
surface traction tb(η) are given. The material is assumed to be elastically
homogeneous, i.e. the elastic stiffness tensor L is constant within V .

Importantly, the prescribed macroscopic strain E and the surface trac-
tion tb(η) are not completely independent. This is because the average
traction t̄b = 〈tb〉 and the macroscopic stress Σ = LE must satisfy the
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compatibility condition (5.25) expressing the overall equilibrium of strip V .
However, this is guaranteed if the macroscopic strain E follows from the
solution of the macroscopic problem, cf. Eq. (4.5)3.

As the elastic stiffness tensor L is constant, the average stress σ̄(y3) and
the average strain ε̄(y3) also satisfy the constitutive equation

σ̄(y3) = Lε̄(y3), (5.42)

which is obtained by averaging the constitutive equation (5.41). In view of
compatibility conditions (5.29), it follows from the mixed form of constitu-
tive equation, cf. equation (3.3) with εt = 0, that the average stress and the
average strain in the boundary layer are equal to the respective macroscopic
quantities,

∆ε̄(y3) = 0, ∆σ̄(y3) = 0, (5.43)

where, obviously, Σ = LE. Furthermore, in view of (5.43)1 and (5.31), we
have

w̄(y3) = const, (5.44)

i.e. the displacement correction in the elastic boundary layer is, essentially,
a pure fluctuation, w(y) = w̃(y) + const.

5.3.2. Elasto-plasticity

Consider now an elasto-plastic boundary layer. The strain ε is then decom-
posed into elastic εe and plastic εp parts and the constitutive equation,

σ(y) = Lεe(y), εe(y) = ε(y)− εp(y), (5.45)

is accompanied by the yield condition

F (σ) =

√
3
2

s · s− σy(εp) ≤ 0, s = σ − 1
3

I tr σ, (5.46)

and the associated flow rule

ε̇p = γ
∂F

∂σ
, γ ≥ 0, γF = 0. (5.47)

Here s(y) is the stress deviator, and σy is the uniaxial yield stress which is
a given function of the (local) equivalent plastic strain εp(y), with the evo-
lution law ε̇p = γ = ( 2

3 ε̇p · ε̇p)1/2. Clearly, the macroscopic quantities also
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satisfy the above constitutive equations (5.45)–(5.47), expressed in terms of
the macroscopic stress Σ and the macroscopic strain E = Ee + Ep, where
Ee and Ep are, respectively, the elastic and plastic parts of the macroscopic
strain E.

The microscopic problem is now a problem of evolution in time. For a
S-periodic surface traction tb(η, t) and for a macroscopic strain E(t), both
being now given1 functions of time t, the problem is to find a kinematically
admissible correction w(y, t), y ∈ V , t ∈ (0, T ), such that the stress field
σ(y, t), satisfying constitutive equations (5.45)–(5.47), is statically admis-
sible.

The properties of elasto-plastic boundary layers can now be analyzed.
In view of homogeneity of the elastic moduli tensor L, averaging of the
constitutive equation (5.45) gives a simple result, namely

σ̄(y3) = L[ε̄(y3)− ε̄p(y3)], (5.48)

where ε̄p = 〈ε̄p〉. Now, using the compatibility conditions (5.29) and the
averaged constitutive equation (5.48), the average stress σ̄(y3) and the aver-
age strain ε̄(y3) can be uniquely determined in terms of the average plastic
strain ε̄p(y3) and macroscopic quantities Σ, E, and Ep. Indeed, identifying
the compatibility conditions (5.29) and the averaged constitutive equation
(5.48) with the respective local counterparts, cf. Eq. (2.32) and (2.30),
the following relationships are obtained as a special case of the interfacial
relationships (2.33),

∆ε̄(y3) = P0L∆ε̄p(y3), ∆σ̄(y3) = −S0∆ε̄p(y3), (5.49)

where ∆ε̄p(y3) = ε̄p(y3) − Ep, and operators P0 and S0 are expressed in
terms of the elastic moduli tensor L and normal vector n. It can easily be
verified that ∆ε̄ and ∆σ̄ predicted by (5.49) do not violate the compatibility
conditions for averages (5.29) due to the special form of operators P0 and
S0, see equation (A.10).

Consider now the averaged yield condition (5.46). After decomposing
the stress deviator s(y) into its average s̄(y3) and fluctuation s̃(y), we have
〈s · s〉 = s̄ · s̄ + 〈s̃ · s̃〉, and from (5.46) it follows that

3
2

s̄ · s̄ ≤ 〈σ2
y〉 −

3
2
〈s̃ · s̃〉. (5.50)

1As discussed in Section 5.3.1, the average surface traction t̄b and the macroscopic
strain E are not independent.
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Inequality (5.50) can be written in the form of an effective yield condition
for the average stress σ̄(y3), namely

F eff(σ̄) =

√
3
2

s̄ · s̄− σeff
y ≤ 0, s̄ = σ̄ − 1

3
I tr σ̄, (5.51)

where the effective yield stress σeff
y (y3) is defined by

σeff
y =

√
〈σ2

y〉 −
3
2
〈s̃ · s̃〉. (5.52)

A simple bound on the effective yield stress σeff
y (y3) follows from (5.52),

namely

σeff
y <

√
〈σ2

y〉 if s̃ 6= 0, (5.53)

and in the case of a perfectly plastic material we have

σeff
y < σy if s̃ 6= 0 and σy = const. (5.54)

It follows from equations (5.51)–(5.54) that, in terms of the average stress σ̄,
the boundary layer is weakened due to inhomogeneity of deformation. The
weakening of contact boundary layers plays a key role in the phenomeno-
logical modelling presented in Section 3.3.

5.4. Example: elastic boundary layer induced by sinu-
soidal traction

As an application of the micromechanical framework developed above, in
this section, a boundary layer induced by a periodic surface traction in
an elastic body is considered. Specifically, a sinusoidal fluctuation of the
normal traction is studied as a simple and illustrative example for which an
analytical solution exists.

Consider first an isotropic elastic half-space subjected to sinusoidal nor-
mal surface traction

p(y1) = p∗ cos(2πy1/L) (5.55)
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where p∗ is the amplitude, and L is the wavelength. In the plane strain
conditions (ε22 = ε12 = ε23 = 0), the stresses within the half-space can be
derived from the stress function provided by Johnson [54],

φ(y1, y3) =
p∗

α2
(1 + αy3) e−αy3 cos αy1, α = 2π/L, (5.56)

according to

σ11 =
∂2φ

∂y2
3

, σ33 =
∂2φ

∂y2
1

, σ13 = − ∂2φ

∂y1∂y3
, (5.57)

and the displacements at the surface are given by

u1(y1, 0) = −2p∗

αE
(1− 2ν)(1 + ν) sin(αy1) + C1,

u3(y1, 0) =
2p∗

αE
(1− ν2) cos(αy1) + C2.

(5.58)

where C1 and C2 are integration constants.
Consider now an elastic boundary layer subjected to surface tractions

specified by
tb1 = q̄, tb3(y1) = p̄ + p∗ cos(2πy1/L), (5.59)

where tbi are the components of the traction vector tb, p̄ and q̄ are the
average normal and tangential tractions, and p∗ is now the amplitude of the
sinusoidal fluctuation of the normal traction.

Let Σ be the macroscopic stress. From the compatibility condition
(5.25), we have Σ13 = q̄ and Σ33 = −p̄, while the component Σ11 can-
not be determined from surface data, and it results from the solution of the
macroscopic problem. Using equations (5.56)–(5.57), the stresses within the
boundary layer are found to be

σ11 = Σ11 − p∗(1− αy3) e−αy3 cos αy1,

σ33 = Σ33 − p∗(1 + αy3) e−αy3 cos αy1,

σ13 = Σ13 − p∗αy3 e−αy3 sin αy1,

(5.60)

and the strains are obtained from the Hooke’s law,

ε11 = E11 − (p∗/E)(1 + ν)(1− 2ν − αy3) e−αy3 cos αy1,

ε33 = E33 − (p∗/E)(1 + ν)(1− 2ν + αy3) e−αy3 cos αy1,

ε13 = E13 − (p∗/E)(1 + ν) αy3 e−αy3 sin αy1,

(5.61)
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where Eij are the components of the macroscopic strain E.
It follows from equations (5.60) and (5.61) that, as expected, the stresses

and the strains are periodic with respect to y1. Secondly, it is easily verified
that the average stresses and strains are equal to the macroscopic ones,
〈σ〉 = Σ and 〈ε〉 = E, and thus ∆σ̄ = 0 and ∆ε̄ = 0. This is in agreement
with the theoretical prediction, cf. Section 5.3.1. Finally, we note that the
stress and strain fluctuations decay exponentially with the distance from
the surface.

Let us now consider the average elastic strain energy density w̄ = 〈w〉,
where w = 1

2ε · Lε = 1
2σ · ε. Combining equations (5.60) and (5.61), the

average elastic strain energy is obtained in the following form, cf. Eq. (5.33),

2w̄ = 2〈w〉 = 〈σ · ε〉 = Σ ·E + 〈σ̃ · ε̃〉 (5.62)

where the additional energy w̄∗ associated with the inhomogeneity of the
surface traction is

2w̄∗ = 〈σ̃ · ε̃〉 =
(p∗)2

E
(1 + ν)[1− 2ν + 2(αy3)2] e−2αy3 . (5.63)

As both the stresses and the strains decay exponentially, the additional
energy w̄∗ decays even faster—note the terms e−αy3 and e−2αy3 in equations
(5.60)–(5.61) and (5.63), respectively. The distribution of the normalized
additional energy w̄∗E/p∗2 for different values of the Poisson’s ratio is shown
in Fig. 5.3.

In the elastic case, the solution of the microscopic problem is formed by
the superposition of the macroscopic state and the microscopic fluctuations
which are independent of the macroscopic state. This, however, is not
the case when elasto-plastic deformations are allowed within the boundary
layer. In order to illustrate that, let us consider the equivalent Huber-
von Mises stress, σeq = ( 3

2 s · s)1/2, in the elastic boundary layer under
consideration. The distribution of the equivalent stress σeq is shown in
Fig. 5.4 for different values of the macroscopic in-plane stress Σ11. In this
example, the macroscopic state is specified by Σ33 = −p̄ = −p∗ and Σ13 =
q̄ = p∗/2, where p∗ is the fluctuation amplitude, cf. Eq. (5.59). It is seen
in Fig. 5.4 that the equivalent stress attains its maximum at some distance
from the surface, so that plastic yielding would initiate below the surface.
This is a well-known result in contact mechanics, cf. Johnson [54]. Secondly,
as the in-plane stress Σ11 increases, the equivalent stress σeq increases in
the whole domain and, importantly, the position of the maximum changes.



94 Chapter 5

0 0.1 0.2 0.3 0.4 0.5 0.6
Normal distance, y3�L0

0.1

0.2

0.3

0.4

0.5

E
l
a
s
t
i
c

e
n
e
r
g
y
,

w�
*
E

�p*2 Ν=0

Ν=0.3

Ν=0.5

Figure 5.3. Additional elastic strain energy w̄∗E/p∗2 in the elastic boundary

layer as a function of the distance from the surface y3/L.

Thus, elasto-plastic deformations within boundary layers are expected to
be significantly affected by macroscopic stresses. This is discussed more in
the next chapter, where contact boudary layers in elastic-plastic solids are
analyzed using the finite element method.

5.5. Conclusions

A micromechanical framework has been developed for the analysis of de-
formation inhomogeneities within the boundary layers induced by micro-
inhomogeneous boundary conditions. An averaging operation has been in-
troduced which averages the inhomogeneities along the surface, but pre-
serves the dependence of the respective average quantities on the distance
from the surface. The averaging operation decomposes thus an arbitrary
field within the boundary layer into its average and fluctuation, the former
depends only on the coordinate normal to the surface.

Several properties of such averages have been derived, the most impor-
tant are recalled below. First of all, the average strain ε̄(y3) and the average
stress σ̄(y3) satisfy the compatibility conditions analogous to those holding
locally at a bonded interface, cf. Section 2.4. The corresponding changes
with respect to the macroscopic quantities, ∆ε̄ and ∆σ̄, are thus orthogo-
nal. It has also been shown that the average work is not equal to the work
of average stress and strain. These properties hold for any constitutive
relations describing the material behaviour.
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Figure 5.4. Distribution of the equivalent stress σeq/p∗ in the elastic boundary

layer: (a) Σ11 = −p∗, (b) Σ11 = −p∗/2, (c) Σ11 = 0, (d) Σ11 = p∗/2.

Further, the interfacial relationships have been derived for the case of
homogeneous elasticity with, possibly inhomogeneous, plastic strain (eigen-
strain). These relationships resemble those holding at bonded interfaces,
cf. Secton 2.5. Finally, it has been shown that an elasto-plastic (or rigid-
plastic) boundary layer is macroscopically weakened due to inhomogeneity
of deformation.





Chapter 6

Finite element analysis of contact boundary
layers

Abstract This chapter is devoted to the analysis of the boundary layers induced

by contact of rough bodies. The implementation issues related to finite element

modelling of contact boundary layers are first discussed. Next, two representative

asperity interaction problems in elastic-plastic solids are studied. Attention is paid

to the interaction of the inhomogeneous boundary layer fields with the macroscopic

deformation and to the related effects on the macroscopic contact response.

6.1. Introduction

In this chapter, the general framework developed in Chapters 4 and 5 is
applied to study two representative asperity interaction problems in elasto-
plastic solids. As in many other application areas, numerical methods, such
as the finite element method, are necessary to obtain solutions for practical
problems of contact boundary layers. Selected implementation aspects are
thus discussed below, that are related to the application of the finite element
method to the boundary value problems of contact boundary layers.

Two numerical examples are also provided. Firstly, asperity ploughing
is modelled by considering the sliding contact of an initially smooth elasto-
plastic body with a rough and rigid obstacle. Next, the contact response of
a rough surface compressed by a flat and rigid counter-surface is studied.
In the latter case, the analysis is carried out for a real three-dimensional
topography of a sand-blasted surface. In both numerical examples, special
attention is paid to the effects of the macroscopic in-plane strain on the
macroscopic contact response. As discussed in Section 3.3, such effects are
essential in metal forming processes in which the macroscopic deformations
are plastic. The analysis of this chapter is focused on asperity interaction
in the elasto-plastic regime. The related effects seem not to have been
discussed in the literature yet.

97
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The finite element computations reported in this chapter have been per-
formed within the Computational Templates environment, and the symbolic
code generation system AceGen has been used to generate the necessary fi-
nite element codes, cf. Korelc [63, 64, 65].

6.2. Remarks on finite element implementation

6.2.1. Scaling

In Chapters 4 and 5, the equations of the microscopic problem, governing
the deformation in the boundary layer, are formulated in the scaled spatial
variable y = x/ε, where ε � 1 is a small parameter expressing the ratio of
characteristic dimensions at the micro- and macro-scale. The displacement
correction w(y), being the basic unknown in the microscopic problem, is
also a scaled physical displacement, with the same scaling factor ε. At the
same time, the microscopic strains and stresses involved in the description
are the physical quantities.

The asymptotic analysis is a convenient and rigorous technique to de-
rive the boundary layer equations, and scaling is an important element of
this technique. However, in practical applications, it is more convenient
to carry out the finite element analysis, or another method of solution of
the microscopic problem, using the non-scaled (macroscopic) spatial vari-
able x = εy and the physical displacement εw(x/ε) as the basic unknown.
The corresponding governing equations can be obtained by simply putting
ε = 1. As ε does not appear in the governing equations, see Sections 5.2
and 5.3.1, the equations do not change, while the spatial variable y and the
displacement correction w(y) become physical quantities. This convention
is used throughout the present chapter.

6.2.2. Truncated strip VH

The spatial domain of the boundary layer problem is not bounded, since
the strip V , which constitutes the unit cell, is half-infinite, i.e. y3 ∈ (0,∞),
cf. Section 5.1. This difficulty can be overcome by considering a truncated
strip VH with y3 ∈ (0,H), where H is chosen sufficiently large for the
results not to be affected by the truncation (with a desired accuracy). For
elliptic problems, for which the Saint-Venant’s principle holds, this presents
no difficulty and H can be chosen by numerical experiments.

Consider, for example, the problem analyzed in the previous section,
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Figure 6.1. Elastic half-space subjected to sinusoidal traction: effect of the

truncation height H on the maximum displacement umax.

i.e. an elastic half-space subjected to sinusoidal traction. The effect of the
height H of the truncated strip VH on the maximum vertical displacement
umax is illustrated in Fig. 6.1 for two densities of a regular finite element
mesh (Nel = 20 or Nel = 40 elements along the boundary). The maximum
displacement is normalized by the theoretical value uth = (1−ν2)p∗l/(πE),
cf. Eq. (5.58). It follows from the analytical solution for a half-space that
the stresses and strains decay very quickly (exponentially) with the distance
from the surface, cf. Section 5.4. Accordingly, in the present case, the
maximum displacement umax increases by less than 0.1 per cent as the strip
height is increased from H/l = 1 to H/l = 2, where l is the period of
sinusoidal traction. In the elastic case, the height of the truncated strip
H = l should thus be sufficient for most purposes.

The notion of kinematic admissibility must be modified if the strip V
is replaced by the truncated strip VH . One possibility is to require the
admissible correction w(y) to vanish at y3 = H,

w(y) = 0 for y3 = H. (6.1)

This condition replaces the condition of vanishing gradient of w(y) far from
the boundary, cf. Eq. (5.13). The choice of the truncation height H deter-
mines the accuracy with which the latter condition is approximated.

Once condition (6.1) is adopted, the solution of the boundary layer prob-
lem is unique, while, in the case of the original boundary layer problem with
inhomogeneous surface traction, the solution is defined up to an additive
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vector, cf. Chapter 4. On the other hand, as discussed below, adopting
condition (6.1) may require special treatment of the microscopic contact
conditions.

6.2.3. Choice of the basic unknown

The boundary layer displacement correction w(y) is the basic unknown of
the microscopic problem, cf. Chapters 4 and 5. However, the displacement
correction w(y) and the total displacement u(y) are directly related by
equation (5.10). Thus, in practice, either of the two can be adopted as a
basic unknown, as long as the constitutive relations and boundary condi-
tions are consistently formulated.

Assume first that the displacement correction w(y) is chosen as the
basic unknown in the finite element formulation. The weak form of the
equilibrium equation is obtained by multiplying the local equilibrium equa-
tion (5.21) by a kinematically admissible test function δw(y), by integrating
over the truncated strip VH , and by applying the divergence theorem. This
standard procedure yields∫

VH

σ · e(δw) dV =
∫

∂VH

(σn′) · δw dS. (6.2)

Here, the stress is related to the unknown displacement correction w by
the constitutive relation, σ = σ(E + e(w)). Since, by assumption, w is
a kinematically admissible correction, it is V -periodic. This implies that
the stress σ is also V -periodic, in agreement with the requirement of static
admissibility of σ.

Consider the integral on the right-hand side of the weak form (6.2). In
view of V -periodicity of δw and anti-periodicity of σn′, the contributions
from the lateral faces of VH cancel each other. Also, the integral over
the boundary y3 = H vanishes since δw = 0 at y3 = H, cf. the boundary
condition (6.1). As a result, the principle of virtual work takes the following
form, ∫

VH

σ(E + e(w)) · e(δw) dV =
∫

Sr

t · δw dS, (6.3)

where t is the traction on surface Sr, resulting either from the traction
boundary condition (then t = tb) or from the contact interaction. In the
case of the displacement boundary condition prescribed on Sr, the integral
on the right-hand side of (6.3) vanishes since then δw = 0 on Sr.
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In the weak form (6.3), both the unknown displacement correction w
and the test function δw are kinematically admissible, which implies their
V -periodicity. This condition can be released by introducing the periodicity
condition into the weak form using the Lagrange multiplier technique. This
leads to the following weak form∫

VH

σ(E + e(w)) · e(δw) dV =
∫

Sr

t · δw dS

+
∫

∂V +
H

λ · (δw+ − δw−) dS, (6.4)

∫
∂V +

H

δλ · (w+ −w−) dS = 0, (6.5)

in which w and δw are not required to be V -periodic. Here, λ is a field of
Lagrange multipliers defined on ∂V +

H .
Finite element equations can now be derived from the weak form (6.4)–

(6.5) by introducing finite element interpolations of the displacement cor-
rection w and Lagrange multiplier field λ. This procedure is standard and
is omitted here, e.g. Zienkiewicz and Taylor [160]. The only non-standard
requirement is that the constitutive relation σ = σ(E + e(w)) involves the
macroscopic strain E, as a given data, in addition to the strain derived from
the displacement correction w. Thus dedicated finite elements must be used
to implement such constitutive relation.

This can be avoided by choosing, as a basic unknown, the total displace-
ment u, which is related to w by equation (5.10). Accordingly, the bound-
ary condition (6.1) and V -periodicity of w must be expressed in terms of u.
Noting that δw = δu, the weak form (6.4)–(6.5) can be rewritten to yield∫

VH

σ(e(u)) · e(δu) dV =
∫

Sr

t · δu dS

+
∫

∂V +
H

λ · (δu+ − δu−) dS, (6.6)

∫
∂V +

H

δλ · [u+ − u− −H(y+ − y−)] dS = 0, (6.7)

where the boundary condition (6.1) takes now the form

u− u0 −Hy = 0, δu = 0 for y3 = H. (6.8)
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We note that the usual constitutive relation σ = σ(e(u)) appears in (6.6),
instead of σ = σ(E + e(w)) in (6.4). Accordingly, standard solid elements
can be used at the cost of the boundary condition (6.8) and the periodic-
ity condition in (6.7) being somewhat more complicated compared to their
counterparts expressed in terms of w.

6.2.4. Prescribed macroscopic contact traction

Consider now the boundary layer in the case of contact of a rough body
with a rigid and smooth obstacle. The discussion below is restricted to the
macroscopic contact zone; the macroscopic separation zone does not require
separate treatment.

Denote by t(y) = tN(y)n + tT(y) the local contact traction and by
T = TNn + TT the macroscopic one. As discussed in Sections 4.4 and 4.5,
the macroscopic contact tractions are the averages of the local ones, cf.
Eq. (4.75),

T = 〈t〉, TN = 〈tN〉, TT = 〈tT〉. (6.9)

At the same time, the macroscopic contact traction is related to the macro-
scopic stress by

T = Σn, TN = n ·Σn, TT = (I− n⊗ n)Σn. (6.10)

Since the macroscopic stress Σ constitutes the input of the microscopic
problem, the combination of equations (6.9) and (6.10) imposes a constraint
on the displacement correction w, which otherwise is only defined up to an
additive constant. In a general case, this constraint may be inconsistent
with the boundary condition (6.1) imposed on the displacement correction in
the truncated strip. Possible treatments of this inconsistency are discussed
below.

Let us remind that, far from the boundary, the stress σ in the boundary
layer tends to the macroscopic stress Σ. Thus, instead of prescribing the
displacement at y3 = H, as in (6.1), a traction boundary condition can be
imposed at y3 = H, namely

σn = T for y3 = H. (6.11)

In fact, this boundary condition is only applicable in the macroscopic stick-
ing zone, where both the normal displacement and the tangential velocity
are constrained by the frictional contact conditions, cf. Section 4.5.5. On
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the contrary, in the macroscopic sliding zone, only the normal displacement
is constrained, cf. Section 4.5.4, thus a mixed boundary condition must be
applied, namely

n · σn = TN, (I− n⊗ n)w = 0 for y3 = H. (6.12)

Boundary conditions (6.11) and (6.12), sketched in Fig. 6.2(a,b), allow using
the macroscopic contact traction as a control parameter of the microscopic
problem, according to the coupled micro-macro solution scheme outlined in
Chapter 4.

However, an alternative approach is also possible, in which the displace-
ment at y3 = H is prescribed according to (6.1) or (6.8) and the position
of the rigid obstacle is adopted as a control parameter, cf. Fig. 6.2(c). Note
that, so far, it has been assumed that the position of the obstacle is fixed.
Thus, for a prescribed displacement of the rigid obstacle, the macroscopic
contact traction is obtained as one of the results of the analysis. This scheme
cannot be directly applied for the coupled micro-macro problem, however, it
allows analysis of a contact boundary layer without referring to any specific
macroscopic problem.

6.3. Elasto-plastic ploughing

6.3.1. Problem description

Ploughing is known to be the second, after adhesion, main mechanism of
friction, e.g. Bowden and Tabor [16]. Several models of ploughing friction
can be found in the literature. Slip-line field theory solutions of plastic
flow imposed by a sliding wedge-shaped asperity can be found for example
in Challen and Oxley [21], Suh and Sin [135] and Petryk [94]. On the
other hand, simple estimates can be obtained by assuming that the average
local contact pressure at the asperity contact is equal to the indentation
hardness, while the friction stress is related to the average asperity slope
angle θ, cf. Fig. 6.3(a). Assuming frictionless conditions at microscopic
contacts, i.e. neglecting the adhesive friction component, the macroscopic
ploughing friction coefficient is then found from a simple formula

µ̄pl = tan θ. (6.13)

Models of this type, applied for different shapes of hard asperities (e.g.
wedges, cones, spheres), can be found, for instance, in Rabinowicz [102],
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Figure 6.2. Boundary conditions imposed on the truncated strip: (a) macro-

scopic sticking zone, Eq. (6.11); (b) macroscopic sliding zone, Eq. (6.12); (c)

alternative control scheme.

θ

(a) (b)

Figure 6.3. Asperity ploughing: (a) average asperity slope in the rigid-plastic

case, (b) elastic recovery in the elastic-plastic case.

Suh and Sin [135], and Komvopoulos et al. [62]. If the asperity slope is not
constant, as, for example, in the case of spherical or conical asperities, an
average asperity slope can be used in formula (6.13), cf. Fig. 6.3(a).

The models discussed above refer to rigid-plastic materials, the elastic
strains are thus neglected. If the elastic strains are significant, i.e. if the
so-called rheological factor (see Johnson [53], Bucaille et al. [18]) is small,
then the ploughing friction coefficient is reduced due to the elastic recovery,
as schematically illustrated in Fig. 6.3(b).

The ploughing component of friction is directly related to plastic defor-
mations in the subsurface layer which are induced in a softer body by the
asperities of the harder body, or by hard abrasive particles. It can be ex-
pected that the interaction of the macroscopic stresses and strains with the
localized deformation at the asperity scale may result in the dependence of
the macroscopic contact properties (represented, for example, by the macro-
scopic friction coefficient) on the macroscopic elastic strain. Such effects are
observed, when the material deforms plastically at the macro-scale, cf. Sec-
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Figure 6.4. Asperity ploughing: (a) geometry; (b) finite element mesh.

tion 3.3.
The aim of the present numerical example is thus to study the inter-

action of macroscopic and microscopic deformation fields accompanying
elasto-plastic ploughing. The related issues have not been addressed in
the literature yet. Secondly, the present example illustrates the microme-
chanical framework developed in Chapter 5. As, in the present chapter,
the framework is extended to the case of rough contact interactions, several
aspects concerning its application for contact boundary layers are discussed
in detail.

Consider thus a periodic array of rigid sine-shaped asperities which
plough through an elasto-plastic half-space, cf. Fig. 6.4(a). Plane-strain con-
ditions are assumed which correspond to the case of long asperities aligned
perpendicularly to the sliding direction. Clearly, the periodic layout of rigid
asperities implies periodicity of the solution in the boundary layer. The cor-
responding unit cell used in the computations, i.e. the truncated strip VH ,
is indicated in Fig. 6.4(a). The body is macroscopically elastic, however,
plastic deformations may be induced at the micro-scale, i.e. in the boundary
layer, as a result of localized asperity interaction. Accordingly, the elasto-
plastic material model with linear hardening is adopted. The geometrical
and material parameters used in the simulations are provided in Table 6.1.

The following loading history is assumed. First, the macroscopic in-
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Table 6.1. Asperity ploughing: material and geometrical parameters.

Parameter Symbol Value

Young’s modulus E 71 [GPa]
Poisson’s ratio ν 0.33
yield stress σy 150 [MPa]
linear hardening modulus K 50 [MPa]
microscopic friction coeff. µ 0, 0.1
height of the unit cell H/l 2
asperity height h/l 0.04
macroscopic strain E0

11 −0.0015, 0, 0.0015
approach δ/h 0.025, 0.05, 0.075, 0.1, 0.125, 0.15

plane tensile or compressive strain E11 = E0
11 is applied. At this stage

the surfaces are separated, thus the macroscopic normal contact traction
is equal to zero, TN = Σ33 = 0. Secondly, the surfaces are brought into
contact, and a relative sliding is imposed, so that the rigid asperities move
relative to the surface (to the right in Fig. 6.4). At the same time the
nominal separation of the surfaces is decreased from h/2 to h/2−δ, where δ
is the prescribed relative approach, i.e. the nominal penetration of asperity
summits. The prescribed approach δ is attained after sliding distance of one
asperity wavelength l. Subsequently, the sliding distance of 2l is imposed
at the constant approach δ. Finally, the surfaces are separated, and the
macroscopic in-plane strain is released to E11 = 0. Below, the results of
computations are provided for three values of the macroscopic strain E11

and for six values of the approach δ/h, cf. Table 6.1.
Two cases are considered regarding the microscopic contact conditions:

frictionless contact and Coulomb friction with a local friction coefficient µ =
0.1. The impenetrability and friction conditions are enforced nodally using
the augmented Lagrangian technique, cf. Pietrzak and Curnier [98]. The
exact contact kinematics is adopted based on the closest point projection of
the nodes onto the rigid surface, see, for instance, Pietrzak and Curnier [98].
Accordingly, the exact finite strain kinematics is used to describe the elasto-
plastic deformations within the boundary layer. The finite strain framework
is also preferable in view of significant configuration changes induced by
repeated asperity ploughing.

The finite-strain multiplicative J2 elasto-plastic model is adopted as a
constitutive model of the solid, cf. Simo and Hughes [120]. The incremental
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(a) gT = l (b) gT = 2l (c) gT = 3l

Figure 6.5. Asperity ploughing: distribution of plastic multiplier at three values

of the macroscopic sliding distance (δ/h = 0.15, E11 = 0).

formulation assumes hyperelastic isotropic response relative to the local in-
termediate configuration with the inverse plastic right Cauchy-Green tensor
as a state variable. Details concerning the finite element implementation
can be found in Stupkiewicz et al. [125], in the Appendix.

On the other hand, only the small-strain formulation is consistent with
the micromechanical framework developed in Chapter 5. The computations
have thus been repeated adopting the small-strain formulation, and the
results have not been found to differ significantly. Unless stated otherwise,
the results presented below correspond to the finite-strain case.

The finite element mesh of the truncated strip VH is shown in Fig. 6.4(b).
A volumetric-locking-free quadrilateral element employing the volumetric-
deviatoric split and Taylor expansion of shape function is used in the com-
putations, cf. Korelc [64]. According to the loading history defined above,
the position of the rigid surface is used as a control parameter, and the
displacements are prescribed at y3 = H in agreement with the scheme of
Fig. 6.2(c).

The distribution of the plastic multiplier during sliding is shown in
Fig. 6.5 at three values of the macroscopic sliding distance, gT = l, 2l, 3l.
It is seen that the plastic deformation is localized in the vicinity of the as-
perity contact, and thus it is inhomogeneous. In fact, it is only because of
the localized asperity interaction that plastic deformations appear in the
sub-surface layer. Application of an equivalent, in terms of the average
value, uniform normal and tangential traction would result in a purely elas-
tic response, as it is the case far from the surface where the inhomogeneities
vanish. Accumulation of the permanent shear deformation in the boundary
layer, due to repeated ploughing by subsequent asperities, is also clearly
seen in Fig. 6.5.
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Figure 6.6. History of the macroscopic contact pressure −TN/σy: (a) raw data

(for E0
11 = 0.0015); (b) smoothed data (for δ/h = 0.1 and 0.15).

6.3.2. Ploughing friction coefficient

The macroscopic normal pressure and the macroscopic friction stress have
been obtained from the nodal reaction forces at the bottom edge of the unit
cell. Due to global equilibrium of the unit cell this is equivalent to averaging
the microscopic contact tractions. The macroscopic contact stresses −TN

and TT, normalized by the yield stress σy, are shown in Fig. 6.6 and 6.7 as
a function of the sliding distance gT. Figures 6.6(a) and 6.7(a) present the
raw data obtained for E0

11 = 0.0015 (macroscopic in-plane tension) and for
µ = 0; the six curves correspond to the six values of the approach δ/h.

Application of boundary conditions of the type shown in Fig. 6.2(c),
implies that the approach is controlled rather than the macroscopic normal
pressure, the latter resulting from the solution. In particular, the macro-
scopic normal pressure is not necessarily constant even if the approach is
held constant. It is seen in Figures 6.6 and 6.7 that the macroscopic con-
tact tractions oscillate with respect to the slowly varying average tractions.
These oscillations are caused by the finite element discretization and nodal
enforcement of contact conditions: the contact nodes come into contact and
loose contact which results in oscillatory response. These purely numerical
oscillations can be smoothed, for example by local averaging in time. Fig-
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Figure 6.7. History of the macroscopic friction stress TT/σy: (a) raw data (for

E0
11 = 0.0015); (b) smoothed data (for δ/h = 0.1 and 0.15).

ures 6.6(b) and 6.7(b) present the history of smoothed macroscopic contact
tractions for two sample values of the approach δ/h and for three values of
the macroscopic strain E0

11.
Figure 6.8 presents the history of the instantaneous macroscopic friction

coefficient µ̄ = TT/|TN|. The data corresponds to the macroscopic contact
tractions presented in Figures 6.6 and 6.7. It is seen that the macroscopic
friction coefficient, just like the macroscopic contact tractions, is not con-
stant. In order to estimate the effective ploughing friction coefficient µ̄pl, the
time-averaged coefficient has been determined using the data corresponding
to 2 ≤ gT/l ≤ 3, i.e. by neglecting the running-in period 0 ≤ gT/l < 2, cf.
the shaded region in Fig. 6.8(a). The ploughing friction coefficient has thus
been determined according to

µ̄pl =
1
l

∫ 3l

2l

TT(gT)
|TN(gT)|

dgT − µ. (6.14)

Note that, in expression (6.14), the microscopic friction coefficient µ has
been subtracted from the macroscopic one, so that µ̄pl describes only the
ploughing contribution.

In Figure 6.9(a), the macroscopic ploughing friction coefficient µ̄pl is
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Figure 6.8. History of the macroscopic friction coefficient µ̄ = TT/|TN|: (a) raw

data (for E0
11 = 0.0015); (b) smoothed data (for δ/h = 0.1 and 0.15).

shown as a function of the macroscopic contact pressure −TN. The plough-
ing friction coefficient appears to be insensitive to the macroscopic strain
E0

11: the three curves corresponding to three different values of E0
11 prac-

tically coincide both for µ = 0 and for µ = 0.1. At the same time, the
effect of the microscopic friction coefficient µ on the macroscopic ploughing
friction coefficient µ̄pl is clearly visible.

In Figure 6.9(b), the ploughing friction coefficient µ̄pl resulting from the
present analysis is compared to the one predicted by the simple model (6.13).
The average asperity slope angle θ has been determined according to the
scheme of Fig. 6.3(a), while the real contact area has been determined from
the macroscopic contact pressure by assuming indentation hardness H = 6k,
where k = σy/

√
3 is the yield stress in shear. The difference between the

two predictions is approximately constant (i.e. independent of the normal
pressure) and probably results from the elastic recovery, cf. Fig. 6.3(b).

The obtained result that the ploughing friction coefficient µ̄pl is not af-
fected by the macroscopic strain E0

11 seems quite surprising in view of the
substantial effect of E0

11 on the relation between the approach δ/h and the
macroscopic normal pressure −TN/σy. The latter effect is clearly visible
in Fig. 6.6(b) and also in Fig. 6.10: at constant pressure, the approach in-
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Figure 6.9. Macroscopic ploughing friction coefficient µ̄pl as a function of the

normalized macroscopic contact pressure −TN/σy. The curves corresponding to

different values of the macroscopic strain E0
11 practically coincide for fixed micro-

scopic friction coefficient µ, cf. figure (a). Prediction for µ = 0 is compared to the

simple model (6.13) in figure (b).
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creases for macroscopic tension (E0
11 > 0) and decreases for macroscopic

compression (E0
11 < 0). However, the response in terms of the macroscopic

friction stress is similar, so that the resulting friction coefficient is not sensi-
tive to macroscopic straining, at least in the conditions adopted in present
computations. Analysis of the residual stresses in the boundary layer pro-
vides a possible explanation of this behaviour.

6.3.3. Residual stresses

The distribution of the average in-plane stresses1 σ̄11 and σ̄22 is shown
in Fig. 6.11. Here, in order to be consistent with the micromechanical
framework of Chapter 5, the small strain formulation has been used. Note
that the ploughing friction coefficient is practically not affected by the choice
of formulation, cf. Fig. 6.9(b), so that the analysis below should be relevant
also for the finite-strain case.

It is seen in Fig. 6.11 that in the vicinity of the surface, say for y3/l <
0.2 in the present case of δ/h = 0.1, the average stresses σ̄11 and σ̄22 are
not affected by the macroscopic strain E0

11. This suggests that residual
stresses develop in the boundary layer, which compensate the macroscopic
stresses, so that the stress state in a thin sub-surface layer is practically
independent of the macroscopic state far from the surface. Clearly, these
residual stresses strongly depend on the macroscopic strain E0

11. This is
illustrated in Fig. 6.12 which presents the average stresses σ̄11 and σ̄22 after
the surfaces are separated and the in-plane strain is released, E11 = 0, so
that the macroscopic stresses are equal to zero.

Let us finally note that the interior part of the average stress σ̄ (e.g. the
σ̄11 component) deviates from its macroscopic counterpart only in a part of
the boundary layer adjacent to the surface, namely in the zone of non-zero
plastic deformations. This is in agreement with the interfacial relationships
for averages, specified by equations (5.49).

6.4. Normal contact compliance of a sand-blasted sur-
face

In this section, the elasto-plastic normal contact compliance of a real three-
dimensional rough surface is analyzed using the finite element method. In

1The averages of the other stress components, namely σ̄33 and σ̄13, are equal to the
macroscopic counterparts in agrement with the compatibility condition (5.29)2.
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Figure 6.11. Distribution of average in-plane stresses σ̄11 (a) and σ̄22 (b) after

sliding distance gT = 3l (for δ/h = 0.1).

-1 -0.5 0
Σ
�
11�Σy

0.8

0.6

0.4

0.2

0

y
3
�l

E11
0
=-0.0015

E11
0
=0

E11
0
=0.0015

-0.8 -0.6 -0.4 -0.2 0
Σ
�
22�Σy

0.8

0.6

0.4

0.2

0

y
3
�l

E11
0
=-0.0015E11

0
=0

E11
0
=0.0015

(a) (b)

Figure 6.12. Distribution of average in-plane stresses σ̄11 (a) and σ̄22 (b) after

sliding distance gT = 3l and after the in-plane strain is released.



114 Chapter 6

accord with the main interest of the present chapter, the aim of this example
is to study the interaction of the local elasto-plastic deformations, associated
with flattening of asperities, with the macroscopic deformation field, and,
specifically, to investigate the effect of the macroscopic strain on the normal
contact compliance.

The present direct approach to modelling of contact interactions of rough
bodies is, in essence, similar to numerous previous studies, e.g. Bandeira et
al. [9], Varadi et al. [141]. The original contribution of the present study is
that, here, the macroscopic strain and its effect on the contact response are
directly accounted for and thoroughly analyzed.

In brief, the present approach involves the following steps. First, a
three-dimensional topography of a real surface is measured using the scan-
ning stylus profilometry. A representative part of the surface is next chosen,
and a finite element model of the unit cell of the corresponding boundary
layer is generated. A boundary value problem is then solved by consider-
ing the frictionless contact of the rough surface with a rigid and smooth
counter-surface. In addition to all the microscopic quantities, such as local
displacements, stresses, etc., the analysis provides the macroscopic contact
pressure and the real contact area fraction as a function of the relative ap-
proach of the surfaces. Below, several details of the present micromechanical
scheme are commented, and the effect of the macroscopic in-plane strain on
the macroscopic contact response is studied.

Dedicated measurements of surface roughness and normal contact com-
pliance of a sand-blasted surface, reported in this section, have been per-
formed at the Surface Layer Laboratory of the Institute of Fundamental
Technological Problems (IPPT) by Mrs. A. Bartoszewicz, Dr. S. Kucharski,
and Dr. G. Starzyński.

6.4.1. Material, surface roughness, finite element model

A steel specimen has been sand-blasted in order to create a severely rough
surface. Tree-dimensional topography of a 6×6 [mm2] area has then been
measured using a 3D stylus scanning profilometer with the resolution of 2,
20, and 1 micron in the x-, y-, and z-directions, respectively. The following
roughness parameters have been determined using this data: the arith-
metic mean roughness value Sa = 6.01 [µm], the RMS (root-mean-square)
roughness value Sq = 7.98 [µm], and the maximum peak-to-valley height
Sy = 94.0 [µm].

The material is a carbon steel C45 (ISO) with the initial yield stress
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of about 400 [MPa] and the ultimate tensile strength of about 640 [MPa].
Although the hardening curve of the bulk material is readily available, strain
hardening is neglected in the simulations, and a uniform yield stress σy =
400 [MPa] is assumed in the whole volume. This is clearly an approximation
since the surface layer is expected to be work-hardened after sand-blasting.
However, determination of the actual distribution of the plastic properties
and residual stresses within the surface layer after sand-blasting is difficult,
and has not been attempted. Thus all the related effects are neglected in
the present study.

Considering the typical size and spacing of surface asperities, the whole
6×6 [mm2] area is too large to represent the surface topography with suffi-
cient accuracy after feasible finite element discretization. Clearly, the limi-
tation here is the size of the problem and the computational time needed for
the solution of the finite element equations. Thus a 1.08×1.08 [mm2] sub-
area has been selected for the subsequent finite element computations. The
size of the sample has been chosen arbitrarily, and the problem of optimal
choice has not been addressed. However, representativeness of the chosen
sample has been verified by comparing the macroscopic contact response of
three different samples of the same size. This is discussed later.

A structured, three-dimensional finite element mesh has been designed
such that the mesh is substantially refined in the vicinity of the surface,
see Fig. 6.13. The contact surface is divided into a regular mesh of 54×54
quadrilateral elements, which gives the size of the sample equal to 1.08×1.08
[mm2] for node spacing of 20 [µm] (equal to the y-resolution of the scanned
profile).

Periodicity of roughness layout is an essential assumption of the mi-
cromechanical framework of Chapters 4 and 5. As the real random surfaces
are not periodic, the roughness of the considered sample has been artificially
made periodic, so that the micromechanical framework could be consistently
applied. A periodic roughness topography has been obtained by modifying
the surface in the vicinity of the boundary of the surface sample. The orig-
inal surface, the modified periodic one, and the difference between the two
are shown in Fig. 6.14.

Because the surface is severely rough, flattening of asperities is accom-
panied by rather large deformations. As the real contact area fraction
approaches unity, the equivalent plastic strain reaches 0.9, locally. Ac-
cordingly, the finite deformation kinematics is adopted and the finite-strain
multiplicative J2 elasto-plastic model is used, cf. Simo and Hughes [120].
Material and geometrical parameters of the present finite element model are
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Figure 6.13. Sand-blasted surface: finite element mesh of the unit cell.

(a) (b) (c)

Figure 6.14. Sand-blasted surface: (a) original 1.08×1.08 [mm2] sample;

(b) modified periodic surface; (c) difference between the two.

summarized in Table 6.2.
The finite element model shown in Fig. 6.13 consists of 14,888 hexa-

hedral elements. A volumetric-locking-free 8-node element employing the
volumetric-deviatoric split and Taylor expansion of shape function is used,
cf. Korelc [64]. The unilateral contact conditions are enforced nodally using
the augmented Lagrangian technique, cf. Pietrzak and Curnier [98]. The
total number of 52,817 unknowns combined with about 100 time increments
per analysis and an average of eight Newton iterations per increment make
the present example a moderately large-scale simulation.
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Table 6.2. Sand-blasted surface: material and geometrical parameters.

Parameter Symbol Value

Young’s modulus E 210 [GPa]
Poisson’s ratio ν 0.3
yield stress σy 400 [MPa]
characteristic length l 1.08 [mm]
height of the unit cell H/l 2
macroscopic strain E11, E22 −0.001, 0, 0.001

gN

tN

gN

− δ

(a) (b) (c)

NptN

hmax

hmax

Figure 6.15. Impenetrability conditions: (a) “rigid” Signorini condition;

(b) compliant contact law; (c) compliant contact law expressed in terms of contact

pressure pN = −TN and approach δ = hmax − gN.

6.4.2. Normal contact compliance and representativeness

The unilateral contact condition, specified by the Signorini condition (4.36),
applies for ideally smooth surfaces and describes the case of a “rigid” contact
interaction: separation occurs if the normal gap is greater than zero, gN > 0;
the surfaces are in contact if the gap is equal to zero, gN = 0; and penetration
with gN < 0 is ruled out, cf. Fig. 6.15(a).

If, however, the surfaces are rough, then the deformation of the asperities
is associated with some equivalent contact compliance. Defining the normal
gap gN as the signed distance between the nominal surfaces, contact occurs
first for gN > 0, i.e. when asperity summits start to interact, and the normal
gap decreases as the macroscopic contact pressure pN = −TN decreases, cf.
Fig. 6.15(b). The related contact compliance is an important factor in many
engineering applications.

The compliant contact response can also be expressed in terms of the
macroscopic contact pressure pN = −TN and approach δ = hmax − gN, cf.
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Figure 6.16. Normal contact compliance predicted for three 1.08×1.08 [mm2]

samples: contact pressure pN as a function of the approach δ (a) and of the

corrected approach δ − hmax (b).
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Figure 6.17. Real contact area fraction (a) and dimensionless hardness (b)

predicted for three 1.08×1.08 [mm2] surface samples.

the solid line in Fig. 6.15(c). Here, hmax is the maximum asperity peak
height, measured with respect to the nominal plane, equal to the gap at
which contact occurs first.

Three different samples have been simulated in order to check whether
the adopted 1.08×1.08 [mm2] sample is representative and sufficiently char-
acterizes the roughness of the analyzed surface. The results are compared
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in Fig. 6.16. It is seen that the predicted pressure-approach relation, cf.
Fig. 6.16(a), is visibly affected by the choice of the sample. This is because
the height hmax of the highest peak, as a highly random quantity, is different
for each sample. If, however, hmax is subtracted from the approach δ, then
the contact response of the three surface elements, expressed in terms of the
corrected approach δ−hmax, is practically identical for the three samples, cf.
Fig. 6.16(b). Also, the predicted real contact area fraction α and hardness
pN/α, both expressed as a function of the contact pressure pN normalized
by the yield stress σy, are almost identical for the three samples, as shown
in Fig. 6.17. Concluding, the adopted 1.08×1.08 [mm2] sample can be con-
sidered representative for the whole surface, provided that the approach δ
is correctly interpreted.

6.4.3. Experimental verification of the finite element model

In order to verify the developed finite element model, the normal contact
compliance of the sand-blasted surface has been measured experimentally
using the technique developed by Handzel-Powierża et al. [38]. The ex-
perimental setup is sketched in Fig. 6.18(a). Three hard, smooth, and
flat punches of area 8×8 [mm2] each are pressed into the specimen, and
the indentation force as well as the relative approach are measured during
loading and unloading. Note that elastic deflections in the experimental
setup contribute to the measured approach, as schematically illustrated in
Fig. 6.18(b). These deflections are not known.

The following experimental procedure was applied. Three series of com-
plete loading-unloading cycles were performed with the maximum contact
pressure pmax

N equal to 250, 500, and 750 [MPa]. In order to increase repeata-
bility of the results, in each case, a prestressing loading-unloading cycle with
the maximum pressure of 20 [MPa] was applied prior to the actual loading
cycle.

The recorded pressure-approach diagram corresponding to the maximum
pressure of 250 [MPa] is shown in Fig. 6.19(a) together with the respective
diagram predicted by the finite element model. It is evident that the two
diagrams do not match each other. This is, however, not surprising because
of the elastic deflections present in the measured approach.

Assuming that the unknown elastic deflections in the experimental setup
are proportional to the indentation force, the measured approach δexp can
be expressed as a sum of the actual approach δ∗exp, due to deformation of
asperities, and the elastic deflection kexppN, proportional to the contact
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Figure 6.18. Measurement of the normal contact compliance: (a) scheme of the

experimental setup; (b) elastic deflections in the system.

0 5 10 15 20 25
Approach, ∆ @ΜmD

50

100

150

200

250

P
r
e
s
s
u
r
e
,

p
N
@MPaD

0 5 10 15
Approach, ∆* @ΜmD

50

100

150

200

250

P
r
e
s
s
u
r
e
,

p
N
@MPaD

(a) (b)

Figure 6.19. Normal contact compliance of the sand-blasted surface: (a) raw

data and (b) data corrected by subtracting the elastic deflections and the initial

gap (solid line—finite element prediction, dots—experiment).
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pressure. The approach δ∗exp is thus given by

δ∗exp = δexp − kexppN, (6.15)

where kexp is an unknown compliance of the experimental setup.
It is also seen in Fig. 6.19(a) that the measured and the predicted residual

displacements after complete unloading are different. This is partly related
to a small, but uncontrolled, initial prestressing in the experimental setup.
On the other hand, as already discussed, there is quite some ambiguity in
determination of the approach predicted by the finite element model, cf.
Fig. 6.16. The predicted approach δmodel is thus corrected according to

δ∗model = δmodel − δ0, (6.16)

where δ0 is an unknown reference approach.
The two unknown parameters in equations (6.15) and (6.16), kexp and

δ0, have been identified by fitting the unloading branch of the pressure-
approach curve corresponding to pmax

N = 250 [MPa], and the following values
have been found to provide the best fit: kexp = 0.0538 [µm/MPa] and δ0 =
7.79 [µm]. After application of the above correction procedure, a very good
agreement of the predicted and the measured contact compliance has been
obtained, as shown in Fig. 6.19(b). These parameters have next been used to
correct the pressure-approach response corresponding to the two remaining
load cases.

The corrected pressure-approach diagrams corresponding to all three
loading cases are presented in Fig. 6.20. In the case of pmax

N = 500 [MPa],
the obtained agreement is very good for both the loading and the unloading
curves. As the case with the highest maximum pressure is concerned, the
predicted loading curve follows the experimental one up to the pressure of
about 600 [MPa]. However, with the further increase of the contact pressure,
a softening is observed in the experimental response. This is probably due
to macroscopic plastic indentation of the punches into the specimen, so
that the approach δ∗exp includes displacements due to macroscopic plastic
deformations. The experimental unloading curve follows the predicted one,
but it is shifted by about 4 [µm], which is interpreted as the additional
displacement due to macroscopic plastic deformations.

Although the predicted and the measured contact response match each
other very well, it should be noted that there is still some ambiguity in
the finite element model regarding determination of the plastic properties
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Figure 6.20. Normal contact response of the sand-blasted surface for three

different maximum contact pressures (solid line—finite element prediction, dots—

experiment).

within the surface layer. In fact, the above identification procedure has
been repeated assuming the initial yield stress σy = 500 [MPa] and the linear
isotropic hardening modulus K = 300 [MPa], and a very similar matching of
the predicted and the measured response has been obtained with parameters
kexp = 0.0530 [µm/MPa] and δ0 = 5.89 [µm] providing the best fit. Note
that parameter kexp, i.e. the identified elastic compliance of the experimental
setup, appears to be nearly insensitive to the plastic properties of the surface
layer. This is because kexp is identified using the response during unloading,
which proceeds in an, essentially, elastic regime.

6.4.4. Effect of in-plane strain on contact response

To conclude this section, we shall study the effect of the macroscopic in-
plane strain on the macroscopic contact response. For the study to be
more complete, in addition to the real sand-blasted surface studied above,
another, relatively smooth surface is also analyzed. In the latter case, an
artificial surface topography has been generated by simply scaling the rough-
ness of the sand-blasted surface by the factor of 0.2. Consequently, all the
above results regarding the representativeness of the surface sample and the
adequacy of the finite element model apply also for the smoother surface.
The terms “rough” and “smooth” are used below to denote the two surface
topographies.
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Similarly to the asperity ploughing example of Section 6.3, the contact
response is studied here for different macroscopic in-plane strain. In the
simulations, the macroscopic strain was enforced before the normal pressure
was applied and then it was hold constant during compression. Four cases
were considered: (i) E11 = E22 = 0, (ii) E11 = E22 = 0.001, (iii) E11 =
E22 = −0.001, (iv) E11 = −E22 = 0.001, where E11 and E22 denote the
in-plane components of the macroscopic strain tensor, and E12 = 0 was
assumed in all cases.

Contact response predicted for cases (i)–(iii) is reported in Figs. 6.21–
6.23. Case (iv), i.e. combined tensile-compressive in-plane strain, yielded
results which are hardly distinguishable from case (i), and thus the corre-
sponding diagrams are omitted in Figs. 6.21–6.23. This result is in agree-
ment with the model of Giannakopoulos [34], and also with the experi-
mental results of Lee and Kwon [73], who studied the effect of the initial
in-plane stresses on the force-depth response of instrumented sharp inden-
tation. They showed that only the average in-plane stress affects the force-
depth response whereas the pure shear component, as in the present case
(iv), has a negligible effect.

The predicted pressure-approach response is shown in Fig. 6.21. It is
seen that application of the macroscopic in-plane tensile strain results, for
a fixed contact pressure, in the increase of the approach, and the effect of
compressive strain is opposite. Also this result is in agreement with the
results of Giannakopoulos [34] and Lee and Kwon [73] concerning the force-
depth relationship in indentation.

In Figure 6.22, the pressure-approach diagrams from Fig. 6.21 are com-
pared on a log-log plot. Here, the approach δ is normalized by the arithmetic
mean roughness parameter Sa, and the contact pressure pN is normalized by
the yield stress σy. Except for very low pressures, the normalized response
of the rough surface is very similar to that of the smooth one, the smooth
surface being somewhat more compliant. At low contact pressures, the sur-
face with a more rough topography exhibits a significantly stiffer response.
Note that the log-log pressure-approach diagrams in Fig. 6.22 are not linear.
This indicates that the validity of the popular power law, pN = cNδm, e.g.
Kragelsky et al. [68], Wriggers [156], is rather restricted.

The effect of the macroscopic in-plane strain on the real contact area is
illustrated in Fig. 6.23(a). The in-plane tension promotes, and the compres-
sion inhibits, asperity flattening, so that, for a fixed contact pressure, the
real contact area fraction α is higher in the case of tension, and it is lower
in the case of compression. This effect is also clearly visible in Fig. 6.23(b),



124 Chapter 6

0 5 10 15 20 25
Approach, ∆ @ΜmD0

1

2

3

4

P
r
e
s
s
u
r
e
,

p
N
�Σ y

E11=E22=0

E11=E22=0.001

E11=E22=-0.001

0 1 2 3 4 5
Approach, ∆ @ΜmD0

1

2

3

4

P
r
e
s
s
u
r
e
,

p
N
�Σ y

E11=E22=0

E11=E22=0.001

E11=E22=-0.001

(a) (b)
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where the effective hardness, defined as the ratio of the normalized contact
pressure pN/σy and the real contact area fraction α, is shown as a function
of the normalized contact pressure.

The prediction of the micromechanical model of Wanheim and Bay [10,
147], corresponding to the frictionless case and a small asperity angle, is also
included in Fig. 6.23. That prediction is rather close to the results obtained
for the rough sand-blasted surface, cf. Fig. 6.23(a), although, for pN/σy < 2,



Finite element analysis of contact boundary layers 125

0 1 2 3 4
Pressure, pN�Σy

0

0.2

0.4

0.6

0.8

1

R
e
a
l
c
o
n
t
a
c
t
a
r
e
a
,
Α

E11=E22=0
E11=E22=0.001
E11=E22=-0.001
Wanheim H1974L

rough

smooth

0 1 2 3 4
Pressure, pN�Σy

0

0.5

1

1.5

2

2.5

3

3.5

H
a
r
d
n
e
s
s
,
H
p
N
�
Σ
y
L
�
Α

E11=E22=0

E11=E22=0.001

E11=E22=-0.001

Wanheim H1974L

smooth

rough

(a) (b)

Figure 6.23. Effect of macroscopic in-plane strain on real contact area (a) and

dimensionless hardness (b).

the hardness predicted by the Wanheim-Bay model is significantly higher
than that following from the present modelling, cf. Fig. 6.23(b). This differ-
ence can partly be attributed to the elastic deformations which are neglected
in the rigid-plastic Wanheim-Bay model. Interestingly, according to the re-
sults of the present elasto-plastic finite-element modelling, the hardness of
the rough surface is higher than that of the smooth surface, while an oppo-
site effect is predicted by the slip-line analysis of Bay [10]. It is not clear
whether this difference is due to elasticity, due to a completely different
surface topology assumed by the two models (note that Bay [10] analyzed
flattening of rigid-plastic wedge-like asperities in the plane strain condi-
tions), or due to finite-strain effects and related configurational changes at
the asperity scale (which are included in the present modelling).

6.5. Conclusions

Two representative asperity interaction problems of asperity ploughing and
flattening in the elasto-plastic regime have been studied in this chapter.
The analysis has been focused on the effects of the macroscopic in-plane
strains on the contact response. The corresponding predictions, which have
no counterpart in the literature, are hoped to contribute to a better under-
standing of the mechanisms of contact interactions of rough bodies. Some
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remarks concerning the finite element modelling of contact boundary layers
have also been provided.

The present numerical examples illustrate the basic effect which accom-
panies contact of rough bodies, namely the inhomogeneity of deformation in
a subsurface layer. This effect has already been discussed in Section 4.1 as
the motivation for the micromechanical analysis of contact boundary layers
in Chapters 4, 5, and 6. In particular, it is solely due to the deformation
inhomogeneities that plastic deformations can be induced in the vicinity
of the surface, while the macroscopic deformations remain purely elastic.
Note that significant shear deformation that is accumulated in the surface
layer due to repeated ploughing by subsequent asperities in sliding contact.
A relatively short sliding distance of three asperity spacings has only been
simulated in the ploughing example of Section 6.3 because direct simula-
tions of realistic sliding distances, which are normally at least 2–3 orders
of magnitude greater, are computationally too expensive. Note that the
shakedown theory is a possible approach to treat the related problems of
shakedown and ratchetting, cf. Johnson [55].

The real three-dimensional surface topography, measured by scanning
profilometry, has been used to study the normal contact compliance of a
sand-blasted surface, and a very good agreement of the predicted normal
contact compliance with the measured one has been obtained. Note that the
associated computational effort was substantial, although the finite element
discretization was not particularly fine with 55 × 55 = 3025 nodes on the
contact surface. Nevertheless, in view of the continuous increase of available
computing power, and also due to the continuous improvement of numerical
algorithms, the present direct approach becomes more and more feasible.

The present model is, however, not fully predictive because the actual
distribution of plastic properties within the surface layer is not known, and
thus a uniform yield stress, equal to that in the bulk material, could only
be assumed in the simulations. The lack of knowledge of local material
properties (e.g. yield stress) within surface layers constitutes thus a barrier
for predictive micromechanical modelling of contact interactions. In this
context, techniques such as micro- and nano-indentation might prove useful
for the determination of the local material properties.

As discussed in Section 3.3, asperity flattening and real contact area are
substantially affected by macroscopic plastic deformations in contact con-
ditions typical for metal forming processes. According to the results of the
present micromechanical studies, the analogous effects in the elasto-plastic
asperity deformation regime seem to be less pronounced. For instance,
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quite surprisingly, the macroscopic ploughing friction coefficient appears to
be practically insensitive to the macroscopic elastic in-plane strain. At the
same time, a visible effect has been predicted in the case of the normal
contact compliance of the sand-blasted surface, although the effect is not
substantial in quantitative terms.

Let us finally note that the averaging procedure introduced in Sec-
tion 5.2, proved to be a useful tool for the quantitative analysis of inho-
mogeneous fields within contact boundary layers. For instance, the analysis
of the average stresses within the boundary layer indicates that the resid-
ual stresses, which develop due to ploughing, compensate the macroscopic
stress, so that the total stress in the vicinity of the ploughing asperity is not
affected by the macroscopic stress far from the surface. This is suggested
as an explanation, why the ploughing friction coefficient is not affected by
the macroscopic in-plane strain.
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Introduction to martensitic microstructures

Abstract This chapter is a brief introduction to shape memory alloys and to

martensitic microstructures. Basic concepts, phenomena, and definitions concern-

ing martensitic transformations in shape memory alloys are introduced as a basis

for the new developments presented in Chapters 8 and 9. In particular, the crys-

tallographic theory of martensite is discussed for internally twinned martensites

and for internally faulted martensites.

7.1. Martensitic transformation in shape memory al-
loys

Shape memory alloys are attracting more and more interest due to their
unique behaviour and due to the related advanced applications, e.g. Bhat-
tacharya [13], Morawiec [77], Otsuka and Wayman [87], Sun [136]. The
shape memory effect, pseudoelastic behaviour, and other phenomena ob-
served in these alloys are associated with the martensitic phase transfor-
mation and, more specifically, with the formation and evolution of the mi-
crostructures that accompany the phase transition.

At the microscopic level, martensitic transformation is a first-order, dif-
fusionless, solid-to-solid phase transformation. The parent phase, called the
austenite, is stable at higher temperatures, and the product phase, called
the martensite, is stable at lower temperatures. The transition temperature
depends on the alloy, its composition, heat treatment, etc. The transforma-
tion can be induced either by changing the temperature (thermally-induced
transformation), or by applying external loading (stress-induced transfor-
mation). The martensitic transformation is crystallographically reversible,
however, as a dissipative process, it is thermodynamically irreversible.

The martensitic phase transformation is a symmetry lowering transfor-
mation, i.e. the crystallographic lattice of the austenite has higher symme-
try than that of the martensite. As a result, several variants of martensite

129
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austenite

martensite

Figure 7.1. Martensite variants in the cubic-to-tetragonal transformation.

can appear. The martensite variants are crystallographically equivalent,
but rotated with respect to each other. This is schematically illustrated in
Fig. 7.1 for the simple example of the cubic-to-tetragonal transformation.
The tetragonal unit cell of the martensite can be obtained by stretching
the unit cell of the cubic austenite along one of the three axes parallel to
the edges of the cubic cell. There are thus three crystallographically equiv-
alent variants of martensite. Clearly, the transformation strain, so-called
Bain strain, i.e. the strain associated with the deformation of the crystallo-
graphic lattice during transformation is different for each variant.

The multiplicity of forms (variants) that the austenite can take upon
transformation is, in fact, the source of the unique behaviour of shape mem-
ory alloys. The related phenomena are associated with the development and
evolution of martensitic microstructures.

Consider first the transformation induced by decreasing the temperature
at zero macroscopic stress. As there are no privileged directions, the austen-
ite transforms into a mixture of all variants with essentially zero1 macro-
scopic strain, as the transformation strains of particular variants cancel each
other. The coexistence of austenite and martensite during transformation
and the coexistence of different variants of martensite after transformation
gives rise to martensitic microstructures. The basic microstructures, i.e.

1The volumetric component of transformation strain is usually very small in marten-
sitic transformations in shape memory alloys.
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twins and austenite-martensite interfaces, are discussed in the next section.
Assume now that external loading is applied to the transformed spec-

imen. Under stress, the martensite variants rearrange, so that the vol-
ume fraction of some variants grows at the expense of the others. At the
micro-scale, this occurs through migration of twin boundaries. Martensite
variant rearrangement is associated with a macroscopic deformation which
does not vanish after the stress is released, cf. Fig. 7.2. However, once the
reverse transformation is induced by heating, the original shape is recov-
ered in the austenitic state. Subsequent cooling, accompanied by austenite-
to-martensite transformation at zero stress, produces again a mixture of
all variants with zero macroscopic strain. The phenomenon corresponding
to the thermomechanical loading cycle described above, and sketched in
Fig. 7.2, is called the shape-memory effect.

The martensitic transformation may also be induced by external loading
at the temperature high enough for the austenite to be stable in the stress-
free state. In that case, an oriented martensite appears, typically in the
form of parallel plates, since only selected variants of martensite are suit-
ably oriented with respect to the external stress. Once the whole volume
is transformed, further loading results in the elastic loading of martensite,
possibly accompanied by martensite variant rearrangement. Upon unload-
ing, the reverse transformation proceeds with the typical hysteresis loop,
as indicated in Fig. 7.3. The corresponding behaviour is referred to as
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pseudoelasticity. The stress-induced transformation can be modelled as an
isothermal, i.e. purely mechanical, process under the assumption that the
process is slow. However, in general, the thermomechanical coupling may
generate substantial effects.

The micromechanical modelling carried out in Chapters 8 and 9 is con-
cerned with the stress-induced transformations and with the related pseu-
doelastic effect. Accordingly, isothermal conditions are assumed, except in
Section 8.3.4, where a macroscopically adiabatic process is studied.

7.2. Crystallographic theory of martensite

7.2.1. Geometrical compatibility condition

The crystallographic theory of martensite developed by Ball and James [8]
is a rigorous mathematical theory extending the so-called phenomenological
theory of martensitic transformation of Wechsler, Lieberman and Read [148]
and Bowles and MacKenzie [17]. The theory, developed within the frame-
work of nonlinear thermoelasticity, is widely accepted and highly successful
in predicting the microstructures in martensitic transition. A detailed expo-
sition of the theory with an extensive bibliography can be found in a recent
book of Bhattacharya [13].

The crystallographic theory is based on the postulate that the micro-
structures are absolute minimizers of energy. Consequently, microstructure
evolution and the related hysteresis are not addressed by the theory. More-
over, only stress-free (compatible) microstructures, whenever possible, are
predicted by the theory. The final equations resulting from the theory are
thus purely geometrical.

The martensitic transformation is displacive (i.e. diffusionless), and the
related homogeneous deformation that transforms the lattice of the austen-
ite to that of the martensite variant I is described by the transformation
stretch tensor UI . For a specified pair of parent and product phases, the
transformation stretch UI is known, as it can be determined from the crys-
tallographic lattice parameters of both phases. The undeformed, stress-free
configuration of the austenite is adopted as a reference configuration, thus,
in view of the assumption of zero stress, the deformation gradient within a
transformed region occupied by single variant is FI = RUI , where R is a
proper rotation tensor, RRT = I and det R = 1. Martensite variants are
symmetry-related, thus, for each pair (I,J), there exists a rotation tensor
QIJ , belonging to the symmetry point group of austenite, which relates the



Introduction to martensitic microstructures 133

respective transformation stretches, viz.

UJ = QIJUIQT
IJ . (7.1)

As the deformation associated with the martensitic transformation is
continuous (coherent transformation), the jump of deformation gradient
across any interface, ∆F = F−−F+, must satisfy the following geometrical
compatibility condition,

∆F = c⊗ n, (7.2)

which is the finite-strain counterpart to the compatibility condition (2.27).
Here, F+ and F− are the deformation gradients at both sides of the in-
terface, n is the interface normal (in the reference configuration), and c
is an arbitrary vector. Note that under the assumption of zero stress, the
compatibility condition (7.2) enforces a purely geometrical constraint on
transformation stretches of the martensite variants forming a microstruc-
ture. Clearly, the condition of mechanical equilibrium, i.e. the finite-strain
counterpart to the compatibility condition (2.29), is trivially satisfied at
zero stress.

The austenite-martensite interface is the basic microstructure in the
analysis of progressive transformation when the austenite and the marten-
site coexist. This microstructure is discussed below. Other microstructures
(e.g. wedges, complex twin microstructures) and thin-film microstructures
(e.g. tents, tunnels) have been studied, for example, by Bhattacharya [11,
13], Bhattacharya and James [15], and Hane [39].

Consider first the case of the exact austenite-martensite interface, i.e.
the interface formed by the austenite (F+ = I) and the crystallographi-
cally perfect I-th variant of martensite (F− = RUI). The compatibility
condition (7.2) takes the form

RUI − I = b⊗m, (7.3)

to be solved for m, b, and R with UI constituting the data. Here and in
the following, m denotes the unit vector normal to the austenite-martensite
interface, called the habit plane, and b is the so-called shape strain vector.

It can be shown that solution to (7.2) exists if and only if the trans-
formation stretch UI has one eigenvalue equal to one, one less than one,
and one greater than one, see, for instance, Bhattacharya [13]. This con-
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dition is not satisfied by the vast majority of known shape memory alloys1

and thus exact austenite-martensite interfaces are, in general, not possible.
For this reason the austenite-martensite microstructures in shape memory
alloys usually involve either twinning (internally twinned martensites) or
stacking faults (internally faulted martensites), and these mechanisms allow
geometrical compatibility between austenite and martensite at zero stress.

7.2.2. Internally twinned martensites

Internally twinned martensites appear in the form of fine mixtures of two
variants. The microstructure of the corresponding austenite-martensite in-
terface is depicted in Fig. 7.4. In addition to the compatibility condition
at the austenite-martensite interface, the geometrical compatibility must
hold along the twinning plane, i.e the martensite-martensite interface, with
normal l. This is expressed in the form of the twinning equation,

RUI −UJ = a⊗ l, (7.4)

which, for a given pair (I, J) of martensite variants, is solved for unknown
vectors l and a, and rotation R.

1Bhattacharya [13] reports two cases where, by careful manipulation of composition,
the alloys have been found which satisfy condition (7.2) and form the exact austenite-
martensite interface.
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Assume now that solution to (7.4) exists, and consider a twin laminate
formed by two martensite variants with λ and 1− λ being the volume frac-
tions of variants I and J , respectively. The austenite-martensite interface is
now possible if the average deformation gradient of the twinned martensite
satisfies the compatibility condition. This condition is called the habit plane
equation, and can be written as

R̂[λRUI + (1− λ)UJ ]− I = b⊗m. (7.5)

The unknowns of the habit plane equation (7.5) are the habit plane normal
m, the shape strain vector b, the twin fraction λ, and rotation R̂.

A detailed discussion of the conditions, under which solutions to equa-
tions (7.4) and (7.5) exist, and the respective solution methods are provided
by Bhattacharya [13] based on the results of Ball and James [8]. Examples
and applications for specific alloys can be found, for example, in Bhat-
tacharya [13] and Hane and Shield [41, 42, 43].

Note that the habit plane equation (7.5) is a macroscopic compatibility
condition ensuring stress-free conditions everywhere except in a thin tran-
sition layer, depicted in grey in Fig. 7.4, in which the local incompatibilities
must be accommodated by non-zero local elastic strains. The microstruc-
ture of the transition layer at the austenite-twinned martensite interface,
the corresponding elastic micro-strain energy, and the related size effects,
e.g. Khachaturyan [58], Maciejewski et al. [76], Petryk et al. [97], are not
studied in this thesis.

7.2.3. Internally faulted martensites

Although, as discussed above, the exact austenite-martensite interfaces are
not possible in general, in some Cu-based alloys (e.g. CuAlNi, CuZnAl,
CuZn, CuAlMn) coherent interfaces are observed between austenite and un-
twinned martensite. In these martensites, the compatibility at the austenite-
martensite interface is obtained by macroscopic shear due to random stack-
ing faults on the basal planes, cf. Otsuka et al. [88] and Chakravorty and
Wayman [20], hence the name internally faulted martensites.

In the Cu-based shape memory alloys, usually more than one martensitic
phase exists, and thus several austenite-to-martensite and also martensite-
to-martensite transformations are possible, cf. Otsuka et al. [85, 88], Hori-
kawa et al. [48], Dutkiewicz et al. [26], Šittner and Novak [144]. The inter-
nally faulted martensites appear in the transitions from the cubic austenite
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of DO3 or B2 structure to the monoclinic martensite of 6M structure;1 a
typical example is the β1→β′1 transition in CuAlNi.

The specification of the crystallographic theory for the case of untwinned
martensites is presented below based on the approach proposed by Hane [39].
However, following Stupkiewicz [124], an explicit distinction is made here
between the shear resulting from the change of the crystallographic lattice
and the additional shear due to random stacking faults.

The deformation which transforms the lattice of the cubic austenite to
the crystallographically perfect lattice of the monoclinic 6M martensite can
be decomposed into pure stretch and shear, the latter resulting from regular
shuffling of the basal planes. Denote the corresponding deformation gradi-
ents of martensite variant I by UI and KI = I + kθsI ⊗ nI , respectively,
where the stretch tensor UI and the shear magnitude kθ are known from
the crystallography of transformation. The unit vectors sI , the direction
of shear, and nI , the shear plane normal, are also known. The resulting
deformation gradient,

FI = KIUI = (I + kθsI ⊗ nI)UI , (7.6)

does not, in general, satisfy the geometrical compatibility condition (7.3),
namely RFI − I 6= b⊗m.

As already mentioned, the compatibility at the austenite-martensite in-
terface is provided by random stacking faults on the basal planes. The
associated deformation is a shear,

Ksf
I = I + ksfsI ⊗ nI , (7.7)

where ksf is an unknown shear magnitude due to stacking faults. Impor-
tantly, the shear system is the same as the one in KI . The mechanism of
stacking faulting is through the sequence faults, i.e by the perturbation of
the ideal shuffling sequence responsible for the shear KI , cf. Andrade et
al. [4], see also Section 9.2.1.

The geometrical compatibility condition is now enforced on the total
deformation gradient F̂I = Ksf

I FI , namely

R[I + (kθ + ksf)sI ⊗ nI ]UI − I = b⊗m, (7.8)
1The 6M structure can alternatively be represented by the M18R or M9R structure,

depending on the parent phase structure, but the 6M unit cell corresponds to the actual
transformation mechanism and more accurately reflects the symmetry of the product
phase, cf. Otsuka et al. [84]. The transformation mechanism and different unit cells are
discussed in more detail in Section 9.2.1.
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and F̂I is given by

F̂I = Ksf
I KIUI = [I + (kθ + ksf)sI ⊗ nI ]UI . (7.9)

The unknowns in the habit plane equation (7.8) are the habit plane normal
m, the shape strain vector b, the shear magnitude ksf , and a rotation R.
The solution of equation (7.8) can be obtained by applying the theory of
Ball and James [8], for more details refer to Hane [39] and Stupkiewicz [124].

Remark 7.1 In the present setting, the stacking faults are assumed to
appear freely if this is required by the compatibility of the total deformation
gradient F̂t

I , and thus the shear magnitude ksf can take arbitrary values at
no energetic expense. This is in contrast to the analysis of Chapter 9 where
the stacking faults are assumed to increase the free energy of the martensite.

7.2.4. Geometrically linear theory

Although the kinematically exact crystallographic theory of martensite is
readily available, the geometrically linear one is briefly introduced below.
Being an approximation, it is, however, consistent with the small deforma-
tion framework of the micromechanical analysis carried out in Chapters 8
and 9.

Neglecting the difference between the gradients in the reference and cur-
rent configurations, the small strain tensor ε corresponding to a deformation
gradient F is derived from the displacement gradient ∇u = F− I according
to

ε =
1
2

[∇u + (∇u)T] =
1
2

(F + FT)− I. (7.10)

Thus, for example, the transformation strain εt
I corresponding to the trans-

formation stretch UI is given by εt
I = UI − I. As in the case of the

transformation stretches, the transformation strains of any two variants of
martensite are mutually rotated, so that εt

J = QIJεt
IQT

IJ , cf. equation (7.1).
Consider first the internally twinned martensites. The twinning equa-

tion, i.e. the small strain counterpart to equation (7.4), reads

εt
I − εt

J =
1
2

(a⊗ l + l⊗ a), (7.11)
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and the habit plane equation (7.5) becomes

λεt
I + (1− λ)εt

J =
1
2

(b⊗m + m⊗ b), (7.12)

where εt
I and εt

J are the transformation strains of martensite variants I and
J , respectively, and the strain in the austenite is equal to zero. As in the
geometrically nonlinear theory the unknowns are l, a, m, b, and λ.

In the case of internally faulted martensites, the total transformation
strain ε̂t

I can be expressed as a sum of the transformation strain εt
I of an

un-faulted martensite and the additional shear due to stacking faults,

ε̂t
I = εt

I + ksf
1
2

(sI ⊗ nI + nI ⊗ sI). (7.13)

The habit plane equation, expressing the geometrical compatibility of the
austenite and the faulted martensite, takes now the form

εt
I + ksf

1
2

(sI ⊗ nI + nI ⊗ sI) =
1
2

(b⊗m + m⊗ b), (7.14)

with unknown m, b, and ksf .
The method of solution of equations (7.11) and (7.12) can be found in

Bhattacharya [12], and the specification for equation (7.14), i.e. for the case
of internally faulted martensites, is provided in Stupkiewicz [124]. The pre-
dictions of the geometrically linear theory are, in general, close to those of
the kinematically exact one. There are, however, some qualitative differ-
ences due to rotations which are neglected in the linear theory, cf. Bhat-
tacharya [12].
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Evolving laminates in shape memory alloys

Abstract Micromechanical model of a single crystal undergoing stress-induced

martensitic transformation is developed assuming that the transformation pro-

ceeds by the nucleation and growth of parallel martensitic plates. The microstruc-

ture accompanying the transformation is thus that of an evolving rank-one lami-

nate or of an evolving rank-two laminate if detwinning is additionally accounted

for. Propagation of the phase transformation front is assumed to be governed by

a rate-independent criterion formulated in terms of the thermodynamic driving

force on the phase transformation front. Macroscopic constitutive rate-equations

are derived for the case of an evolving rank-one laminate. Several examples of

pseudoelastic response of Cu-based shape memory alloys illustrate the approach.

8.1. Laminated microstructures

As indicated in the previous chapter, the coexistence of stress-free parent
and product phases during a coherent phase transformation is only possible
if the two phases are geometrically compatible. The condition of geometri-
cal compatibility under zero stress is, in fact, a fundamental relation of the
crystallographic theory of martensite. One of the results of that theory is
that the orientation of the austenite-martensite interface, if such an inter-
face exists, is fully determined by the transformation strains of martensite
variants.

The martensitic transformations are thus accompanied by microstruc-
tures, the simplest being that associated with the interface between the
austenite and the twinned or untwinned martensite. These basic microstruc-
tures are also involved in more complex microstructures, such as wedges,
crossing plates, etc., cf. Bhattacharya [11], Shield [119].

In stress-induced transformations, the assumption of zero stress is natu-
rally not satisfied. However, in view of the elastic strains being small com-
pared to the transformation strain, the predictions of the crystallographic

139
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theory are often regarded sufficiently accurate, and are thus applied also
for the stress-induced transformations. For instance, Chu [22] and Ball
et al. [7] developed the so-called constrained theory, applicable for stress-
induced transformations, in which the elastic strains are neglected. The
theory employs the finite deformation kinematics, and is based on mini-
mization of the total free energy of a stressed specimen, which includes the
potential energy of the loading device. The theory is consistent with the
crystallographic theory, however, it is based on a simplifying assumption of
stress homogeneity. Moreover, it does not account for hysteresis.

A different approach is adopted in the present work. The transformation
is assumed to proceed through the evolution of laminated microstructures.
Such microstructures are commonly observed in experiments, e.g. Otsuka
et al. [88], Horikawa et al. [48], Jiang and Xu [52], Huo and Müller [49],
Shield [119]. Laminated microstructures are also very convenient for mi-
cromechanical modelling because analytical micro-macro transition rela-
tions are available, see Section 2.6. While there are some similarities of the
present approach to that of Khachaturyan [57, 58] and Roytburd [110, 111,
116], there are some fundamental differences. First of all, the microstruc-
ture evolution is determined here from the threshold condition imposed on
the local thermodynamic driving force at the phase transformation front,
rather than from the condition of phase equilibrium. Secondly, the elastic
anisotropy of the phases with the related elastic mismatch between austen-
ite and martensite are fully accounted for, and a complete computational
scheme for the evolution of laminated microstructures is specified. In Chap-
ter 9, an additional aspect is also discussed, namely the energy of stacking
faults in internally faulted martensites.

In the simplest case, the laminated microstructure consists of paral-
lel plates of martensite that nucleate and grow within the austenite ma-
trix. The related evolving rank-one laminate is schematically illustrated
in Fig. 8.1. Because of the applied external loading, some directions and
some variants of martensite are favored. This is in contrast to the thermally-
induced transformations, where more complex, but un-oriented, microstruc-
tures develop providing zero macroscopic strain.

In some situations, higher-rank laminates are also observed. For exam-
ple, if the transformation proceeds through the formation and growth of
one family of martensitic plates, as indicated in Fig. 8.1, but the marten-
sitic plates are internally twinned, then the microstructure is a rank-two
laminate, as illustrated in Fig. 8.2(a). Evolving rank-two laminates are
studied in Section 8.4, in the context of martensite variant rearrangement
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Figure 8.1. Stress-induced transformation proceeding by formation and growth

of parallel martensitic plates (evolving rank-one laminate).

(a) (b)

Figure 8.2. Examples of evolving higher-rank laminates: (a) twinned martensitic

plates, (b) secondary plates.

(detwinning) during progressive transformation.
Higher-rank laminates are also observed, for instance, when secondary

plates develop, cf. Fig. 8.2(b), or when instability of the macroscopically
homogeneous transformation occurs. The related effects are not discussed
in this work, some preliminary results can be found in Petryk and Stup-
kiewicz [96].

The present chapter is organized as follows. In Section 8.2, the small-
strain constitutive framework and the transformation criterion are specified,
and the macroscopic rate-equations are derived for the case of an evolving
rank-one laminated microstructure. This section essentially follows the mi-
cromechanical modelling of Stupkiewicz and Petryk [132], and also that
of Petryk [95] who developed the general finite deformation framework.
The micromechanical model is next applied to simulate the pseudoelas-
tic behaviour of CuZnAl and CuAlNi shape memory alloys. Evolution of
rank-one laminates is studied in Section 8.3, and the effect of detwinning
is analyzed in Section 8.4 by considering the evolution of a rank-two lam-
inated microstructure. Section 8.3 contains unpublished results, including
comparison with the experimental data of Horikawa et al. [48] and Novák
et al. [80]. The results presented in Section 8.4 have already been published
in Stupkiewicz and Petryk [133].
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φ

Figure 8.3. Constitutive modelling of materials undergoing phase transforma-

tion: (a) single multi-well free energy function; (b) free energy functions prescribed

separately for each phase (to be complemented by a transformation criterion).

8.2. Micromechanical model of pseudoelasticity

8.2.1. Constitutive framework

There are two basic approaches to describe the constitutive behaviour of
a single crystal undergoing martensitic phase transformation. In the first
approach, the phases are explicitly considered to be different states of the
same material. Consequently, a single free energy function is defined with
local minima corresponding to austenite and to martensite variants, cf.
Fig. 8.3(a). The phase of a material point is then determined by proxim-
ity to the nearest local minimum (so-called energy well). In this approach,
the microstructure is typically found by minimizing the total free energy of
an element, and, as the free energy function is not convex, relaxation tech-
niques are usually applied, e.g. Bhattacharya and Dolzmann [14], Kohn [61],
Smyshlyaev and Willis [121]. In a general case, it is not easy to formulate
a free energy function corresponding to an arbitrary transformation and
satisfying the elastic symmetries consistent with crystal symmetries in the
wells, cf. Vedantam and Abeyaratne [142]. As a result, the applicability of
that approach for real materials is restricted.

In the second approach, which is adopted in the present considerations,
a micro-structured material undergoing phase transformation is treated as
a mixture of separate phases. The austenite and each variant of martensite
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are assumed to be elastic materials with usual convex free energy functions,
each having a distinct stress-free configuration, cf. Fig. 8.3(b). The phase
transformation is accounted for by enforcing transformation criteria at the
interfaces. In this approach, the symmetry relations between the phases
are easily introduced within the framework of anisotropic elasticity with
eigenstrain. The small-strain constitutive relationships are provided below,
however, an extension to finite deformation kinematics is also possible, cf.
Maciejewski et al. [76], Stupkiewicz and Petryk [131].

Within the small deformation framework, the stress-free configuration
of the martensite variant I is described by its transformation strain εt

I ,
measured with respect to the stress-free configuration of austenite, cf. Sec-
tion 7.2.4. Consider thus the Helmholtz free energy function of the marten-
site variant I, as in the classical linear thermoelasticity, cf. Raniecki [103],

φI(T, ε) = φ0
I(T ) +

1
2

(ε− εt
I) · LI(ε− εt

I), (8.1)

where T denotes the temperature and

φ0
I(T ) = ρc[T−T0−T log(T/T0)]+u0

m−Ts0
m, εt

I = εt0
I +αI(T−T0). (8.2)

Here, φ0
I is the temperature-dependent free energy density in the stress-free

state, ρ is the density, c is the specific heat, u0
m is the internal energy density

in the reference state (i.e. at T = T0 and in stress-free conditions), s0
m is

the entropy in the reference state, and all densities refer to unit volume.
Clearly, the internal energy in the reference state u0

m and the entropy in the
reference state s0

m are identical for all martensite variants. In general, due
to thermal expansion, the eigenstrain εt

I , depends on temperature, εt0
I is

the eigenstrain at the reference temperature, and αI is the linear thermal
expansion tensor. Finally, LI is the fourth-order elasticity tensor.

The free energy density of the austenite has the form analogous to (8.1)–
(8.2) with the material constants u0

a, s0
a, La, and αa replacing u0

m, s0
m, LI ,

and αI , respectively, and the specific heat of the austenite is assumed to
be equal to that of the martensite. As all the strains are referred to the
stress-free configuration of austenite at the reference temperature T0, the
eigenstrain of the austenite at T = T0 is equal to zero.

In the following, the isothermal pseudoelastic response is mostly consid-
ered, thus a simplified form of the free energy is of interest. The isothermal
free energy density of the austenite, consistent with the general form spec-
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ified by equations (8.1)–(8.2), can be written in the form

φa = φ0 +
1
2

ε · Laε, (8.3)

and that of the martensite variant I in the form

φI = φ0 + ∆amφ0 +
1
2

(ε− εt
I) · LI(ε− εt

I), (8.4)

where φ0 and φ0 + ∆amφ0 are the temperature-dependent free energy den-
sities of, respectively, austenite and martensite in stress-free states. The
difference, denoted by ∆amφ0, is often called the chemical energy, and, in
view of equation (8.2)1, it can be expressed in the form

∆amφ0 = −(u0
a − u0

m) + T (s0
a − s0

m), (8.5)

where u0
a − u0

m > 0 and s0
a − s0

m > 0, cf. Raniecki [103]. It is seen that,
in accord with experimental observations, the chemical energy ∆amφ0 is a
linear function of temperature. The free energy densities (8.3) and (8.4) are
consistent with the constitutive equations of linear isothermal anisotropic
elasticity with eigenstrain, cf. Eq. (2.32), and the fourth-order elasticity
tensors La and LI possess the usual symmetries and are positive definite.

In view of the symmetry relations between the martensite variants, the
transformation strains εt

I and εt
J of any two variants I and J are mutually

rotated, so that εt
J = QIJεt

IQT
IJ , see also equation (7.1). Also the elasticity

tensors LI and LJ are mutually rotated, so that, in Cartesian coordinates,
we have (LJ)ijkl = (QIJ)ip(QIJ)jq(QIJ)kr(QIJ)ls(LJ)pqrs.

8.2.2. Phase transformation criterion

The martensitic transformation is crystallographically reversible in the sense
that an identical crystalline lattice is recovered after the complete forward-
reverse transformation cycle. However, the martensitic transformation is
not thermodynamically reversible because it is a dissipative process. Indeed,
hysteresis loops are observed in the case of both thermally- and stress-
induced transformations.

The intrinsic dissipation rate due to the transformation, per unit area
of the transformation front, is given by

Ḋt = fvn ≥ 0, (8.6)
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where f is the local thermodynamic driving force and vn ≥ 0 is the normal
speed of propagation. In the quasi-static case,1 the thermodynamic driving
force is defined by, cf. Eshelby [29], Rice [107], Raniecki [103],

f = σ ·∆ε−∆φ, (8.7)

where φ is the Helmholtz free energy density, and ∆(·) = (·)−−(·)+ denotes
the forward jump with respect to time of a local variable on the transfor-
mation front moving from ‘−’ to ‘+’ side, cf. Petryk [95]. In view of the
property ∆σ ·∆ε = 0, cf. Eq. (2.31), the stress σ in the formula (8.7) can
be taken from any side of the front.

The thermodynamic driving force f may be used to formulate the cri-
terion of propagation of the phase transformation front. As the dissipation
of energy does not approach zero with decreasing rate of change of external
conditions, it is commonly accepted that a barrier exists for f , so that the
martensitic transformation can only proceed when f reaches some threshold
value fc. For instance, Abeyaratne and Knowles [1, 2] assumed a kinetic
relation, i.e. a rate-dependent rule in which the propagation speed vn is a
function of the thermodynamic driving force f .

In this work, following Petryk [95] and Stupkiewicz and Petryk [132], a
rate-independent criterion is adopted. The time-dependent effects are thus
disregarded based on the assumption that the external displacements or
loads change sufficiently slowly. This assumption is also consistent with
the assumption that the process of stress-induced phase transformation is
isothermal. Assume thus that the phase transformation front propagates if
the thermodynamic driving force attains a threshold value fc, cf. Rice [107],
Raniecki [103],

f − fc ≤ 0, vn ≥ 0, (f − fc)vn = 0. (8.8)

The critical driving force fc is, in general, state-dependent, furthermore,
the non-negativeness of the intrinsic dissipation rate requires that fc is non-
negative, fc ≥ 0.

Transformation criterion (8.8) applies to both austenite-to-martensite
and martensite-to-austenite transitions with the proper meaning of the
jumps in the definition of the driving force f , equation (8.7). In general, the

1The thermodynamic driving force in the dynamic case has been derived by Abe-
yaratne and Knowles [1] and Raniecki and Tanaka [106]. In the present work, the inertia
effects are neglected.
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critical driving force fc may be different for the forward and for the reverse
transformation.

If the critical driving force is assumed to be a material constant, fc =
const., then, in the absence of dissipation due to reorientation of martensite
variants, the intrinsic dissipation D̄t due to any transformation in a finite
volume V t is, cf. Stupkiewicz and Petryk [132],

D̄t = V tfc. (8.9)

If, additionally, the critical driving forces for forward and reverse transfor-
mations are identical, then the area of a hysteresis loop on an isothermal
stress-strain diagram is always equal to 2fc and constant irrespective of the
loading program (e.g. tension or compression, loading direction, etc.), pro-
vided that the whole volume transforms during forward and during reverse
transformation. This conclusion is consistent with several experimental ob-
servations. For example, the hysteresis size is found to be independent
of temperature (e.g. Huo and Müller [49], Shield [119]) and approximately
equal in tension and compression (e.g. Orgeas and Favier [83], Thamburaja
and Anand [140]). The criterion (8.8) is, however, not consistent with the
special character of the internal hysteresis loops observed by Müller and
Xu [79] and Huo and Müller [49].

Remark 8.1 If fc = 0, then the transformation criterion (8.8) reduces
to the well-known condition of phase equilibrium, cf. Roytburd [110, 112],
James [51], Gurtin [37], Raniecki [103].

8.2.3. Macroscopic rate-equations for laminates

In this section, the micro-macro transition relations are derived for a repre-
sentative volume element of a material undergoing martensitic phase trans-
formation. It is assumed that the microstructure accompanying the trans-
formation is that of an evolving rank-one laminate, cf. Fig. 8.1. The product
phase is thus assumed to appear in the form of parallel plates which nucleate
and grow within the parent phase. It is also assumed that no microstruc-
tural changes appear within the layers.

The analysis below is based on that carried out in Petryk [95] and in
Stupkiewicz and Petryk [132]. However, the present exposition is restricted
to a simplified case, as the evolution of rank-one laminated microstructures
is only considered here. More general forms of some formulae that are de-
rived below can be found in Petryk [95] and in Stupkiewicz and Petryk [132].
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The analysis of Petryk [95] employs the finite deformation framework, while
here, and in Stupkiewicz and Petryk [132], a restriction is made to the in-
finitesimal strain format.

Consider thus a rank-one laminated microstructure within a material
(single crystal) with η− = η and η+ = (1−η) denoting the volume fractions
of two homogeneous ‘−’ and ‘+’ phases. The product phase, denoted by ‘−’,
is identified with the martensite when the austenite-to-martensite transition
is considered, and with the austenite in the case of reverse transformation.
In agreement with equations (8.3)–(8.4), the constitutive behaviour of the
phases is governed by the free energy density in the form

φ± = φ±0 +
1
2

(ε± − εt±) · L±(ε± − εt±), (8.10)

so that σ± = L±(ε± − εt±), cf. equations (2.32) and (2.34). The local
transformation strains εt± are assumed constant and known.

For a fixed microstructure, all the quantities, both macroscopic and mi-
croscopic, can be determined using the micro-macro transition relations for
the rank-one laminated microstructure at hand, cf. Section 2.6 and Ap-
pendix A. However, this work is focused on the progressive transformation
and on the related evolution of the microstructure. Therefore, the macro-
scopic rate-quantities are studied below.

In the process of martensitic transformation, the mechanical equilibrium
can only be assumed at a discrete set of states which are separated by
dynamic formation of product-phase particles (platelets). However, in the
present analysis, the microstructure evolution is assumed to be continuous
and quasi-static. This idealization is based on the assumptions that the
overall strains vary slowly and that the thickness of each newly formed
platelet is sufficiently small. The evolution can thus be described in terms
of forward rates, i.e. right-hand derivatives, denoted by a superimposed dot.

As discussed in Section 2.6, in a laminate, strains and stresses are uni-
form within the layers. Thus the conditions are identical at all interfaces
separating the layers, and the interface normal n can be assumed constant1

1Within the present modelling, the microstructure is assumed to be fine, actually
infinitely fine in the limit. The gradients of macroscopic quantities as well as the boundary
effects are thus disregarded. As a consequence, the variation of the interface normal n
during transformation is also ruled out, because the related rotation of the interface
would induce reverse transformation on a part of each interface, in contradiction with
the homogeneity of stresses and strains within the layers, and with the homogeneity of
the thermodynamic driving force along the interfaces.
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during the transformation. Furthermore, in the present case of a two-phase
laminate, the macroscopic strain and stress are simply given by

E = {ε} = ηε− + (1− η)ε+, Σ = {σ} = ησ− + (1− η)σ+, (8.11)

as a specification of the averaging operation (2.8).
An important consequence of evolution of the microstructure is that the

rates of the macroscopic strain and stress are distinct from the respective
averaged local rate-variables. Indeed, by differentiating equations (8.11),
the rates of macroscopic stress and strain are obtained in the form

Ė = {ε̇}+ η̇∆ε, Σ̇ = {σ̇}+ η̇∆σ, (8.12)

see Petryk [95] for the derivation of a more general extended transport the-
orem.

The local stresses and strains in the layers satisfy the compatibility con-
ditions (2.27) and (2.29). As the interface normal n is fixed in space and
time, similar compatibility conditions hold also for the rates of local vari-
ables, namely

∆ε̇ =
1
2

(d⊗ n + n⊗ d), ∆σ̇n = 0. (8.13)

Using the interior-exterior decomposition, the above compatibility condi-
tions can be rewritten in the form

ĖP = {ε̇P} = ε̇+
P = ε̇−P , Σ̇A = {σ̇A} = σ̇+

A = σ̇−A , (8.14)

see also equations (2.41). Note that, in view of compatibility conditions
(2.30), equations (8.14) are not in contradiction to equations (8.12).

As the local transformation strains εt± are constant, the rates of local
strains and stresses are related by ε̇± = L±σ̇±. These local constitutive
rate equations together with the averaging rule and compatibility conditions
(8.13) can be solved to yield the constitutive rate-equation for the averaged
rate-variables, namely

{σ̇} = L̃{ε̇}, {ε̇} = M̃{σ̇}, (8.15)

where L̃ and M̃ are the effective elastic moduli of the laminate, as in-
troduced in Section 2.6. This is clear once we note that the governing
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equations leading to (8.15) are identical to those governing the micro-macro
transition of Section 2.6 with the local variables replaced by their rates and
the transformation strains absent in the local constitutive rate-equations,
ε̇± = L±σ̇±. It is essential that equations (8.15) are valid irrespective of
whether the laminated microstructure is evolving (and the transformation
fronts are moving) or not. The effective elastic moduli L̃ and M̃ are the
instantaneous ones corresponding to the current microstructure which is
specified by η, the volume fraction of the product phase.

Using relations (8.15), the averaged rate-variables {ε̇} and {σ̇} can be
eliminated from (8.12), and the following macroscopic constitutive rate-
equations for a specified ‘+’ to ‘−’ transformation are obtained

Ė = M̃Σ̇ + η̇ µ, Σ̇ = L̃Ė− η̇ λ, (8.16)

where
µ = M̃λ = ∆ε− M̃∆σ. (8.17)

The structure of equations (8.16) resembles that of the well-known consti-
tutive rate-equations of plasticity with µ and λ being the directions of the
non-elastic parts of Ė and Σ̇, respectively. These directions depend not
only on the transformation strains within the layers but also on the elastic
properties of the phases. Importantly, the constitutive rate-equations (8.16)
are independent of the adopted transformation criterion.

The transformation criterion (8.8) can now be used to determine η̇ in
terms of the rate of the macroscopic strain or stress. During progressive
transformation with η̇ > 0, the transformation criterion is continuously
satisfied which can be written in the form of the consistency condition,

ḟ − ḟc = 0 if η̇ > 0. (8.18)

In view of uniformity of deformation within each constituent phase, the
driving force f (and also ḟ) is uniform at all interfaces within the laminate,
and thus a single value of f (and ḟ) constitutes, at the same time, the local
driving force associated with the propagation of each transformation front
and the macroscopic one associated with the rate η̇ of the volume fraction
of the product phase. Clearly, the consistency condition in the form (8.18)
expresses the latter, macroscopic point of view. Note, however, that it is
implicitly assumed that the critical driving force fc is also uniform at all
interfaces. Note also that, in the case of the local consistency condition,
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the corresponding time derivative of the thermodynamic driving force must
follow the moving phase transformation front, cf. Petryk [95], Stupkiewicz
and Petryk [132].

Differentiation of equation (8.7) yields

ḟ = σ̇+ ·∆ε−∆σ · ε̇−, (8.19)

where the relation φ̇ = (∂φ/∂ε) · ε̇ = σ · ε̇, valid in the case of an isothermal
process, has been used. Next, using the compatibility conditions (2.30) and
(8.14) and property (2.31), the rates of local variables are replaced by the
averaged rate-variables, for example

σ̇+ ·∆ε = σ̇+
A ·∆εA = {σ̇A} ·∆εA = {σ̇} ·∆ε, (8.20)

so that
ḟ = {σ̇} ·∆ε−∆σ · {ε̇}. (8.21)

Finally, using the constitutive rate-equations (8.15) and definitions (8.17),
the rate of the thermodynamic driving force is obtained in the form

ḟ = λ · {ε̇} = µ · {σ̇}. (8.22)

Using equations (8.22) and (8.12), the consistency condition (8.18) can
now be expressed as

λ · (Ė− η̇∆ε) = µ · (Σ̇− η̇∆σ) = ḟc if η̇ > 0, (8.23)

so that η̇ can be determined in terms of the rates of macroscopic variables.
Indeed, introducing quantities g = λ ·∆ε and h = µ ·∆σ, which in view of
(8.17) and (2.31) satisfy

g = λ ·∆ε = ∆ε · L̃∆ε > 0, h = µ ·∆σ = −∆σ · M̃∆σ ≤ 0, (8.24)

the following macroscopic criterion is obtained from (8.23)

η̇ =


1
g

(λ · Ė− ḟc) > 0 if η < 1 and f = fc and λ · Ė > ḟc,

0 otherwise.
(8.25)
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A dual expression yields

η̇ =
1
h

(µ · Σ̇− ḟc) if η̇ > 0 and ∆σ 6= 0, (8.26)

while
µ · Σ̇ = ḟc if η̇ > 0 and ∆σ = 0. (8.27)

In a special case of constant fc, so that ḟc = 0, substitution of (8.25)
into (8.16) yields the macroscopic tangent moduli tensor L̃t during trans-
formation, and we have

Σ̇ = L̃tĖ, L̃t = L̃− 1
g

λ⊗ λ if η̇ > 0 and fc = const. (8.28)

The above macroscopic rate-equations have then exactly the structure of
the equations of the classical small-strain elastoplasticity with the normality
rule, cf. equation (3.11). The transformation criterion (8.7) constitutes the
“yield” surface and defines the elastic domain, tensors µ and λ are the
outward normals to its boundary in the space of macroscopic stress and
strain, respectively, and η̇ plays the role of the plastic multiplier.

Note that a “softening” behaviour during transformation is predicted by
equation (8.26) in a general case of ∆σ 6= 0. Indeed, the macroscopic stress
increment is then, for η̇ > 0 and ḟc = 0, directed into the elastic domain,
µ·Σ̇ < 0, in view of h < 0. If ∆σ = 0, then the transformation is associated
with “ideal yielding”, as predicted by equation (8.27).

8.2.4. Discussion

Once the critical driving force fc and its evolution are prescribed, the incre-
mental macroscopic constitutive law of a material undergoing martensitic
phase transformation through the evolution of a laminated microstructure
is fully described by formulae (8.16) and (8.25)–(8.27). In particular, for a
specified macroscopic strain path E(t), equations (8.16)2 and (8.25) can be
integrated to yield both the macroscopic stress response, Σ(t), and the evo-
lution of the microstructure, η(t). The local stresses and strains within the
layers can then be determined with the help of the micro-macro transition
relations provided in Section 2.6.

However, as long as the transformation proceeds without elastic unload-
ing or reverse transition, a path-independent value of η, corresponding to the
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current macroscopic strain E, can be found directly from the algebraic con-
dition f(E, η)− fc = 0, where f is expressed in terms of E and η using the
micro-macro transition relations of Section 2.6. The numerical simulations
presented in the following sections employ the latter approach.

The assumption that the interface normal n is constant during trans-
formation is an essential element of the present modelling. The problem of
selecting the initial orientation of martensitic plates, which does not change
during transformation in view of the above assumption, has not been ad-
dressed yet. As a first approximation, the interface normal following from
the crystallographic theory is adopted in the examples below. Another ap-
proach, which is, in fact, a direct consequence of the phase transformation
criterion (8.8), is developed in Chapter 9.

By ruling out the microstructural changes within the layers, the analysis
of Section 8.2.3 has been restricted to the case of evolving rank-one lam-
inates. The present micromechanical approach is, however, more general
and, under the assumption of separation of scales, can be applied to higher-
rank laminated microstructures. The micro-macro transition of Section 2.6
is then carried out at the lowest level of a nested laminated microstructure.
The resulting effective properties are used at the next level, and the proce-
dure is repeated. Finally, the relevant transformation criteria, expressed in
terms of the respective thermodynamic driving forces, are formulated using
the local variables (stresses and strains) at each microstructural level.

8.3. Evolving rank-one laminate

8.3.1. Computational scheme

In this section, the micromechanical model and the corresponding compu-
tational scheme are specified for the case of stress-induced transformation
proceeding through nucleation and growth of parallel martensitic plates,
thus an evolving rank-one laminate is considered. Furthermore, the path-
independent formulation is only addressed, so that the transformation is
assumed to proceed without elastic unloading or reverse transformation.

As a first approximation, we assume that the microstructural parameters
of martensitic plates follow from the crystallographic theory of martensite,
cf. Section 7.2, here in the geometrically linear setting which is consistent
with the present micromechanical framework. This is an approximation
since the crystallographic theory assumes stress-free conditions and thus
zero elastic strains. This is clearly not the case in stress-induced transfor-
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mations. However, the assumption can be regarded acceptable because the
elastic strains are small compared to the transformation strains. An exten-
sion of the crystallographic theory, that accounts for the elastic strains, is
presented in Chapter 9.

For a given alloy and for specified parent and product phases,1 the crys-
tallographic theory provides the microstructural parameters of N distinct
martensitic plates. The martensitic plates are indexed by α = 1, . . . , N , and
the essential microstructural parameters for each plate are the habit plane
normal mα and the effective transformation strain ε̂t

α, cf. Section 7.2. The
effective transformation strain of an internally twinned martensite is given
by (7.12) and that of an internally faulted martensite by (7.14).

Consider now the isothermal pseudoelastic response of a single crystal
of a shape memory alloy under a given loading program. The temperature
is assumed sufficiently high for the austenite to be stable at zero macro-
scopic stress. The loading program is prescribed by providing six equations
for the components of macroscopic stress Σ or strain E in terms of a sin-
gle control parameter p which is assumed to increase monotonically. The
thermodynamic driving force fA→M

α = fα can then be computed from equa-
tions (8.7) and (2.37)–(2.38) assuming that parallel martensitic plates of the
same family, indexed by α, form during the austenite-to-martensite (A→M)
transformation,

fα = f̂α(η, p) = Σ · ε̂t
α −

1
2

Σ ·BT
a (Ma −Mα)BαΣ−∆amφ0, (8.29)

where the austenite is identified with the ‘+’ phase and the α-th martensitic
plate with the ‘−’ phase. In equation (8.29), Ba and Bα are the stress
concentration tensors of austenite and martensite, respectively, and Mα

is the elastic compliance tensor of the martensitic plate (effective one in
the case of twinned martensite). In the case of reverse transformation, the
physical meaning of ‘+’ and ‘−’ phases is opposite and thus the respective
thermodynamic driving force is fM→A

α = −fA→M
α = −fα. Note that the

expression for fα, specified by equation (8.29), corresponds to a compatible
transformation strain ε̂t

α. In a general case, additional terms related to
incompatibility of the transformation strain appear in the expression for
fα. The explicit expression for fα in that general case is not provided here,

1In some alloys, several martensitic phases exist and multiple austenite-martensite
transformations are possible. Moreover, successive transformations between different
martensitic phases are also observed, e.g. Otsuka et al. [85], Šittner et al. [146].
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1. For each martensitic plate α, find the control parameter p0
α for

which the respective transformation condition is satisfied in a purely
austenitic state: solve f̂α(0, p0

α) = fc with f̂α(η, p) given by (8.29).

2. Choose the preferred martensitic plate for which the transformation
is initiated first, i.e. that corresponding to the smallest value of p0

α

(the control parameter p is assumed to increase monotonically).

3. Compute the relationship between the volume fraction η of the pre-
ferred martensitic plates (0 ≤ η ≤ 1) and the control parameter p
from the transformation condition f̂α(η, p) = fc with f̂α(η, p) given
by (8.29).

4. Compute the elastic response of pure austenite (before the transfor-
mation is initiated, η = 0) and pure martensite (after transformation
is completed, η = 1).

5. Using the equations from Section 2.6 and the calculated relationship
between η and p, determine the overall and local stresses and strains
in the transformation process.

Box 8.1

but it can be easily derived using the micro-macro transition relations for
simple laminates, Section 2.6.

Initially, the crystal is in austenitic state (η = 0) and, as long as fα < fc

for all α, the austenite is loaded elastically. The threshold driving force fc is
assumed identical for all martensitic plates and constant during transforma-
tion. As the control parameter p changes, the transformation condition is
checked for all possible martensitic plates and the preferred plate is chosen
for which the transformation criterion fα = fc is satisfied first. Further load-
ing results in progressive transformation with increasing volume fraction η of
the preferred plates. The relation between η and p is then implicitly defined
by the transformation condition fα = fc, as long as η̇ > 0. The response
is elastic after the transformation is completed (η = 1) which corresponds
to elastic loading of the martensite. Reverse transformation is treated anal-
ogously and governed by fα = −fc with η̇ < 0. Elastic unloading is also
possible when the material is only partially transformed (0 < η < 1), and
the elastic domain is bounded by −fc ≤ fα ≤ fc.

The basic steps involved in the simulation of the forward austenite-to-
martensite transformation are summarized in Box 8.1. Upon unloading,
the reverse transformation is treated accordingly, however, only the ini-
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tially preferred martensitic plates, i.e. those selected during the forward
transformation, are considered.

As a consequence of the adopted micromechanical approach, the material
parameters involved in the model have a clear physical meaning. The trans-
formation strains of martensite variants are known from the crystallography
of transformation: they are computed using the lattice parameters of par-
ent and product phases. The effective transformation strains of martensitic
plates follow then from the crystallographic theory, cf. Section 7.2. The elas-
tic anisotropy of the phases is fully accounted for in the model, thus also the
elastic moduli tensors of single crystals in austenitic and martensitic states
are required. These parameters, though rather fundamental, are not easily
found in the literature, and for the majority of alloys and transformations
they are, in fact, not available. Finally, the model involves the chemical en-
ergy ∆amφ0 and the threshold driving force fc. The former one is a linear
function of temperature and can be identified, for instance, from the tem-
perature dependence of the transformation stress, i.e. the stress at which
the transformation initiates. The last parameter, fc, is directly related to
the hysteresis in the isothermal closed forward-reverse transformation cy-
cles, as discussed in Section 8.2.2, and can be identified from the width of
hysteresis loops.

Remark 8.2 The above set of material data fully characterizes the mate-
rial. However, a complete set of material parameters is rarely available, the
elastic constants of single-crystalline martensite being the critical parame-
ters, most difficult to find. In fact, the elastic constants of both the austenite
and the martensite are, at the moment, available only for two transfor-
mations (the cubic-to-monoclinic transition in CuZnAl and the cubic-to-
orthorhombic transition in CuAlNi), and the numerical examples provided
in this chapter, and in Chapter 9, concern mostly these two transformations.

Remark 8.3 The transformation condition fα = ±fc is the basic governing
equation of the model. The term Σ · ε̂t

α in the expression for fα in equation
(8.29) is recognized as the so-called Schmid factor (by the analogy to single-
crystal plasticity). The second term in (8.29), quadratic in the macroscopic
stress Σ, accounts for the residual stresses associated with the difference in
elastic properties of the two phases; note the term Ma −Mα. The present
macroscopic transformation criterion is thus different from the widely used
extension of the Schmid law, e.g. Shield [119], Šittner and Novák [145],
Thamburaja and Anand [140]. Although, as illustrated by the examples
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below, the correction with respect to the Schmid law is usually not essen-
tial, the present model provides additional information such as redistribu-
tion of local stresses within the layers. Furthermore, the model can easily
be extended to the case of incompatible transformation strains, evolving
higher-rank laminates, etc., as discussed in Section 8.4 and in Chapter 9.

Remark 8.4 In the elastically homogeneous case (Ma = Mα) and for com-
patible transformation strain ε̂t

α, the local stresses are continuous within the
laminate (and thus equal to the macroscopic one), and the transformation
criterion fα = fc, which follows from the present model, reduces to the
Schmid law.

8.3.2. Untwinned martensite in CuAlNi alloy

As the first application of the model outlined above, we consider the pseu-
doelastic response associated with the stress-induced cubic-to-monoclinic
transition in a CuAlNi single crystal. In this transition the cubic austenite
of DO3 structure (β1 phase) transforms to the monoclinic martensite of 6M
structure (β′1 phase), cf. Otsuka et al. [84]. The martensite appears in the
form of untwinned plates and the compatibility at the austenite-martensite
interface is provided by random stacking faults on the basal (101) planes
(internally faulted martensite). More details concerning the crystallography
and the mechanism of the transformation are provided in Chapter 9.

The cubic-to-monoclinic transformation gives rise to 12 variants of mar-
tensite. In Cu-based alloys, these variants have the “cubic axes” structure
with a unique twofold axis along the edge of the original cubic unit cell,
cf. Pitteri and Zanzotto [99]. For each of these variants, the habit plane
equation (7.14) has two solutions, there are thus N = 12× 2 = 24 distinct,
but crystallographically equivalent, martensitic plates. The numerical val-
ues of the microstructural parameters (habit plane normal m, shape strain
vector b, and shear magnitude due to stacking faults ksf) are given in Ap-
pendix B. Note that the transformation strain of a compatible martensitic
plate is sufficiently characterized by vectors m and b, cf. equations (7.13)
and (7.14).

Elastic constants of the cubic β1 austenite are adopted from the liter-
ature, cf. Suezawa and Sumino [134]. Since the elastic constants of the
monoclinic β′1 martensite are not available in the literature, in the compu-
tations below the elastic properties of the β′1 phase are estimated by scaling
the elastic constants of a similar martensitic phase in a CuZnAl alloy. This
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Figure 8.4. Load axis orientations of CuAlNi single crystal specimens used by

Horikawa et al. [48] (a) and Novák et al. [80] (b). The orientations are indicated

in the unit triangle, relative to the cubic basis of austenite.

is discussed in more detail in Appendix B, where also the values of the
elastic constants are provided.

Two more parameters are required to completely characterize the ma-
terial: the chemical energy ∆amφ0 and the critical thermodynamic driving
force fc. Roughly speaking, the chemical energy ∆amφ0 is related to the
stress at which transformation proceeds (at a given temperature) and the
critical driving force fc is related to the width of hysteresis loop. In general,
these parameters depend on the alloy composition and on heat treatment.
Their values are identified below for specific experimental data.

Experiments of Horikawa et al. [48]

Horikawa et al. [48] reported complete stress-strain diagrams of eight differ-
ently oriented single-crystal specimens of CuAlNi. Stereographic projection
of the corresponding tension axis orientations, relative to the cubic ba-
sis of the austenite, are provided in Fig. 8.4(a). Figure 8.5 presents the
orientation dependence of stress-strain response predicted by the present
model, compared to the experimental data (dashed lines). The values of
the chemical energy ∆amφ0 = 12 [MJ/m3] and of the critical driving force
fc = 0.4 [MJ/m3] have been adjusted to correctly represent the initial trans-
formation stress and the hysteresis width of specimen ‘1’. The remaining
predictions are obtained using the same set of parameters.

Both the experimental and the theoretical stress-strain curves exhibit
substantial orientation-dependence in terms of the inelastic transformation
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Figure 8.5. Orientation dependence of stress-strain response in uniaxial tension

of CuAlNi single crystals undergoing the β1→β′
1 transformation: model predic-

tions (solid lines) and experimental results of Horikawa et al. [48] (dashed lines).
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strain, transformation stress, and hysteresis width. With respect to all these
aspects, the agreement of the model predictions with the experimental data
is satisfactory. As an exception, the experimentally observed transforma-
tion stress of specimen ‘21’ is significantly higher than that predicted by the
model.1 The general rule is that the smaller the transformation strain the
higher the transformation stress and the wider the hysteresis loop. The lat-
ter observation is consistent with the result which stems from the adopted
transformation criterion, namely that the area of the hysteresis loop on a
stress-strain diagram corresponding to a complete forward-reverse transfor-
mation is constant and equal to 2fc, cf. Eq. (8.9).

Elastic anisotropy of the austenite,1 prior to transformation, is also prop-
erly described. Only in the case of specimen ‘22’ the measured elastic stiff-
ness is about twice smaller than predicted. The discrepancy between the
measured and predicted elastic stiffness of specimen ‘22’ has already been
noticed by Horikawa et al. [48].

As shown in Section 8.2.3, the present model predicts a softening be-
haviour during progressive transformation provided that the local stresses
within the layers are discontinuous at the transformation front, ∆σ 6= 0.
In the analyzed case, although the transformation strain is compatible, the
local stresses are not homogeneous because of the elastic mismatch of the
phases (∆M 6= 0), cf. Eq. (2.33)2. Accordingly, the softening behaviour is
clearly visible in Fig. 8.5, as predicted by the theory, cf. Eq. (8.26).

The effect of the elastic mismatch is further illustrated in Fig. 8.6 where
the uniaxial stress-strain diagrams corresponding to different temperatures
are provided for two representative specimen orientations. The effect of
temperature on the isothermal pseudoelastic response is accounted for by
expressing the chemical energy ∆amφ0 as a linear function of temperature,
cf. Eq. (8.5); other effects, e.g. thermal expansion, are neglected. In Fig-
ure 8.6, T0 corresponds to the diagrams presented in Fig. 8.5, ∆T = 38.5 K,
and ∆ams0 = 0.156 [MJ/m3K], cf. Section 8.3.4.

The elastic mismatch term in the expression for the driving force fα is

1The experimental transformation stress of specimen ‘21’ seems to be inconsistent
with the remaining experimental data. In particular, the observed transformation strain
of specimens ‘9’, ‘13’, and ‘15’ is also between 8 and 9 per cent, and the corresponding
transformation stresses are about 150–160 MPa, while that of specimen ‘21’ is nearly
250 MPa. A possible explanation of this discrepancy is that the reported stress-strain
response of specimen ‘21’ corresponds to a higher temperature.

1The cubic β1 phase in CuAlNi exhibits very high elastic anisotropy. This is reflected
by the value of the anisotropy index A = 2c44/(c11 − c12) as high as A = 12 for the
elastic constants of the β1 phase, cf. Table B.3.
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Figure 8.6. Stress-strain diagrams in uniaxial tension of CuAlNi single crystals

at different temperatures. Dashed lines denote the prediction of the Schmid law

(elastically homogeneous case, Mα = Ma).

quadratic in Σ, cf. Eq. (8.29). Thus the corresponding effects (softening
and deviation from the prediction of the Schmid law) are more pronounced
when the transformation stress is higher, i.e. at higher temperatures. This
is seen in Fig. 8.6. The transformation stress predicted by the Schmid law,
cf. dashed lines in Fig. 8.6, is given by the following formula

ΣSchmid =
∆amφ0 ± fc

(t⊗ t) · ε̂t
α

, (8.30)

which follows from equation (8.29) for Mα = Ma. Here, ΣSchmid is the
uniaxial transformation stress, t is the orientation of the load axis, and the
plus (minus) sign in equation (8.30) corresponds to the forward (reverse)
transformation.

Experiments of Novák and Šittner

Single crystals of CuAlNi under compressive loading have been investigated
by Novák et al. [80]. It has been observed that, depending on the specimen
orientation, either the monoclinic β′1 phase or the orthorhombic γ′1 phase
was induced. The cubic-to-monoclinic β1→β′1 transformation dominated
for load axis orientations closer to the [011] pole (specimens ‘h’, ‘j’, and ‘l’)
while the cubic-to-orthorhombic β1→γ′1 transformation dominated for load
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axis orientations closer to the [001] pole (specimens ‘a’, ‘c’, ‘e’, and ‘f’). The
load axis orientations are shown in Fig. 8.4(b).

In Figure 8.7(a,b), the stress-strain diagrams predicted by the present
model for specimens ‘h’ and ‘l’ are compared to the experimental results of
Novák et al. [80]. In the present computations, the transformation strains
and the elastic constants are those used above to simulate the results of
Horikawa et al. [48], while the chemical energy ∆amφ0 = 19.5 [MJ/m3] and
the critical driving force fc = 1.2 [MJ/m3] have been roughly identified
to match the experimental transformation stress and hysteresis width of
specimen ‘l’.

In order to illustrate the tension-compression asymmetry, the pseudo-
elastic response of a CuAlNi single crystal in tension and compression is also
provided in Fig. 8.7(c). The experimental results are taken from Šittner and
Novák [145] and refer to the same alloy as that used by Novák et al. [80];
the load axis orientation is [123], cf. Fig. 8.4(b).

It is seen from Fig. 8.7 that the agreement with experimental data is not
as good as in the case of experiments of Horikawa et al. [48], cf. Fig. 8.5.
The observed transformation strains and the apparent elastic moduli of
austenite are significantly smaller than those predicted by the model, so
is the hysteresis width in the case of the [123] specimen. However, the
variation of the transformation stress with the load axis orientation and
with the sense of loading is properly predicted.

According to Šittner [143], the experimentally observed elastic moduli
are too small (compared to the moduli consistent with the elastic properties
measured using the ultrasonic technique, e.g. Suezawa and Sumino [134],
Landa et al. [72]) due to the softness of the testing machine. However, the
tendency that the apparent Young’s modulus is lowest for [001] orienta-
tions and increases towards [011] and [111] orientations is reflected in the
experimental results. The reason for the discrepancy between the observed
and the predicted transformation strains is not known. A possible explana-
tion could be that the phase transformation was not complete within the
specimen.

8.3.3. Twinned martensite in CuAlNi alloy (no detwinning)

In the model outlined in Section 8.3.1, it is assumed that the martensitic
plates do not undergo any internal microstructural changes during trans-
formation. Thus direct application of the model for internally twinned
martensites is only possible if martensite variant rearrangement (detwin-
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Figure 8.7. Stress-strain diagrams in uniaxial tension and compression of CuAlNi

single crystals undergoing the β1→β′
1 transformation: model predictions (solid

lines) and experimental results of Novák et al. [80] and Šittner and Novák [145].

ning) is neglected. This assumption may be non-physical because the twin
boundaries are highly mobile and detwinning is expected to accompany
the austenite-to-martensite transformation. In this section, detwinning is
neglected, and the corresponding predictions are provided for uniaxial com-
pression of CuAlNi single crystals. The extension of the model to account
for detwinning is presented in Section 8.4.

In the case of internally twinned martensites, the microstructure cor-
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responding to the formation and growth of parallel martensitic plates is a
rank-two laminate, cf. Fig. 8.2(a). Assuming that the internal structure
of each martensitic plate is fixed, i.e. the twin fraction λ is constant, the
transformation is associated with microstructural changes only at the level
of austenite-martensite laminate. The effective properties of martensitic
plates, which are then constant during the transformation, are obtained by
applying the micro-macro transition scheme at the level of twinned marten-
site. The model of Section 8.3.1 and the expression (8.29) for the thermo-
dynamic driving force at the austenite-martensite interface are thus directly
applicable with Mα and ε̂t

α being, respectively, the effective elastic mod-
uli tensor and the effective transformation strain of an internally twinned
martensitic plate.

As an example, we consider the cubic-to-orthorhombic β1→γ′1 transfor-
mation in CuAlNi. The stress-strain diagrams of differently oriented single
crystals in uniaxial compression are compared to the experimental results of
Novák et al. [80] in Fig. 8.8. The load axis orientations relative to the cubic
lattice of the austenite are shown in Fig. 8.4(b). Only specimens ‘a’ to ‘f’ are
analyzed, for which the β1→γ′1 transformation was observed1 by Novák et
al. [80]. Model parameters (elastic constants and transformation strains) are
provided in Appendix B, the remaining parameters, ∆amφ0 = 9.3 [MJ/m3]
and fc = 2 [MJ/m3], have been adjusted using the stress-strain curve of
specimen ‘a’, cf. Fig. 8.8(a).

As in the case of the β1→β′1 transformation, cf. specimens ‘h’ and ‘l’
in Fig. 8.7, the agreement with the experimental data is not satisfactory in
some respects. Contrary to the case of the β1→β′1 transformation, in the
present case, the predicted transformation strains are significantly smaller
that those observed in the experiments. The additional strain can be at-
tributed to detwinning which is by assumption ruled out in the present
simulations. This is further discussed in Section 8.4.

The discrepancy of the apparent elastic moduli of the austenite has al-
ready been discussed in Section 8.3.2. The predicted orientation dependence
of the transformation stress agrees reasonably well with the experimental
dependence. The hysteresis width predicted for specimen ‘c’ is in agreement
with experiment (note that fc was adjusted for specimen ‘a’), but in the case
of specimens ‘f’ and ’h’ an additional growth of hysteresis width is observed,

1It is commonly agreed that the width of the hysteresis loop in the stress-strain dia-
gram is a good indicator of the type of transformation in CuAlNi alloys: the hysteresis
associated with the β1→β′1 transformation is much smaller than that of the β1→γ′1 trans-
formation, compare Figures 8.7 and 8.8.
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Figure 8.8. Stress-strain diagrams in uniaxial compression of CuAlNi single

crystals undergoing the β1→γ′1 transformation: model predictions (no detwinning,

solid lines) and experimental results of Novák et al. [80] (dashed lines).

also the character of the stress-strain response is different. A possible rea-
son is that a more complex transformation pattern develops in specimens ‘f’
and ‘h’, with multistage or successive β1→β′1→γ′1 transformations, cf. Kato
et al. [56] and Šittner et al. [146].

It is seen from Fig. 8.8 that, for the internally twinned martensites, the
model predictions without detwinning have essentially the same character
as in the case of untwinned martensites: the transformation proceeds at a
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nearly constant stress with some softening due to elastic mismatch. The
behaviour is very different when detwinning is included in the model, as
discussed in Section 8.4. More results concerning the β1→γ′1 transformation
in CuAlNi, proceeding without detwinning, can be found in Stupkiewicz and
Petryk [132].

8.3.4. Macroscopically adiabatic case

A simple extension of the present model to the macroscopically adiabatic
case is presented below, based on the assumption that the temperature is
homogeneous at the micro-scale and equal to the macroscopic one which
changes during transformation due to the latent heat of transformation.
Thermal expansion and variation of elastic properties with temperature are
neglected in the present simple description of thermal effects.

The main effect that is expected in the adiabatic case is the temperature-
driven increase of the stress during transformation. This is because the
martensitic transformation is exothermic. Thus, in the adiabatic condi-
tions, the temperature increases as the transformation proceeds, which
results in the increase of the chemical energy ∆amφ0 and, consequently,
in the increase of the transformation stress. The adiabatic case provides
thus an upper bound of the related thermal effects. Clearly, the reverse
martensite-to-austenite transformation is endothermic, so that, during the
reverse transformation, the stress is expected to decrease.

In macroscopically adiabatic conditions, the heat balance of the r.v.e.
undergoing austenite-to-martensite transformation can be written as

ρc dT = ∆s∗ T dη + fc dη, dη > 0, (8.31)

where the entropy change of transformation ∆s∗ = s0
a−s0

m > 0 is a material
parameter, cf. Section 8.2.1, ∆s∗ T is the latent heat of transformation per
unit transformed volume, fc dη is the heat due to intrinsic dissipation, and
ρc is the specific heat per unit volume (assumed identical in the austenite
and martensite). Equation (8.31) can be obtained from Eq. (21) in Raniecki
and Lexcellent [105] by neglecting the heat due to the piezocaloric effect and
the term related to temperature-dependence of the configurational energy
associated with micro-stresses.

Evolution of temperature during the forward transformation (η̇ > 0) can



166 Chapter 8

thus be determined from the following differential equation,

ρc
dT

dη
= ∆s∗ T + fc, T (0) = Ta, (8.32)

which upon integration yields the temperature as a function of the volume
fraction η of martensite,

T (f) − Ta =
(

Ta +
fc

∆s∗

)
(e η ∆s∗/ρc − 1), (8.33)

where Ta is the initial temperature of austenite (at η = 0). The expression
for the case of reverse transformation

T (r) − Tm =
(

Tm −
fc

∆s∗

)
(e(η−1)∆s∗/ρc − 1), (8.34)

is obtained from the heat balance equation, ρc dT = ∆s∗ T dη−fc dη, corre-
sponding to dη < 0. Here Tm is the temperature of martensite at the onset
of reverse transformation (at η = 1). Finally, the variation of the chemical
energy in a macroscopically adiabatic transformation process is given by
equation (8.5).

Two limiting cases can now be considered. In a fully adiabatic pro-
cess, the temperature after a complete forward-reverse transformation cycle
slightly increases due to the dissipation associated with non-zero critical
driving force fc > 0, cf. Fig. 8.9(a). In the second case, after the adiabatic
forward transformation process, the material is cooled down to the initial
temperature, and then the reverse transformation is induced upon unload-
ing again in adiabatic conditions, so that Tm = Ta. The corresponding
evolution of temperature is sketched in Fig. 8.9(b).

Consider thus uniaxial tension of a CuAlNi single crystal undergoing
the β1→β′1 transformation. The model involves two additional material
parameters which are identified using the experimental data of Rodriguez
and Brown [108]. The specific heat is ρc = 3.1 [MJ/m3K], and the entropy
change of the transformation1 is ∆s∗ = 0.156 [MJ/m3K]. The remaining
material parameters are those used in Section 8.3.2 to simulate the experi-
ments of Horikawa et al. [48].

1The entropy change of the transformation is given by ∆s∗ = ∆Sβ′1–β1
/Vm where

∆Sβ′1–β1
= 1.20 [J/molK] is the entropy change per mole and Vm = 7.710−6 [m3/mol] is

the molar volume, both parameters are provided by Rodriguez and Brown [108].
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Figure 8.10. Adiabatic stress-strain diagrams for three load axis orientations in

uniaxial tension of CuAlNi single crystal: (a) fully adiabatic case, (b) adiabatic

loading – cooling – adiabatic unloading, cf. Fig. 8.9.

The stress-strain diagrams corresponding to the two cases discussed
above are shown in Fig. 8.10 for the initial temperature Ta = 308 [K] and
for three load axis orientations (specimens ‘1’, ‘9’, and ‘18’). In the present
case, the temperature is a nearly linear function of the volume fraction η.
This is because the term ∆s∗/(ρc) = 0.0503 in (8.33) is rather small. The
increase of temperature associated with the complete forward transforma-
tion is predicted to be equal to 16.03 [K] which is in a perfect agreement
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with the temperature increase measured by Rodriguez and Brown [108] in
a nearly adiabatic, high strain-rate stress-induced transformation. At the
same time, the predicted temperature increase2 after the adiabatic forward-
reverse transformation cycle is equal to 0.252 [K].

The present analysis illustrates two effects expected to appear in non-
isothermal processes: apparent hardening due to latent heat and the in-
crease of hysteresis width in the stress-strain diagram due to heat conduc-
tion. The latter effect is modelled here by assuming a cooling segment
between adiabatic loading and unloading. Both effects have been observed
experimentally by Lexcellent et al. [74] who also proposed a simple model
accounting for the thermal effects in non-adiabatic conditions. The present
model could easily be extended to non-adiabatic conditions by applying the
approach of Lexcellent et al. [74], i.e. by introducing the convective heat ex-
change with the environment, and by assuming that heat conduction within
the specimen is immediate.

8.4. Transformation and detwinning: evolving rank-
two laminate

8.4.1. Mobile twin interfaces

In the case of internally twinned martensites, a martensitic plate is a fine
mixture of two twin-related martensite variants, cf. Fig. 8.11. Contrary to
the case analyzed in Section 8.3.3, we now assume that the internal mi-
crostructure may change during transformation due to migration of twin
boundaries. This is associated with martensite variant rearrangement (de-
twinning) and with the variation of effective properties (transformation
strain and elastic moduli tensor) of the martensitic plates during trans-
formation.

Within the present modelling approach, a mobile twinning plane is
treated as a phase transformation front with zero chemical energy asso-
ciated with the transformation from one martensite variant to another, cf.
Eq. (8.4). Furthermore, we assume for simplicity that the critical driving
force for propagation of a twinning plane is also equal to zero. This implies
that there is no dissipation directly associated with detwinning. This as-
sumption can easily be relaxed to allow some, typically small, dissipation

2Neglecting the temperature variation of the latent heat, an estimate of this increase
of temperature is given by 2fc/(ρc), which gives 0.258 [K] in the present case.
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Figure 8.11. Microstructure (rank-two laminate) associated with the formation

of parallel, internally twinned martensitic plates (Stupkiewicz and Petryk [133]).

related to propagation of twin interfaces. However, this has not been found
to change the results significantly.

Assuming that the transformation proceeds by formation and growth of
parallel martensitic plates, the microstructure at hand is an evolving rank-
two laminate. This microstructure is fully characterized once the following
parameters are determined: martensite variant pair (I, J), twinning plane
and habit plane normal vectors, l and m, respectively, the twin fraction λ,
and the volume fraction of martensite η, cf. Fig. 8.11.

Consider now the forward transformation from austenite to martensite,
and assume first that the variant pair (I, J) and vectors l and m are known.
For given external loading conditions, the path-independent values of the re-
maining two microstructural parameters, λ and η, can be found from two
equations: the transformation criterion at the twinning plane, fJI = 0,
and the transformation criterion at the austenite-twinned martensite plate
interface, fam = fam

c . Here, fJI and fam denote the respective thermo-
dynamic driving forces, fam

c is the critical driving force for the austenite-
to-martensite transformation, and zero critical driving force for the prop-
agation of twinning planes is assumed, fJI

c = 0. The local stresses and
strains necessary to compute the driving forces fJI and fam follow from the
micro-macro transition formulae for the rank-two laminate at hand. These
formulae are obtained by applying sequentially the micro-macro transition
relationships of simple laminates, Section 2.6.

The variant pair (I, J) and vectors l and m are selected by applying
the above procedure at η = 0, i.e. at the onset of transformation, for all
microstructures (i.e. all possible martensite plates) predicted by the crys-
tallographic theory. The preferred martensite plate is then chosen for which
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formation: (a) stress-strain diagram and (b) evolution of twin fraction λ and

volume fraction η of martensite (Stupkiewicz and Petryk [133]).

the transformation is initiated first for the prescribed loading program, just
like in the case of untwinned martensites, cf. the computational scheme
presented in Section 8.3.1.

8.4.2. Uniaxial tension of CuAlNi single crystal

As an example, consider isothermal uniaxial tension of a CuAlNi single
crystal undergoing the cubic-to-orthorhombic β1→γ′1 transformation. The
strain-controlled loading program is specified by prescribing the macroscopic
axial strain jointly with the condition that all macroscopic (but not lo-
cal) stress components, except the macroscopic axial stress Σ, vanish. The
macroscopic stress is thus expressed by Σ = Σ t⊗ t, where t is a unit vec-
tor aligned with the tension axis. The needed material parameters (elastic
constants and transformation strains) are provided in Appendix B.

The predicted overall stress-strain response in the stress-induced trans-
formation is shown in Fig. 8.12 along with the evolution of microstructural
parameters. The tension axis is specified by t = [0.925, 0.380, 0.], with
respect to the cubic basis of austenite. The dashed lines in Fig. 8.12 corre-
spond to the case of constant twin fraction λ, equal to that predicted by the
crystallographic theory. Only the forward transformation from austenite to
martensite is analyzed.

It is seen in Fig. 8.12(b) that the volume fraction λ of one martensite
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variant within the plate grows substantially at the expense of the other
variant near the end of transformation. This provides additional inelas-
tic strain1 compared to the case of fixed λ, but it also leads to a strongly
negative slope of the macroscopic stress-strain diagram with a significant
drop of the macroscopic stress, Fig. 8.12(a). At the instant when austenite
disappears (η = 1), the overall stress falls to zero and further detwinning
proceeds at zero stress until the less favorable variant disappears (λ = 1).
This is followed by elastic loading of the remaining single variant of marten-
site. Qualitatively similar results have been obtained recently by Roytburd
and Slutsker [117] who analyzed a cubic-to-tetragonal transformation, and
assumed uniform and isotropic elastic properties of both phases.

To explain this somewhat surprising effect we note that, as austenite
disappears, the average stress in a martensite plate tends to the overall stress
Σ. The driving force fJI can thus be expressed in the limit η = 1 in terms of
Σ as a sum of the leading term Σ·(εt

I−εt
J) = Σ t·(εt

I−εt
J)t and a quadratic

correction term due to the mutual rotation of the elastic compliance tensors
in martensite variants, in analogy to the formula (8.29). In the conditions
met in the calculations above, the leading term with fixed t · (εt

I − εt
J)t 6= 0

cannot be compensated by the correction term to produce fJI = 0, unless
Σ = 0 in the limit. Therefore, the overall stress must decrease to zero
as austenite disappears; further variant rearrangement proceeds likewise at
zero stress. The stress would not fall exactly to zero if a positive threshold
value for fJI was assumed, fJI

c > 0, but the general behaviour would
not change significantly for physically realistic twinning-related dissipation
proportional to fJI

c .
The behaviour illustrated in Fig. 8.12(a) by the solid line seems to be

not in accord with typical stress-strain diagrams obtained from experimen-
tal tests on SMA specimens. However, it must be emphasized that the
micromechanical model predicts the material behaviour under the assump-
tion of development of a uniformly laminated microstructure within a ma-
terial element. The transition from the material element scale to the scale
of a single-crystal specimen or a grain in a polycrystal requires additional
analysis. A qualitative analysis related to the latter case is provided in
Section 8.4.3 below.

Hypothetical response of a single-crystal specimen associated with two
possible patterns of localized transformation is sketched in Fig. 8.13. The

1The additional transformation strain due to detwinnig may, in fact, be one of the
reasons of the discrepancy between the observed transformation strains and the ones
predicted under the assumption of fixed λ, cf. Fig. 8.8.
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Figure 8.13. Two hypothetical responses of a specimen with localized transfor-

mation zones (Stupkiewicz and Petryk [133]).

expected instability of macroscopically uniform transformation may lead to
localization of transformation zones. The negative tangent modulus for the
material allows the transformation to proceed locally while the remaining
part of the specimen undergoes elastic unloading. Moreover, the transfor-
mation may even be locally completed in a dynamic manner at fixed overall
elongation ∆l, corresponding to a local jump indicated schematically in
Fig. 8.13 by a dashed line. If such transformation takes place repeatedly
in finite zones, then the resulting force-elongation (P–∆l) diagram for the
specimen may have the form sketched on the left-hand side of Fig. 8.13.
Alternatively, smooth expansion of the fully transformed zone may lead to
a diagram of the form sketched on the right-hand side of Fig. 8.13. Ex-
perimental stress-strain diagrams of both kinds have been reported in the
literature, see for example Novák et al. [80, 81], Otsuka et al. [88], Zhang
et al. [159]; see also Fig. 8.8. The instability phenomena are thus expected
to play a crucial role in the microstructure evolution and in the overall
behaviour of SMA specimens.

8.4.3. Constrained deformation under tension

In the case of uniaxial tension studied in Section 8.4.2, the only non-zero
component of the overall stress tensor Σ is the axial component t ·Σt, equal
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Figure 8.14. Constrained tension of CuAlNi single crystal undergoing β1→γ′1
transformation (Stupkiewicz and Petryk [133]).

to Σ′11 if the x′1-axis of a Cartesian coordinate system is aligned with t. This
implies that the deformation is free in a sense that all the complementary
components of the overall strain tensor E can take arbitrary values according
to the macroscopic constitutive law. This is a very idealized situation,
especially for a grain in a polycrystalline material, due to the constraints
imposed by neighbouring grains, but also for an anisotropic tensile specimen
with constrained grips. The effect of constrained deformation is therefore
investigated in this section.

In order to study the effects of constrained deformation on transfor-
mation and detwinning, assume that, in addition to tensile loading, the
following constraint is imposed on the overall strain

t ·Es = 0 or E′12 = 0, (8.35)

where the unit vector s aligned with the x′2-axis is perpendicular to the
tensile loading direction t, i.e. t ·s = 0. Clearly, the respective overall stress
component t · Σs = Σ′12 is not equal to zero in general. The constraint
(8.35) approximately applies to a thin sheet-like specimen (with s and x′2-
axis lying within the sheet plane) subjected to tensile loading with the grips
constrained laterally.

The results obtained for two specific loading conditions are shown in
Fig. 8.14. The tension axis t = [0.925, 0.380, 0.] is assumed as that in Sec-
tion 8.4.2, and the constraint (8.35) is applied corresponding to two sheet
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orientations s = [−0.380, 0.925, 0.] (case A) or s = [−0.190, 0.463, 0.866]
(case B), mutually rotated by 60 degrees. The resulting stress-strain dia-
grams are shown by the solid lines in Fig. 8.14, while the dashed lines corre-
spond to the case of a fixed twin fraction λ. Comparison with Fig. 8.12(a)
shows that the presence of the constraint (8.35) changes the material re-
sponse significantly.

According to the assumption of the model, the twin fraction λ varies,
so that the driving force on the twinning plane be equal to zero. In case A,
the twin fraction of the most favorable martensite variant increases as the
transformation proceeds from λ = 0.711 at η = 0 to λ = 0.774 at η = 1, cf.
Fig. 8.15. Due to partial detwinning, the pseudoelastic strain at η = 1 is
larger as compared to the case of fixed twin fraction, cf. Fig. 8.14(a). Further
loading of the twinned martensite after the transformation is completed
is accompanied by additional detwinning with the twin fraction reaching
λ = 0.8 at the tensile stress of 201 MPa. For comparison, the purely elastic
response of the twinned martensite with the twin fraction fixed at λ = 0.774
is marked in Fig. 8.14(a) by the dotted line. Clearly, detwinning provides
additional strain so that the response is more compliant. The values of the
effective elastic and tangent stiffness moduli are given in Table 8.1.

A qualitatively different behaviour is predicted in case B. The twin frac-
tion of the most favorable variant decreases during progressive transforma-
tion, cf. Fig. 8.15. This results in a hardening stress-strain response. Also,
the pseudoelastic strain is somewhat smaller than in the case of constant
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Table 8.1. Effect of detwinning on the effective tangent stiffness modulus in

constrained tension of CuAlNi crystal.

case A case B

martensite, detwinning 35.3 GPa 17.5 GPa
martensite, no detwinning 70.6 GPa 62.6 GPa
austenite 62.0 GPa 50.0 GPa

twin fraction, cf. Fig. 8.14(b). However, once the transformation is com-
pleted, the elastic loading of martensite is associated with the growth of the
favorable variant at the expense of the other one. The detwinning-related
reduction of the effective tangent stiffness modulus is even more pronounced
than in case A, cf. Table 8.1.

8.5. Summary and conclusions

This chapter is devoted to micromechanical modelling of pseudoelasticity
in single crystals of shape memory alloys. In the modelling, the stress-
induced martensitic transformation is assumed to proceed by evolution of
laminated microstructures. In the simplest case of untwinned martensites,
the microstructure is that of a rank-one laminate with the volume fraction of
martensite as the only microstructural parameter that evolves during trans-
formation. On the other hand, an evolving rank-two laminate is considered
if, for instance, detwinning in internally twinned martensites is addition-
ally accounted for. The corresponding micromechanical model, developed
by Stupkiewicz and Petryk [132], is based on a rate-independent transfor-
mation criterion, formulated in terms of the local thermodynamic driving
force on the phase transformation front, and employs analytical micro-macro
transition relations for laminated microstructures. Importantly, no extra ki-
netic equation is needed for the rate of the volume fraction of the product
phase, since it is explicitly related to the macroscopic strain rate by the
adopted transformation criterion; more precisely, by the consistency condi-
tion following from the transformation criterion. Elastic anisotropy of the
phases is fully accounted for, and this is also a distinctive feature of the
present model.

Macroscopic constitutive rate-equations have been derived for the case of
an evolving rank-one laminate, i.e. for the situation when the product phase
does not undergo any microstructural changes. These rate-equations have
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the form fully analogous to the equations of the classical rate-independent
elastoplasticity. In particular, if the threshold thermodynamic driving force
fc is assumed to be constant, then a softening behaviour is predicted regard-
less of the elastic properties of the parent and product phases. In agreement
with this theoretical result, the softening, though not substantial, is visible
in the numerically simulated stress-strain response curves.

Practical implementation of the micromechanical model is based on the
path-independent formulation outlined in Section 8.3.1. The computational
scheme involves the explicit micro-macro transition relations for simple lam-
inates, cf. Section 2.6 and Appendix A.4. As the elastic anisotropy of the
phases is fully accounted for in the model, the resulting expressions, though
available in an explicit form, become extremely complex. Accordingly, the
symbolic code generation system AceGen [63] has been used to generate the
respective numerical procedures.

The model is capable of reproducing important effects observed exper-
imentally in single crystals subjected to uniaxial tension and compression,
e.g. orientation dependence of the transformation stress, transformation
strain, and elastic modulus. Furthermore, consistently with certain ex-
perimental observations, the area of the hysteresis loop of an isothermal
load-displacement diagram is constant irrespective of the loading program
executed.

Several unpublished results are provided in Section 8.3, including com-
parison to experimental data of Horikawa et al. [48] and Novák et al. [80].
In the latter case, substantial discrepancies between the model predictions
and the experimental data are observed in some aspects, however, these
may partly be due to artificial effects in the experimental procedure.

In Section 8.3.4, a simple extension of the model has been proposed to
account for non-isothermal effects. Two important effects are illustrated in
a macroscopically adiabatic case: apparent hardening due to the latent heat
of transformation and increase of the hysteresis width in the stress-strain
diagram associated with heat conduction. The latter effect is observed if
the forward and the reverse transformation proceed in adiabatic conditions,
but cooling of the specimen is allowed after the forward transformation is
completed and before the reverse transformation starts.

The general micromechanical modelling framework has also been applied
for the case of internally twinned martensites, and the combined effect of
the stress-induced transformation and detwinning has been investigated in
Section 8.4. Evolution of the corresponding rank-two laminate has been
examined assuming a negligible critical driving force on mobile interfaces
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between twin-related martensite variants. By the example of a CuAlNi
single crystal undergoing the β1→γ′1 transformation, it has been shown that
detwinning leads to a significant softening in the macroscopic response of
a representative volume element. In the case of unconstrained deformation
in uniaxial tension, the macroscopic stress can even drop to zero as the
austenite disappears. The predictions of the model are not in accord with
experimental observations. However, the model predicts the behaviour of
a material point. Transition to the scale of a specimen or a grain in a
polycrystal has not been attempted.

The effect of constrained deformation on the evolution of microstructure
and on the macroscopic response has been illustrated by the example of ten-
sion with constrained shear. It has been shown that the difference in orien-
tation of the shear constraint may lead to different detwinning effects, e.g.
to the increase or decrease of the volume fraction of the favorable marten-
site variant in twinned martensite plates. On completing the austenite-to-
martensite transformation, detwinning can still take place and influence the
apparent stiffness of the martensite. Detwinning has been found to reduce
significantly the effective tangent stiffness modulus of the twinned marten-
site. Hence, care is needed when interpreting apparent Young’s modulus of
martensite as representing its purely elastic stiffness.

The results of the present analysis indicate that the softening response is
always expected at the material point, i.e. for a representative volume with
a uniform laminated microstructure. The softening effect is rather small in
untwinned martensites, but it can be substantial if detwinning is accounted
for. It can be shown that the macroscopically uniform transformation, as-
sociated with a fine, rank-one laminate at the micro-scale, is intrinsically
unstable, see Petryk and Stupkiewicz [96] for preliminary results. Conse-
quently, more complex transformation patterns may be expected to appear
as a result of instability of uniform transformation. Furthermore, the stress-
strain diagrams for a material element, as studied in this chapter, and for a
specimen may be fundamentally distinct. In fact, the instability due to sub-
stantial softening associated with detwinning, as predicted by the model,
cf. Section 8.4, is probably one of the reasons that the stress-strain re-
sponse is qualitatively different depending on whether the product phase is
untwinned or internally twinned—compare, for instance, the experimental
curves in Figs. 8.7 and 8.8.

In the present applications of the model, microstructural parameters
of martensitic plates, e.g. the habit plane orientation, are adopted from
the classical crystallographic theory of martensite. This is, however, an
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approximation because the elastic strains, which are naturally not equal to
zero in the stress-induced transformation, are neglected in that theory. The
related effects are studied in the next chapter.



Chapter 9

Formation of stress-induced martensitic plates

Abstract An approach is developed for the prediction of transformation stresses

and microstructures of stress-induced martensitic plates. Only the initial instant

of transformation is considered, i.e. the formation of infinitely thin martensite

plates within the austenite matrix. The microstructure is obtained as a solu-

tion of a constrained minimization problem for load multiplier. In the case of

internally faulted martensites, the additional free energy associated with stack-

ing faults in the martensite is accounted for, and a simple model relating this

energy to the stacking fault energy and to the shear magnitude due to stacking

faults is proposed. The approach is applied for CuZnAl single crystals undergoing

stress-induced cubic-to-monoclinic transformation and the effects of stacking fault

energy, loading direction, and temperature on the predicted microstructures are

studied.

9.1. Minimization problem for load multiplier

The crystallographic theory of martensite, outlined in Section 7.2, assumes
stress-free conditions typical for transformations induced by changing tem-
perature. Importantly, although Ball and James [8] developed the theory
starting from elastic energy considerations within the framework of finite
thermoelasticity, the actual problem is purely geometrical: compatibility
conditions at zero stress are formulated, from which the microstructural
parameters, e.g. the orientation of the austenite-martensite interface, are
determined.

The compatible transformation strains and the corresponding micro-
structures predicted by the crystallographic theory are often adopted also
in the case of stress-induced transformations, cf. Section 8.3. This is par-
tially justified because the elastic deformations are typically much smaller
than those resulting from the change of crystalline structure during trans-
formation. However, in view of non-zero elastic strains naturally present in

179
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transformations under external stress, this is only an approximation.
On the other hand, the theory developed by Khachaturyan [57, 58] and

Roytburd [110] predicts the optimal microstructural parameters by mini-
mizing the elastic strain energy of a thin plate-like inclusion of the product
phase formed within the parent phase matrix. Contrary to the crystal-
lographic theory, this theory applies also for incompatible transformation
strains. However, the related elastic strain effects are only accounted for
within the small deformation framework. The results of this theory, mostly
relevant to the present study, are summarized below. Assuming that the in-
terfacial energy is sufficiently low, the inclusion of the product phase within
the parent phase matrix has the form of a thin plate, except for special
cases, e.g. isotropic elasticity with purely dilatational transformation strain.
In the absence of external stresses, the orientation of the plate-like inclu-
sion depends on the transformation strain, not necessarily compatible, and
on elastic properties of the product phase. Under external stress, the mi-
crostructure is additionally affected by the difference of elastic moduli of
parent and product phases. The practical applications of the theory for
stress-induced transformations have so far been restricted to the case of the
cubic-to-tetragonal transition, c.f. Roytburd and Pankova [114], Roytburd
and Slutsker [115].

The second approach is further developed in this chapter with the aim to
predict the microstructural parameters of stress-induced internally faulted
martensitic plates. The general setting of the proposed approach is outlined
in the present section. In the following sections the approach is specified
for the case of internally faulted martensites by considering the additional
free energy associated with stacking faults. It is assumed that, in addi-
tion to the usual variables, the free energy of martensite depends on the
magnitude of shear induced by the stacking faults. Full account is also
taken for the distinct elastic anisotropy of both phases. The resulting ef-
fects of the stacking fault energy, loading direction, and temperature on the
microstructural parameters of internally faulted martensite plates are then
studied for the cubic-to-monoclinic transformation in a CuZnAl shape mem-
ory alloy. The analysis is restricted to the initial instant of transformation
when thin martensite plates are formed within the austenite matrix. The
progressive transformation, with non-zero volume fractions of martensite,
is not analysed. The present chapter summarizes the results published in
Stupkiewicz [124].

Consider thus the initiation of the stress-induced martensitic transfor-
mation, that is the situation when an infinitely thin plate of martensite
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(or many parallel martensite plates of total infinitesimal volume fraction)
appears within the homogeneous austenite phase. Accordingly, we assume
that initially, in the stress-free state, the crystal is in austenitic phase. Sub-
sequently, a homogeneous external overall stress is applied. For simplicity
we shall assume that the overall stress Σ varies proportionally,

Σ = pΣ∗, (9.1)

where p ≥ 0 is a load multiplier, not to be identified with the control
parameter (e.g. strain) in the corresponding experiment, and Σ∗ is a con-
stant, prescribed reference stress (e.g. uniaxial tension or compression along
a specified direction).

Using the micro-macro transition relations of Section 2.6, with the vol-
ume fraction of martensite set to zero, η = 0, the transformation condition
f − fc = 0, which follows from the phase transformation criterion (8.8), can
be written in a general form

F (p,M) = f̂(p,M)− fc = 0, (9.2)

where f = f̂(p,M) is the thermodynamic driving force at η = 0, and
M denotes the set of all parameters determining the microstructure of a
martensitic plate. This set includes the index I of the martensite variant,
or the variant pair (I, J) in the case of an internally twinned plate, the ori-
entation of the austenite-martensite interface specified by the normal vector
m, and possibly other parameters, e.g. the twin fraction λ. The microstruc-
tural parameters M and the load multiplier p, at which the transformation
initiates, are unknown and have to be found for a given reference stress Σ∗.

In order to determine the microstructure that would actually appear
for the prescribed loading history, one can examine all the possible mi-
crostructures and select the one for which the transformation condition
F = f − fc = 0 is satisfied for the smallest load multiplier p. This can
be written as a constrained minimization problem for the load multiplier p,
namely

min
M

p subject to F (p,M) = 0. (9.3)

To be more specific, let us adopt the constitutive framework used in
Section 8.3. Identifying the austenite with the ‘+’ phase and the martensite
with the ‘−’ phase, the thermodynamic driving force (8.7) can be expressed
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as

f = −∆φ0 + σ+ ·∆εt +
1
2

σ+ ·∆Mσ+ − 1
2

∆σ ·M−∆σ, (9.4)

where σ− = σ+ + ∆σ and ∆φ0 = φ−0 − φ+
0 . Using the interfacial rela-

tionships (2.33), the thermodynamic driving force can be expressed solely
in terms of the stress σ+, namely

f = −∆φ0 + σ+ ·∆εt +
1
2

σ+ ·∆Mσ+

−1
2

(∆Mσ+ + ∆εt) · S0(∆Mσ+ + ∆εt), (9.5)

where the identity (A.11)2 has also been used.
At the onset of transformation, the volume fraction of martensite is zero,

η = 0, thus the stress within the austenite phase is equal to the overall one,
σ+ = Σ. Now, after substituting ∆amφ0, ε̂t

α, Ma, and Mα for ∆φ0, ∆εt,
M+, and M−, respectively, the thermodynamic driving force is given by

f̂(p,M) = −∆amφ0 + p Σ∗ · ε̂t
α +

1
2

p2Σ∗ ·∆M Σ∗

−1
2

(p ∆M Σ∗ + ε̂t
α) · S0(p ∆M Σ∗ + ε̂t

α), (9.6)

where ∆M = Mα − Ma, Ma is the elastic compliance of austenite, and
Mα and ε̂t

α are, respectively, the elastic compliance and the transformation
strain of martensitic plate α. The dependence of f on the microstructural
parameters M is also due to the dependence of S0 on the orientation of the
austenite-martensite interface.1 Finally, the transformation strain ε̂t

α and
the effective elastic moduli tensor of the martensitic plate Mα may depend
on other microstructural parameters, e.g. on the twin fraction λ in the case
of internally twinned martensite.

Remark 9.1 The transformation criterion F = f − fc = 0, which consti-
tutes the constraint in the minimization problem (9.3), involves ∆M, the
difference of elastic moduli tensors of both phases. In the case of distinct
elasticity tensors, ∆M 6= 0, the transformation criterion is quadratic in the

1The expression for S0 in equation (A.10) is given in the intrinsic coordinate system
and thus S0 depends on m.
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overall stress Σ, i.e. quadratic in the load multiplier p, cf. Eq. (9.6). Then
the solution of the minimization problem (9.3) depends on the actual value
of the transformation stress, i.e. on the load multiplier p at which the trans-
formation initiates. This dependence is implicit: the chemical energy ∆φam

0

increases with temperature and so does the transformation stress, which is
a part of the solution. Hence, at higher temperatures, the terms quadratic
in Σ are more important, and the effects of distinct elastic properties of the
phases are expected to be more pronounced.

Remark 9.2 Assume that ∆M = 0 and ε̂t
α is constant and depends

only on the variant of martensite, so that the orientation of the austenite-
martensite interface is the only unknown microstructural parameter. Then
the constraint F = 0 is linear in p. Thus, for a fixed martensite variant,
the interface normal m minimizing (9.3) does not depend on Σ, and it
can be found by maximizing the driving force f for a fixed load multiplier
p, or equivalently by minimizing the last term in equation (9.6), i.e. the
elastic strain energy of a thin plate-like inclusion e∞ = 1

2 ε̂t
α · S0ε̂t

α, cf.
Khachaturyan [57, 58], Roytburd [110], Raniecki [103].

Remark 9.3 The chemical energy ∆amφ0 and critical driving force fc

enter the minimization problem (9.3) only as a sum ∆amφ0 + fc, through
the constraint F = f−fc = 0. Therefore, the value of the sum ∆amφ0+fc is
sufficient to analyze the formation of martensite plates and the actual value
of fc is not relevant as long as the reverse transformation is not considered.

9.2. Free energy of internally faulted martensites

9.2.1. Transformation mechanism

The transformation mechanism in internally faulted martensites is briefly
outlined in this section. The exposition below concerns the Cu-based shape
memory alloys with the DO3 type parent phase (e.g. CuZnAl, CuAlNi),
however, it applies similarly also for the B2 type alloys (e.g. CuZn), cf. Ot-
suka et al. [84]. The atomic arrangement in the DO3 type ordered structure
is shown schematically in Fig. 9.1. The open and closed circles denote the
positions that can be occupied by different atoms.

The martensitic transformation proceeds by the contraction along the
[010] direction and by the expansion along the [101] and [101] directions.
As a result the (101) basal planes become close-packed planes, cf. Otsuka et
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Figure 9.1. The DO3 type ordered structure: (a) atomic arrangement in the

(101) basal plane; (b) stacking sequence viewed from the [010] direction. The

open and closed circles denote the positions occupied by different atoms (Stup-

kiewicz [124], see also Otsuka et al. [84], Hane [39]).

al. [84]. Also, the original stacking positions A1 and B1, cf. Fig. 9.1(a), are
no longer stable, and the (101) basal planes move along the [101] direction
to the nearest stable positions. The stable positions are placed at 0, a/3,
and 2a/3 and are denoted by A, B, C for the A1 planes of the parent
phase and by A’, B’, C’ for the B1 planes. These positions are indicated in
Fig. 9.2(a). The actual stacking positions may deviate from the ideal a/3
and 2a/3 positions; this is discussed later. The nearest stable positions for
each basal plane require a shift by only ±a/6 in the [101] direction with
respect to the neighbouring basal plane. The ideal structure of martensite
is obtained for a cyclic sequence of two shears to the left followed by one
shear to the right as illustrated in Fig. 9.2(b). The monoclinic unit cell of
martensite is indicated by a dashed line in Fig. 9.2(b). It is called the 6M
unit cell as it involves six layers and the symmetry is monoclinic, cf. Otsuka
et al. [84].

Historically, a different unit cell, called 18R (or M18R), was used to de-
scribe the same martensites, hence the common name 18R (M18R) marten-
sites. Indeed, in the case of ideal a/3, 2a/3 stacking positions, an or-
thorhombic 18R unit cell can be constructed involving 18 basal planes with
the AB’CB’CA’CA’BA’BC’BC’AC’AB’A stacking sequence. The 18R unit
cell is shown in Fig. 9.2(c). When the stacking positions deviate from the
ideal ones, the 18R unit cell becomes monoclinic with the monoclinic angle
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Figure 9.2. The 6M and 18R unit cells of martensite: (a) the close-packed (101)

basal plane; (b) the 6M unit cell (dashed lines); (c) the 18R unit cell; (d) the

lattice parameters of 6M and M18R unit cells. Figures b, c and d show the view

from the [010] direction, and crystallographic directions refer to the cubic basis of

the parent phase (Stupkiewicz [124], see also Otsuka et al. [84], Hane [39]).

θM18R different from (but close to) 90◦, hence the modified 18R unit cell,
the M18R unit cell, was introduced. In fact, other unit cells can also be
used to describe the crystalline lattice of the these martensites. However,
only the 6M unit cell corresponds to the actual transformation mechanism.

As already discussed in Section 7.2.3, direct austenite-single martensite
variant interfaces are possible in the internally faulted martensites because
of the additional shear due to stacking faults which provides compatibility
at the austenite-martensite interface. A possible mechanism of stacking
faulting in the internally faulted martensites is by perturbation of the ideal
sequence of two shears to the left and one shear to the right, during the
formation of the martensite plate. Such stacking faults are called sequence
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Figure 9.3. The ideal structure (a) and sample sequence faults (b,c,d) in inter-

nally faulted 6M (M18R) martensites: shear sequences (top figures) and corre-

sponding stacking sequences (bottom figures) (Stupkiewicz [124]).

faults. Three types of sequence faults are shown in Fig. 9.3, cf. Andrade
et al. [4]. These faults are introduced by a single violation of the ideal
sequence, indicated by an arrow in Fig. 9.3, followed by the regular 2/1
shear sequence. Note that other types of sequence faults are also possible.

9.2.2. Free energy due to stacking faults

In order to account for the effects of the energy associated with stacking
faults, the free energy density of the I-th variant of martensite is assumed
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to have the form

φI = φ0 + ∆amφ̂0 +
1
2

(ε− ε̂t
I) · LI(ε− ε̂t

I), (9.7)

where the term ∆amφ̂0 is assumed to comprise two parts,

∆amφ̂0 = ∆amφ0 + ∆φsf
0 . (9.8)

Here ∆amφ0 is the usual chemical energy, i.e. the difference of free energy
densities between the martensite of ideal crystalline structure (i.e. without
stacking faults) and the austenite, both in stress-free states. It is usually
assumed that ∆amφ0 depends linearly on temperature, thus at a fixed tem-
perature it is a constant.

The second term in equation (9.8), ∆φsf
0 , is the additional free energy

of martensite due to the presence of stacking faults. The stacking faults
increase the internal energy u0

m of martensite in the reference state, cf.
Eq. (8.5), while the entropy s0

m is not affected. A simple model relating this
energy to the stacking fault energy (SFE) and to the shear magnitude ksf

is proposed below.
As already mentioned, there are many types of sequence faults that could

possibly appear in 6M martensites. Each stacking fault type is characterized
by the shear displacement, denote it by d, which is induced by a single
fault. For example, d = 2a/9 for the twin-type fault, d = a/9 for the
hexagonal-type fault, and d = −a/9 for the cubic-type fault, cf. Fig. 9.3.
Moreover, each type of stacking fault can be characterized by a possibly
different stacking fault energy Γ. The stacking fault energy Γ is the energy
due to a single stacking fault per unit area of this fault.

Consider thus a A × B × C cuboid of martensite, large enough to be
treated as a representative volume, aligned with the 18R basis. Assume
that the cuboid contains N stacking faults with (101) shear plane and [101]
shear direction. Further, assume that all the faults are of the same type, so
that their shear displacements d and stacking fault energies Γ are identical.
This assumption is justified later. The overall shear magnitude is thus
ksf = Nd/C and the additional free energy due to N stacking faults is
NΓAB. The volumetric density of this energy, i.e. the additional free energy
density due to stacking faults, is thus

∆φsf
0 =

NΓAB

ABC
=

Γksf

d
=

Γ
|d|
|ksf | . (9.9)
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Equation (9.9) provides a relation between Γ, the surface density of the
stacking fault energy, and the related volumetric density ∆φsf

0 . The ratio
ksf/d is non-negative, so it has been replaced by |ksf |/|d| in equation (9.9),
whereas the quantity d/ksf = C/N is the average distance between faulted
planes.

Now, the question is, which of the many possible stacking fault types
is actually formed during the transformation. One can expect that the
one characterized by the lowest Γ/|d| ratio, so that the additional shear
required to ensure compatibility at the austenite-martensite interface re-
quires as little energy as possible. The same line of argument supports the
assumption that stacking faults of only one type appear during the trans-
formation. Only in the situation when the ratios Γ′/d′ and Γ′′/d′′ of two
(or more) fault types are nearly equal, Γ′/d′ ≈ Γ′′/d′′ ≈ Γ/d, both types
could appear simultaneously. However, also in that case equation (9.9)
holds, because the additional free energy density can then be written as
∆φsf

0 = Γ′k′sf/d′ + Γ′′k′′sf/d′′ ≈ (Γ/d)(k′sf + k′′sf) = (Γ/d)ksf , where the total
shear magnitude ksf = k′sf + k′′sf is the sum of the shear magnitudes k′sf and
k′′sf associated with each of the active fault types.

The ratio Γ/|d| ≥ 0 of the energetically preferential stacking fault type
(i.e. the one with the smallest Γ/|d|) is a material parameter and can be
interpreted as the additional free energy density per unit shear magnitude.
It will thus be called the specific SFE density. The specific SFE density
may, in general, be different for ksf > 0 and ksf < 0, as positive and negative
shears are generated by stacking faults of different types.

Comparing the free energy density of martensite, as specified by equa-
tions (9.7)–(9.8), to that adopted in Section 8.2, Eq. (8.4), we notice that
stacking faulting in martensite is accounted for by the free energy term
∆φsf

0 in equation (9.8). Furthermore, in Section 8.2 the shear magnitude
ksf due to stacking faults is implicitly assumed constant, by adopting the
microstructure predicted by the crystallographic theory, while here it will
be determined from the minimization problem (9.3).

9.3. Internally faulted martensitic plates

9.3.1. Minimization problem

The general relations derived in Section 9.1 are now specified for the case
of internally faulted martensites. The microstructure of the martensitic
plate is now fully described by the variant index I, the shear magnitude ksf ,
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and the austenite-martensite interface normal m. Using the potential (9.7)
and (9.9)–(9.9), the driving force for the transformation from austenite to
martensite variant I can be expressed as

fI = f̂I(p, m, ksf) = −∆amφ̂0 + p Σ∗ · ε̂t
I +

1
2

p2Σ∗ ·∆MΣ∗

−1
2

(p ∆MΣ∗ + ε̂t
I) · S0(p ∆MΣ∗ + ε̂t

I). (9.10)

The driving force fI depends on m through the operator S0 and on ksf

through ∆amφ̂0 and ε̂t
I , cf. Eq. (7.13). The minimization problem (9.3)

takes now the form

min
I,m,ksf

p subject to FI(p, m, ksf) = 0, (9.11)

where FI(p, m, ksf) = f̂I(p, m, ksf)− fc.

9.3.2. Solution method

The constrained minimization problem (9.11) is a discrete-continuous op-
timization problem since I, the index of martensite variant, is one of the
independent variables. However, since there are only 12 martensite variants,
a continuous sub-problem

min
m,ksf

p subject to FI(p, m, ksf) = 0 for given I , (9.12)

can be solved for each of the variants I and the solution with the smallest
p can be chosen as the solution of problem (9.11). In fact, the number
of variants for which problem (9.12) has to be solved can be significantly
reduced by excluding the less favorable variants. For that purpose, the
transformation stress predicted by the extension of the Schmid law can be
used as an indicator.

The continuous constrained minimization problem (9.12) is solved in a
standard way by introducing Lagrange multipliers and solving directly the
optimality criteria. The corresponding Lagrangian L and the condition of
stationary point of L (optimality criteria) are given by

L(x) = p + λFI + µ(m ·m− 1) ,
∂L

∂x
= 0 , (9.13)
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respectively, where λ and µ are Lagrange multipliers, and x is the vector
of all unknowns, x = {p, m, ksf , λ, µ}. The last term in equation (9.13)1 is
introduced to enforce m to be a unit vector.

The optimality criteria (9.13)2 constitute a set of seven nonlinear equa-
tions which are solved using the iterative Newton method. The microstruc-
tural parameters predicted by the crystallographic theory, Section 7.2.4,
are used as a starting point of the iterative procedure. Usually, this initial
guess proves to be sufficiently close to the actual solution and no conver-
gence problems are encountered. Special treatment is only required in some
cases, mostly when the convergence is affected by the non-smoothness of
the constraint FI = 0 for ksf close to zero. This is due to the term |ksf | in
equation (9.9).

Due to severe complexity of expressions involved in derivation of the gra-
dient of the Lagrangian L, and its Hessian required for the Newton method,
the symbolic code generation package AceGen [65] is used to automatically
generate the respective numerical procedures.

9.3.3. Thermally induced transformation

Although this work is mainly concerned with the stress-induced transforma-
tion, the present approach can be formally applied to analyze the thermally
induced transformation. Accordingly, the overall stress Σ is set to zero,
and the temperature is assumed to vary slowly so that its uniformity is
preserved. Similarly to the case of stress-induced transformation, the crys-
tal is initially in austenitic state and the temperature is decreased until a
thin plate of martensite is formed. Clearly, the formation of a thin plate-
like inclusion of faulted martensite can only be studied in this way. Other,
physically more relevant, transformation mechanisms (self-accommodating
groups, twinning) are not considered, nor is the progressive transformation.

As the chemical energy ∆amφ0 increases linearly with temperature, cf.
equation (8.5), in what follows, we shall treat ∆amφ0 as a temperature-like
variable and use it as a control parameter instead of temperature. Putting
Σ = 0 and using equations (9.8)–(9.9), the transformation criterion FI =
fI − fc = 0 becomes

FI(∆amφ0, m, ksf) = −(∆amφ0 + fc)−
Γ
|d|
|ksf | −

1
2

ε̂t
I · S0ε̂t

I = 0. (9.14)

We now look for the plate orientation m and for the shear magnitude ksf ,
for which the transformation criterion FI = 0 is satisfied at the maximum
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temperature, i.e. at maximum ∆φam
0 . This leads to the following constrained

minimization problem

min
m,ksf

−∆φam
0 subject to FI(∆φam

0 , m, ksf) = 0. (9.15)

Remark 9.4 The minimization problem (9.15) does not involve elastic
properties of the austenite. Thus the resulting microstructure depends only
only on the transformation strain, elastic properties of the martensite, and
specific SFE density.

Remark 9.5 As the overall stress is zero, Σ = 0, there are no privileged
directions, and thus all variants provide crystallographically equivalent so-
lutions to problem (9.15).

Remark 9.6 Consider a compatible microstructure, i.e. assume that m
and ksf follow from the crystallographic theory, and thus the total trans-
formation strain ε̂t

I satisfies the habit plane equation (7.14). Evaluating
the optimality criteria (9.13)2 for the compatible transformation strain,
one can easily prove that ∂L/∂ksf = −sign(ksf) λΓ/|d| 6= 0, where L =
−∆φam

0 + λFI + µ(m ·m− 1) is the Lagrangian corresponding to the mini-
mization problem (9.15). This means that the compatible microstructure is
not optimal in the present sense. Only in the case Γ/|d| = 0, i.e. when there
is no additional free energy due to stacking faults, the geometrically linear
theory of Section 7.2.4 and the minimization problem (9.15) yield identical
results.

9.3.4. A property of the minimization problem (9.11)

The crystallographic theory provides two solutions of the habit plane equa-
tion (7.14) for each of the martensite variants. The two microstructures
are crystallographically equivalent, i.e. one can be obtained from the other
by applying a rotation belonging to the symmetry point group of the cu-
bic austenite lattice, cf. Hane [39]. Additionally, in the geometrically linear
case, the shape strain direction vector b/|b| of one of the solutions is iden-
tical to the habit plane normal m of the other solution and conversely, so
that m1 = b2/|b2| and m2 = b1/|b1|, where (m1, b1) and (m2, b2) are
the two solutions of the habit plane equation (7.14) for the same variant of
martensite, cf. Bhattacharya [12], Stupkiewicz [124].
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An interesting property of the minimization problem (9.11) has been
observed in all cases analyzed numerically, although a theoretical proof is
lacking. The problem (9.11) appears to have two solutions (p1, k1

sf , m
1) and

(p2, k2
sf , m

2) with identical load multipliers p1 = p2 and shear magnitudes
k1
sf = k2

sf . However, in contrast to the crystallographic theory, the two
microstructures are not crystallographically equivalent.

Furthermore, consider the jumps in the total strain corresponding to
the two solutions, ∆εi = 1

2 (ci ⊗mi + mi ⊗ ci), cf. the compatibility con-
dition (2.27). It appears that the unit vector ci/|ci| of one solution is
identical to the interface normal of the other solution, so that m1 = c2/|c2|
and m2 = c1/|c1|. As a result, the total strain jump is identical for both
solutions, ∆ε1 = ∆ε2.

9.4. Microstructures in CuZnAl single crystals

9.4.1. Material parameters

In this section, the microstructures accompanying the formation of inter-
nally faulted martensitic plates in CuZnAl single crystals is studied using
the approach proposed above. The availability of material parameters is
rather restricted, and the CuZnAl alloy is, actually, the only one for which
the elastic properties of single crystals of the austenite and the 6M (M18R)
martensite could be found in the literature. The corresponding elastic con-
stants are provided in Appendix B. The parameters characterizing the
transformation strain are also provided in Appendix B.

Three additional parameters are required to fully characterize the ma-
terial: the chemical energy ∆amφ0, the critical driving force fc, and the
specific SFE density Γ/|d|. As only the forward transformation is consid-
ered here, without loosing generality, fc = 0 is assumed in the present
simulations, so that ∆amφ0 has actually the meaning of ∆amφ0 + fc, see
Remark 9.3. In the examples below, a range of values of the chemical en-
ergy is used, ∆amφ0 = 0 ÷ 20 [MJ/m3], which covers the range of realistic
transformation stresses. Note that, since ∆amφ0 depends on temperature,
the adopted range of ∆amφ0 corresponds to some range of temperatures
which, however, is not specified here.

Determination of the specific SFE density Γ/|d| would be possible if the
stacking fault energies Γ of the possible sequence faults were known, cf.
Section 9.2.2. Since these parameters are not available, a range of values
of the specific SFE density from Γ/|d| = 0 up to Γ/|d| = 300 [MJ/m3] is
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Figure 9.4. Chemical energy ∆amφ0 and shear magnitude ksf as a function of the

specific SFE density Γ/|d| at the initiation of the thermally induced martensitic

transformation.

investigated in the examples. Assuming that |d| = a/9 (as for the cubic-
and hexagonal-type faults), the value of Γ/|d| = 300 [MJ/m3] corresponds
to the stacking fault energy Γ = 15.1 [mJ/m2].

9.4.2. Thermally induced transformation

The solution of the minimization problem (9.15), i.e. the chemical energy
∆amφ0 at the initial instant of transformation induced thermally at zero
stress and the corresponding shear magnitude ksf are presented in Fig. 9.4
as a function of the specific SFE density Γ/|d|.

As expected, the solution of the minimization problem (9.15) for Γ/|d| =
0 and the prediction of the geometrically linear crystallographic theory, cf.
Table B.2, are identical. Furthermore, for Γ/|d| = 0, the chemical energy
minimizing (9.15) is ∆amφ0 = 0. Note, however, that fc = 0 has been
assumed. Thus, for non-zero critical driving force (fc > 0), over-cooling
(∆amφ0 < 0) is required to initiate the transformation.

With increasing specific SFE density Γ/|d|, the shear magnitude ksf

decreases in absolute value, Fig. 9.4(b), so that the total transformation
strain ε̂t is no longer compatible, cf. Remark 9.6. This is accompanied by
the decrease of the chemical energy ∆amφ0 (i.e. over-cooling) required to
overcome this incompatibility, cf. Fig. 9.4(a). At a critical value Γ/|d| ≈
21.5 [MJ/m3], the shear magnitude ksf reaches zero, and the chemical energy
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Figure 9.5. Load axis orientations relative to the cubic basis of austenite.

drops to ∆amφ0 = −49.5 [kJ/m3]. Assuming that ∆s∗ = 0.156 [MJ/m3]
as in the case of CuAlNi alloy in Section 8.3.4, this corresponds to the
overcooling of only 0.3 [K]. With the further increase of Γ/|d|, the solution
is insensitive to Γ/|d|, as indicated by the dashed lines in Fig. 9.4.

The predicted orientation of the austenite-martensite interface also de-
pends on Γ/|d|. However, the maximum deviation of the normal vector
m (corresponding to the high values of Γ/|d| and ksf = 0) from the one
predicted by the crystallographic theory is only about 0.6 degree.

9.4.3. Uniaxial tension and compression

The stress tensor corresponding to uniaxial tension and compression can
be written as Σ = Σ t ⊗ t, where t is the unit vector defining the loading
direction, and Σ is the uniaxial stress. The load multiplier is thus defined
as p = Σ > 0 for tension and p = −Σ > 0 for compression. The unit
vectors t, corresponding to six loading directions used in the present study,
are shown in Fig. 9.5. These directions are chosen arbitrarily in a way to
cover different areas of the unit stereographic triangle. The twelve loading
cases (tension or compression in six directions) are denoted by a character
specifying the direction followed by ‘t’ for tension or ‘c’ for compression.
Thus, for example, A-c denotes compression in direction A.

The solution of the minimization problem (9.11) provides the variant I,
the shear magnitude ksf , the habit plane normal m, and the uniaxial trans-
formation stress Σ. For fixed elastic and transformation strain parameters,
as specified in Appendix B, the solution depends on the chemical energy
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Figure 9.6. Shear magnitude ksf as a function of the specific SFE density Γ/|d|
(tension in direction A) (Stupkiewicz [124]).

∆amφ0 (i.e. indirectly on temperature), on the specific SFE density Γ/|d|,
and on the loading direction. The influence of these three factors on the
predicted microstructures is studied below.

The preferred martensite variant I appears to be fully determined by
the sense of loading (this does not necessarily hold for loading directions
other than the analyzed directions A,. . . ,F). The variant I = 9 is the pre-
ferred variant in tension (A-t,. . . ,F-t), and I = 4 is the preferred variant in
compression (A-c,. . . ,F-c).

In Figure 9.6, the shear magnitude ksf is shown as a function of the
specific SFE density Γ/|d| for a representative loading case and for differ-
ent values of the chemical energy ∆amφ0. Qualitatively, the dependence of
ksf on Γ/|d| is similar to that obtained for the thermally induced transfor-
mation. With increasing Γ/|d|, the shear magnitude ksf increases, and a
critical value of the specific SFE density Γ/|d| exists for which martensite
plates with no stacking faults (ksf = 0) are predicted. The critical specific
SFE density increases with increasing ∆amφ0. The shear magnitude ksf de-
pends strongly on the loading direction, and so does the critical specific SFE
density. This is clearly seen in Fig. 9.7, where ksf is shown as a function of
Γ/|d| for ∆amφ0 = 10 [MJ/m3] and for all loading directions in tension.

The dependence of the solution of the minimization problem (9.11) on
the specific SFE density Γ/|d| is non-smooth at the critical specific SFE
density, i.e. when ksf approaches zero as Γ/|d| increases, cf. Figs. 9.6 and 9.7.
This is because the constraint FI = fI −fc = 0, which involves |ksf |, is non-
smooth at ksf = 0.
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density Γ/|d| for tension in direction A (Stupkiewicz [124]).

The transformation stress Σ as a function of Γ/|d| is shown in Fig. 9.8
for tension in direction A. For Γ/|d| smaller than the critical value, the
transformation stress increases with increasing Γ/|d|, for higher values the
transformation stress is constant. The dashed line labelled by ‘ksf = 0’ in
Fig. 9.8 indicates the critical specific SFE densities and the corresponding
transformation stresses at different values of the chemical energy ∆amφ0.
The transformation stresses predicted for ∆amφ0 = 10 [MJ/m3] are given in
Table 9.1. For each loading case, the smallest and the largest transformation
stress, corresponding to the limit cases Γ/|d| = 0 and ksf = 0, respectively,
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Table 9.1. Predicted values of uniaxial transformation stress corresponding to

different loading cases (∆amφ0 = 10 [MJ/m3]).

Loading Σ [MPa] Relative
case Γ/|d| = 0 ksf = 0 difference

A-t 101.3 123.5 21.9%
B-t 105.0 116.7 11.1%
C-t 127.1 131.6 3.6%
D-t 138.3 152.6 10.3%
E-t 150.5 157.7 4.8%
F-t 268.2 277.2 3.4%

A-c -107.7 -111.5 3.5%
B-c -133.7 -141.6 5.9%
C-c -194.6 -226.6 16.4%
D-c -170.9 -178.4 4.4%
E-c -202.1 -220.1 8.9%
F-c -338.7 -351.8 3.8%

are included in Table 9.1 along with their relative difference.
Finally, Figure 9.9 illustrates the effect of the specific SFE density Γ/|d|

on the orientation of the habit plane: the habit plane normal vectors are
shown in stereographic projection for ∆amφ0 = 20 [MJ/m3] and for two
representative loading cases (A-t and F-t). As the specific SFE density
Γ/|d| increases from zero to its critical value, the habit plane normal evolves
between two limit cases denoted by Γ/|d| = 0 and ksf = 0 in Fig. 9.9. The
habit plane normal vector predicted by the crystallographic theory, marked
with a triangle and a ’CT’ label, is also included in Fig. 9.9.

As already discussed in Section 9.3.4, two solutions of the minimization
problem (9.11) are obtained, for which the martensite variant I, the shear
magnitude ksf , and the transformation stress Σ are identical. However, the
habit plane normal vectors m1 and m2 are not crystallographically equiv-
alent. In order to make the comparison possible, the vectors corresponding
to both solutions are shown in the same unit stereographic triangle (in
practice, both vectors are approximately perpendicular). The difference be-
tween the two solutions obtained for tension in direction A is hardly visible
in Fig. 9.9(a). The difference is much more pronounced when tension in
direction F is considered, cf. Fig. 9.9(b).

The habit plane orientations predicted for the two limit cases Γ/|d| = 0
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Figure 9.9. The habit plane normal vectors m, corresponding to different values

of Γ/|d| (shown in the unit stereographic triangle) (Stupkiewicz [124]).

and ksf = 0 are shown in Fig. 9.10. All the loading cases (tension and
compression in directions A,. . . ,F) are included in Fig. 9.10. The predicted
habit plane orientations form two separate groups corresponding to Γ/|d| =
0 and to ksf = 0. The maximum deviation from the mean orientation within
the group depends on ∆amφ0. At ∆amφ0 = 20 [MJ/m3], the maximum
deviation is 1.3 degree for Γ/|d| = 0 and 1.8 degree for ksf = 0. At ∆amφ0 =
10 [MJ/m3], the deviation is about two times smaller.

9.5. Discussion

An approach has been developed for prediction of transformation stresses
and microstructures of stress-induced internally faulted martensitic plates
at the initial instant of transformation. The problem has been formulated
as a minimization problem for the load multiplier with the transformation
condition, expressed in terms of the thermodynamic driving force on the
phase transformation front, imposed as a constraint. The general setting
of the problem has been provided, which has then been specified for the
internally faulted martensites. The latter case has been further studied in
the numerical examples. The additional free energy associated with stacking
faults in the martensite has been accounted for, and a simple model relating
this energy to the stacking fault energy and to the shear magnitude due to
stacking faults has been proposed. These aspects of micromechanics of
internally faulted martensites, first published in Stupkiewicz [124], have not



Formation of stress-induced martensitic plates 199

G�ÈdÈ=0

ksf=0

CT

DΦ0
am=10@MJ�m3D

G�ÈdÈ=0

ksf=0

CT

DΦ0
am=20@MJ�m3D

(a) (b)

Figure 9.10. Habit plane normal vectors m predicted for all loading cases and

for Γ/|d| = 0 or for ksf = 0 (shown in the unit stereographic triangle) (Stup-

kiewicz [124]).

been addressed in the literature yet.
The predicted microstructures are, in general, different from the one

following from the crystallographic theory, both in terms of the habit plane
orientation and of the shear magnitude due to stacking faults. Moreover,
the microstructures depend on the stress state, i.e. on the orientation of the
tension or compression axis with respect to the austenite lattice and on the
stress magnitude. The latter dependence is implicit since the transformation
stress, as a part of the solution, depends on the chemical energy ∆φam

0 ,
which, in turn, depends on the temperature.

The microstructure depends on the stress state only if the elastic moduli
tensors of austenite and martensite are different. This difference, however, is
always expected in view of different crystallographic symmetry and related
different elastic anisotropy of both phases. The higher the temperature,
the higher the transformation stress and the more pronounced the elastic
mismatch effects, e.g. the scatter of habit plane orientations. The examples
cover uniaxial tension and compression only, however, both the method and
the results are valid for general stress states, e.g. those induced in differently
oriented grains of a loaded polycrystalline material.

The additional free energy associated with stacking faults is an impor-
tant factor affecting the predicted microstructures, and the specific SFE
density Γ/|d| has been shown to be the influential parameter. The specific
SFE density is a material parameter having, in general, two distinct values
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corresponding to ksf > 0 and to ksf < 0. Determination of the specific SFE
density requires that the sequence-fault type, characterized by the lowest
Γ/|d| ratio, is chosen from the many possible types. Unfortunately, the ac-
tual values of stacking fault energies Γ of different sequence-type stacking
faults are not available, so a parametric study could only be performed.

Based on the results presented in Section 9.4, three situations can be
predicted. For low stacking fault energy (more precisely for low specific SFE
density Γ/|d|), all martensitic plates, regardless of the stress state, would
be internally faulted. The amount of shearing due to stacking faults, closely
related to the average distance between the faulted planes, would depend
on the stress state. On the other hand, if the stacking fault energy was
sufficiently high, all martensitic plates, regardless of the stress state, would
be formed without stacking faults. Finally, in an intermediate situation,
depending on the stress state, some martensite plates would be internally
faulted and some would be not. The above division is relative and changes
with temperature.

As the specific SFE density Γ/|d| increases, the solution (p, ksf , m) of
the minimization problem monotonically evolves between two limit cases
Γ/|d| = 0 and ksf = 0. The load multiplier p, at which the transformation
initiates, is greater for ksf = 0 than for Γ/|d| = 0. This is expected, since
the condition ksf = 0 can, in fact, be interpreted as an additional constraint
on the minimization problem (9.11). Interestingly, in both limit cases, the
additional energy due to stacking faults vanishes, ∆φsf

0 = (Γ/|d|)|ksf | = 0.
Possible experimental verification of the model would require exact de-

termination of microstructural parameters of martensite plates. The de-
pendence of the habit plane orientation on the stress state (orientation and
magnitude) may be difficult to observe experimentally, since the predicted
variation of habit plane orientation with changing loading direction is of
the order of two-three degrees which is, probably, close to the measurement
error. Note, however, that, for differently oriented single crystal specimens,
Horikawa et al. [48] reported different habit plane orientations, and the
maximum deviation of the measured orientation from the one predicted by
the crystallographic theory was about 3 degrees. Scatter of habit plane
orientations has also been observed in polycrystalline materials undergoing
stress-induced martensitic transformations, cf. Roytburd and Pankova [114],
Zimmermann and Humbert [161]. Another related effect that could be ap-
proached experimentally is the dependence of the density of stacking faults
on temperature and loading direction.
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Conclusions and future research

In the present thesis, several aspects of micromechanics of contact and in-
terphase layers have been addressed. All the specific problems and applica-
tions discussed in the thesis are concerned with interfaces, interface layers,
or materials with propagating interfaces. The reported studies have thus
the interfaces in common.

The scope of the thesis is rather wide, both in terms of the addressed
aspects of mechanics of interfaces and in terms of the modelling approaches
employed. Two application areas have been presented, namely contact of
rough bodies and stress-induced martensitic microstructures. Furthermore,
different microstructural arrangements have been analyzed: homogeneous
vs. inhomogeneous interface layers, finite vs. infinitesimal layer thickness,
given vs. unknown interface orientation. The modelling approaches range
from theoretical developments, e.g. the asymptotic analysis of boundary
layers presented in Chapter 4, to numerical computations, e.g. the finite
element computations reported in Chapter 6.

Detailed summaries of the specific original results, as well as the respec-
tive conclusions, have been provided at the end of each chapter. The most
important results are briefly recalled below.

Analysis of deformation inhomogeneities within the contact layers, con-
stituting the main theme of the first part of the present thesis, was motivated
by the substantial effect of macroscopic plastic deformations on asperity
flattening, observed in conditions typical for metal forming processes. In
Section 3.3, the related contact phenomena (evolution of real contact area,
friction) have been discussed, and a model of a homogeneous surface layer,
originally proposed by Stupkiewicz and Mróz [130], has been presented. The
model provides a phenomenological description of weakening of the surface
layer due to the interaction of macroscopic plastic deformations with the
inhomogeneous deformations induced by asperity flattening.

In Chapter 4, the method of asymptotic expansions has been used to
derive the equations of the boundary layers induced by contact of rough
bodies. The present asymptotic analysis provides the transition between the
micro-scale and the macro-scale with a full account for contact and friction

201
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conditions. In the boundary layer, a displacement correction is imposed on
the homogeneous macroscopic deformation, so that the microscopic strain
is composed of the uniform macroscopic strain and an additional term as-
sociated with the displacement correction. The analysis provides also the
macroscopic and microscopic friction conditions. The latter take a different
form in the macroscopic sliding zone and in the macroscopic sticking zone.

Subsequently, in Chapter 5, a micromechanical framework for the anal-
ysis of boundary layer fields has been developed. A special averaging op-
eration has been introduced, which is an essential element of the proposed
micromechanical framework. Several properties of the corresponding av-
erages have been derived, e.g. the counterparts to the local compatibility
conditions and interfacial relationships holding at bonded interfaces.

Finally, in Chapter 6, the contact boundary layers in elasto-plastic solids
have been analyzed using the finite element method, as an illustration and
practical application of selected elements of the micromechanical framework
developed in Chapters 4 and 5. The effect of the macroscopic in-plane strain
on the contact response has been studied for two representative asperity in-
teraction problems (ploughing and flattening). The predicted effects seem
to be less important in the elasto-plastic regime than in the fully plas-
tic regime, typical for metal forming processes. For instance, the plough-
ing friction coefficient has been found to be practically insensitive to the
macroscopic strain. At the same time, a visible effect on the elasto-plastic
normal contact compliance has been observed. In the latter case, a real
three-dimensional surface topography has been used to construct the finite
element model of the contact boundary layer, and experimental verification
of the model has been performed.

In the classical micromechanics of heterogeneous materials, a represen-
tative volume element is usually subjected to one of three classical types
of boundary conditions (periodic displacement fluctuation, linear displace-
ment, uniform traction), which ensure that the Hill’s lemma is satisfied. In
the case of contact boundary layers, V -periodicity of the displacement cor-
rection, as introduced in Chapter 4, is essential for consistent modelling of
deformations in boundary layers. For instance, a meaningful solution would
not be obtained in the asperity ploughing example of Section 6.3 if linear
displacement or uniform traction boundary condition was imposed—note
the deformation pattern induced by ploughing, shown in Fig. 6.5. Peri-
odicity of surface roughness, which implies V -periodicity of displacement
correction, is thus an important assumption of the present micromechanical
framework. Its application for real surfaces, which normally are not peri-
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odic, requires that approximate models are developed in which periodicity
of roughness is enforced by modifying the original roughness topography,
cf. Section 6.4.

The second part of the present thesis is concerned with micromechan-
ical analysis of evolving martensitic microstructures in single crystals of
shape memory alloys. The analysis is focused on stress-induced transfor-
mations proceeding in isothermal conditions. The micromechanical model,
originally proposed by Stupkiewicz and Petryk [132], and presented in Sec-
tion 8.2, assumes that a nested laminated microstructure develops during
the stress-induced transformation. The model combines the explicit micro-
macro transition relations for simple laminates with the phase transforma-
tion criterion expressed in terms of the local thermodynamic driving force
on the phase transformation front. Distinct elastic anisotropy of the phases,
which is naturally expected in view of distinct symmetry of crystallographic
lattice, is fully accounted for in the above micromechanical scheme, and this
is a unique feature of this model, as compared to other models.

Important results concerning the structure of the macroscopic consti-
tutive rate-equations are provided in Section 8.2.3, after Stupkiewicz and
Petryk [132]. It is shown that, if a constant critical driving force is assumed,
then these equations have exactly the structure of the equations of the clas-
sical small-strain elasto-plasticity with the normality rule. Moreover, if the
stress is discontinuous across the transformation front, which is usually the
case, then a softening behaviour during transformation is predicted by the
model. In agreement with this theoretical result, the softening is indeed
observed on the simulated stress-strain diagrams.

The softening can be substantial if martensite variant rearrangement
(detwinning) is included as an additional deformation mechanism, cf. Sec-
tion 8.4. The overall stress may then drop even to zero, which is observed
in the case of unconstrained deformation corresponding to a uniaxial stress.
It has also been shown that constraints imposed on the deformation signifi-
cantly affect the macroscopic response and the evolution of microstructural
parameters.

Practical implementation of the micromechanical model, i.e. develop-
ment of a workable computational scheme, constitutes an important contri-
bution of the present author. This includes the following elements: path-
independent formulation, as outlined in Section 8.3.1, derivation of explicit
micro-macro transition relations for simple laminates, and development of
respective numerical procedures.

New, unpublished applications of the model are reported in Section 8.3.



204 Chapter 10

The predictions of the model have been compared to the experimental re-
sults of Horikawa et al. [48] and Novák et al. [80]. Furthermore, a simple
extension of the model to the macroscopically adiabatic case has been pro-
posed. The corresponding results illustrate two important non-isothermal
effects: apparent hardening due to the latent heat of transformation and
increase of hysteresis width in the stress-strain diagram, associated with
heat conduction.

Comparison to the experimental results indicates that the model cor-
rectly describes the orientation dependence of the transformation stress and
of the transformation strain, as well as the response in the elastic range, i.e.
before the transformation initiates. The agreement of the model predic-
tions with the results of Horikawa et al. [48] is satisfactory. As the results
of Novák et al. [80] are concerned, the agreement is not as good, but this
may partially be due to the inaccuracy of the measurements. For instance,
the measured elastic stiffness of austenite prior to transformation is about
three times smaller than that following from the independently measured
elastic constants.

In Chapter 9, an approach has been developed for prediction of mi-
crostructural parameters of stress-induced martensitic plates, and the model
has been applied for internally faulted martensites in a CuZnAl shape mem-
ory alloy. The proposed model extends the classical crystallographic theory
of martensite by accounting for elastic strains. The predicted microstruc-
tures are thus different from those following from the crystallographic the-
ory. As the orientation of the austenite-martensite interface is concerned,
the difference is typically small. However, the density of stacking faults
and the related additional shear strain significantly depend on the ther-
momechanical conditions (temperature, loading direction, etc.) and on the
stacking fault energy.

In short, the most important original contributions presented in the
present thesis are the following:

• phenomenological model of evolution of real contact area in metal form-
ing processes (Section 3.3),

• two-scale formulation and asymptotic analysis of contact boundary lay-
ers (Chapter 4),

• development of the micromechanical framework for the analysis of con-
tact boundary layers (Chapter 5),
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• micromechanical analysis of the effect of macroscopic in-plane strains
on contact response in the elastic and elasto-plastic regime (Section 5.4
and Chapter 6),

• development of a workable micromechanical model of pseudoelastic be-
haviour of SMA single crystals, including the computational scheme
and applications (Sections 8.3 and 8.4),

• model for prediction of microstructural parameters of stress-induced
martensitic plates and its application for internally faulted martensites
(Chapter 9).

Micromechanics provides a link between the structure and the prop-
erties at different scales of observation. It is advantageous because the
macroscopic behaviour is analyzed by considering the microscopic interac-
tion mechanisms which are usually better understood. Moreover, param-
eters characterizing the material at the micro-scale have a clear physical
interpretation, and often can be measured directly.

It has been shown in Section 8.3 that several features of the complex
pseudoelastic behaviour of SMA single crystals can be properly described
by the proposed model employing the micromechanical approach combined
with few, rather natural assumptions. The involved material parameters
(elastic constants, transformation strains, chemical energy), indeed, have a
clear physical meaning and can be measured directy, at least in principle, as
there are severe difficulties in finding the elastic properties of single crystals
in martensitic state. In the present model, only one parameter, the critical
driving force fc, has a more phenomenological character, however, as it
is closely related to the intrinsic dissipation, it can be determined from
the width of the hysteresis loop on an isothermal stress-strain diagram.
Note that, as illustrated in Section 8.3.4, heat conduction in non-isothermal
conditions may influence the apparent width of the hysteresis loop.

Similarly, successful prediction of the elasto-plastic normal contact com-
pliance has been reported in Section 6.4. Surface roughness topography
and local material properties are the only microstructural properties re-
quired as the input for the finite element model of the contact boundary
layer. Measurement of the three-dimensional surface topography is a stan-
dard procedure, also the elastic and plastic properties of the bulk material
can be measured easily. However, determination of the distribution of plas-
tic properties within the surface layer is much more difficult. This has not
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been attempted, and a simplifying assumption of a constant yield stress has
been adopted in Section 6.4, leading to satisfactory results.

However, the above example indicates one of the limitations of the mi-
cromechanical approach: its success may by affected by the lack of detailed
and accurate characterization of the microstructure, micro-mechanisms, or
local material properties. Let us also mention another limitation of the mi-
cromechanical modelling: analysis of phenomena occurring at several scales
may be necessary in order to capture all essential deformation mechanisms.
Such multi-scale analysis might be very expensive in terms of computational
cost, it might also be very demanding regarding the modelling assumptions
(microstructure, local material behaviour) at each of the analyzed scales.
Thus, an alternative combined approach, i.e. a phenomenological descrip-
tion based on sound micromechanical reasoning, should be developed in
parallel.

The present thesis illustrates also the central role of the compatibility
conditions in the micromechanical analysis of interfaces and interface lay-
ers. In fact, these conditions appear in some form in each chapter of this
work, usually as an essential element of the modelling. The local compatibil-
ity conditions at a bonded interface reflect the assumptions of displacement
continuity and mechanical equilibrium, cf. Section 2.4. In the case of lam-
inates and thin layers, the stresses and strains are piecewise homogeneous,
so that the compatibility conditions trivially hold also for the strains and
stresses away from the interfaces. Finally, in the boundary layers, the strains
and stresses are inhomogeneous, but the compatibility conditions hold then
for the respective averages, cf. Section 5.2.

Let us, finally, mention the ongoing research related to topics discussed in
the present thesis and also possible extensions of the developed approaches
and models. Rough contact interactions studied in Chapters 4 and 6 corre-
spond to dry or boundary lubrication conditions. Recently, a micromechan-
ical model of the thin-film hydrodynamic lubrication regime has been de-
veloped, in which asperity deformation is modelled by applying the present
boundary layer approach, while the flow of lubricant separating the con-
tact surfaces is described using the Reynolds equation; see Stupkiewicz and
Marciniszyn [126] for preliminary results.

The approach developed in Chapters 4 and 5 is also directly applicable
for stationary heat conduction problems. In fact, heat transfer through a
contact interface is associated with micro-inhomogeneities of temperature
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and heat flux at the scale of interacting asperities. Micromechanical analy-
sis of boundary layers induced by a micro-inhomogeneous heat flux is thus a
convenient framework for modelling of contact heat transfer, e.g. for predic-
tion of the effective heat transfer coefficient. The corresponding modelling
is currently in progress within the activities of the ENLUB project [28]. It
would also be interseting to extend the present approach to non-stationary
heat conduction problems and to problems of coupled thermomechanical
contact of rough bodies. In both cases, the corresponding asymptotic anal-
ysis would probably require consideration of multiple spatial and temporal
scales.

The analysis of contact boundary layers and the contact-related exam-
ples studied in this thesis are limited to the case of contact of a deformable
body with a rigid obstacle. In general, the present framework could be
directly applied also for two deformable rough bodies in contact. Two dif-
ficulties are, however, foreseen. Firstly, the finite element implementation
of sliding of two deformable surfaces would require a specialized contact
search algorithm that would correctly detect contacting points for arbitrary
relative position of the two representative surface samples. This is merely a
technical problem. The second difficulty is more fundamental. As period-
icity is an essential element of the present approach, representative surface
samples must be chosen in a way that periodicity of roughness holds for both
surfaces. Although periodicity could be imposed artificially by modifying
the roughness, as in Section 6.4, ensuring representativeness might lead to
unacceptably large finite element models. Furthermore, if finite macroscopic
deformations were allowed, then the assumption of periodicity, which must
continuously hold during deformation, would impose a very restrictive con-
straint on macroscopic deformations of the two bodies. As a remedy, a
two-scale approach could be applied, in essence similar to that adopted in
Section 3.3.7, provided that the characteristic dimensions of asperities of
the two surfaces are significantly different.

In Section 6.4, the finite element model of a contact boundary layer has
been developed for a real three-dimensional surface roughness. This resulted
in a moderately large-scale simulation with more than 50,000 unknowns,
although the discretization of the contact surface was not particularly fine
(55×55 nodes). Clearly, the size of the numerical problem is a limitation
for the refinement of discretization. Nevertheless, in the present author’s
opinion, direct micromechanical simulations of rough contact interactions
are expected to be more and more frequently used in engineering practice.
This is mostly due to continuously increasing available computing power, so
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that more and more realistic problems can be approached at a reasonable
computational cost.

Consider now the second subject area of this thesis, namely the marten-
sitic microstructures in shape memory alloys. The present micromechanical
modelling is concerned with the behaviour of SMA single crystals. Mod-
elling of polycrystalline materials is thus a natural next step. Accordingly,
the present model could be combined with one of the known crystal-to-
polycrystal transition schemes, such as the uniform strain (Taylor) model,
the self-consistent model, finite element discretization, etc. While this re-
search area is expected to provide practical results, several important issues
are still not resolved concerning single crystals and their modelling. These
are addressed below.

First of all, as already discussed in Section 8.5, the present model pre-
dicts a softening behaviour which may lead to instability of the uniform
transformation pattern. In the case of untwinned martensites, the softening
is typically not substantial, so that introducing some hardening into the
transformation criterion, e.g. physically justified by material inhomogene-
ity, might lead to overall hardening response. However, if internally twinned
martensites are considered, and detwinning is accounted for, then significant
softening is predicted by the present model, so that instabilities cannot be
avoided. Importantly, the corresponding experimental force-elongation di-
agrams often exhibit features characteristic for unstable material response.
The instability effects are thus expected to be a crucial element of modelling
of pseudoelastic behaviour of shape memory alloys, and definitely deserve
detailed studies.

Relationships between characteristic microstructural dimensions at dif-
ferent scales are determined by the size-dependent contributions of the in-
terfaces to the total free energy, cf. Khachaturyan [58], Roytburd [113].
The interfacial energies, which are neglected in the present modelling, con-
stitute thus another important research topic which is, in fact, currently
investigated. Enhancement of the present micromechanical model with the
interfacial energy effects might contribute to a better understanding of the
mechanisms governing the microstructure evolution, including the instabil-
ity effects. Size effects related to interfacial energies at three scales (twin
boundaries, austenite-martensite interfaces, crystal boundaries) of a rank-
two austenite-martensite laminate have been recently analyzed by Petryk et
al. [97]. A closely related study of Maciejewski et al. [76], is concerned with
the finite element analysis of the transition layer at the austenite-twinned
martensite interface. Specifically, the elastic micro-strain energy has been
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related to the microstructure of the transition layer for the assumed class
of zigzag shapes of the interface at the micro-scale.

The small strain assumption, adopted in the present modelling, need not
be a satisfactory approximation in view of transformation strains reaching,
in some cases, 10 per cent or even more. A finite strain formulation is thus
desired, and a model employing the finite strain framework is currently
under development; see Stupkiewicz and Petryk [131] for preliminary re-
sults. Note also, that the finite deformation framework is the correct one
to consistently study the stability problems.

Let us finally note that the peculiar behaviour of shape memory al-
loys may lead to non-standard effects accompanying contact interactions
involving these materials. For instance, pseudoelastic deformations at the
asperity scale result in an increased wear resistance, but also lead to anoma-
lous effects as compared to classical materials, cf. Peña et al. [91], Qian et
al. [101]. Micromechanical analysis of contact phenomena in shape mem-
ory alloys might thus be an interesting research topic combining the two
application areas addressed in the present thesis.





Appendix A

Micro-macro transition relations for simple
laminates

A.1. Matrix notation

In this appendix, explicit expressions are provided for the interfacial oper-
ators, concentration matrices, and effective elastic matrices introduced in
the tensor notation in Chapter 2. The derivation methodology is described
in Chapter 2, therefore the details are omitted here.

The matrix notation is used throughout this appendix.1 The advantage
is also taken of the interior-exterior decomposition in the intrinsic coordinate
system associated with the interface. This notation is a convenient tool for
derivation of explicit expressions for the related operators. Also, thanks
to the interior-exterior decomposition, the form of obtained expressions is
transparent and allows easy interpretation of some properties.

In the Kelvin matrix notation, the Cauchy stress tensor and the infinites-
imal strain tensor (both symmetric) are represented by respective vectors
in a six-dimensional space, see for example Cowin and Mehrabadi [24] and
Pedersen [92],

σ = {σN,σS} = {{σ11, σ22, σ33},
√

2{σ12, σ13, σ23}},
ε = {εN, εS} = {{ε11, ε22, ε33},

√
2{ε12, ε13, ε23}},

(A.1)

and the fourth-rank tensors, e.g. the elasticity tensors, are represented by
6× 6 matrices. For instance, the elastic stiffness matrix L has the form

L =
[

LNN LNS

LT
NS LSS

]
, (A.2)

1For this reason, some notation conventions used in this appendix are not fully consis-
tent with the notation used in the remainder of the thesis. The deviations in the notation
are, however, self-explanatory and detailed definitions are not provided.
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where the 3× 3 submatrices are given by

LNN =

 L1111 L1122 L1133

L2222 L2233

sym. L3333

 , LSS = 2

 L1212 L1213 L1223

L1313 L1323

sym. L2323

 ,

LNS =
√

2

 L1112 L1113 L1123

L2212 L2213 L2223

L3312 L3313 L3323

 ,

and Lijkl are the components of the fourth-rank elastic stiffness tensor, such
that σij = Lijklεkl. The constitutive relations,

σ = L(ε− εt), ε = Mσ + εt, M = L−1, (A.3)

involve now vectors and matrices in place of second- and fourth-rank tensors,
respectively.

The rotational transformation can conveniently be applied for the vector
and matrix representations of second- and fourth-rank tensors using a 6× 6
rotation matrix Q. Its components are expressed in terms of the components
Qij of the corresponding second-rank rotation tensor by, cf. Pedersen [92],

Q =
[

QNN QNS

QSN QSS

]
, (A.4)

where

QNN =

 Q2
11 Q2

12 Q2
13

Q2
21 Q2

22 Q2
23

Q2
31 Q2

32 Q2
33

 ,

QNS =
√

2

 Q11Q12 Q11Q13 Q12Q13

Q21Q22 Q21Q23 Q22Q23

Q31Q32 Q31Q33 Q32Q33

 ,

QSN =
√

2

 Q11Q21 Q12Q22 Q13Q23

Q11Q31 Q12Q32 Q13Q33

Q21Q31 Q22Q32 Q23Q33

 ,

QSS =

 Q11Q22 + Q21Q12 Q11Q23 + Q21Q13 Q12Q23 + Q22Q13

Q11Q32 + Q31Q12 Q11Q33 + Q31Q13 Q12Q33 + Q32Q13

Q21Q32 + Q31Q22 Q21Q33 + Q31Q23 Q22Q33 + Q32Q23

 .
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The rotation matrix Q is an orthogonal matrix, i.e. QQT = I. Now, for
instance, the rotation of the strain vector ε and of the elastic stiffness matrix
L is performed according to

ε∗ = Qε, L∗ = QLQT , (A.5)

where vector ε∗ and matrix L∗ are the representations of the respective
tensors given by ε∗ij = QikQjlεkl and L∗ijkl = QipQjqQkrQlsLpqrs.

A.2. Interior and exterior components

An intrinsic coordinate system associated with the interface with normal n
is adopted in which the x3-axis is perpendicular to the surface, i.e. parallel
to the normal vector n. In accord with the interior-exterior decomposition,
cf. Section 2.2, the components of stress and strain vectors are rearranged,
so that the interior (in-plane) σP, εP and exterior (out-of-plane) σA, εA

components can be introduced:

σ = {σP,σA} = {{σ11, σ22,
√

2σ12}, {σ33,
√

2σ13,
√

2σ23}},
ε = {εP, εA} = {{ε11, ε22,

√
2ε12}, {ε33,

√
2ε13,

√
2ε23}}.

(A.6)

Note that σP, σA, εP, and εA are now three-component subvectors. The
components of the elastic moduli matrices L and M are rearranged accord-
ingly, so that{

σP

σA

}
=

[
LPP LPA

LAP LAA

]{
εP − εt

P

εA − εt
A

}
,{

εP

εA

}
=

[
MPP MPA

MAP MAA

]{
σP

σA

}
+

{
εt
P

εt
A

}
,

(A.7)

where LPP, MPP, . . . , are 3× 3 submatrices of the elastic moduli matrices
L and M.

The intrinsic coordinate system is used in Sections A.3 and A.4. Clearly,
a rotational transformation, cf. Eq. (A.5), relates the components of vectors
and matrices in the global and intrinsic coordinate systems. Therefore,
though it is not explicitly visible, the operators derived below depend on
the interface normal n.
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A.3. Interfacial relationships

In the intrinsic coordinate system, the compatibility conditions take simple
form, cf. Eq. (2.30),

∆σA = 0, ∆εP = 0. (A.8)

For given stress σ+ or strain ε+ on one side of the interface separating the
two phases, the stress σ− and strain ε− on the other side can be found
by solving the compatibility conditions (A.8) jointly with the constitutive
relations (A.7) for each phase. The resulting interfacial relationships, cf.
Eq. (2.33), are given by

∆ε = −P0(∆Lε+ −∆σt), ∆σ = −S0(∆Mσ+ + ∆εt), (A.9)

where σt± = L±εt±, and the operators P0 and S0 are given by

P0 =
[

0 0
0 (L−AA)−1

]
, S0 =

[
(M−

PP)−1 0
0 0

]
. (A.10)

The following identities are trivially satisfied by P0 and S0,

P0L−P0 = P0, S0M−S0 = S0. (A.11)

Note that equations (A.9) are valid for any smooth surface of discon-
tinuity, not necessarily planar, provided that surface tension forces within
the interface are negligible.

A.4. Macroscopic elastic and concentration matrices

Consider now the simple laminate discussed in Section 2.6. Using the consti-
tutive relations (A.7) and the compatibility conditions (A.8) together with
the averaging rules

Σ = {σ} = ησ− + (1− η)σ+, E = {ε} = ηε− + (1− η)ε+, (A.12)
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where η is the volume fraction of the ‘−’ phase, the effective macroscopic
elastic matrices are obtained in the form

L̃uv = ηL−uv + (1− η)L+
uv

−η(1− η)(L+
uA − L−uA)L∗−1

AA (L+
Av − L−Av),

M̃uv = ηM−
uv + (1− η)M+

uv

−η(1− η)(M+
uP −M−

uP)M∗−1
PP (M+

Pv −M−
Pv),

(A.13)

where indices u, v denote either interior (P) or exterior (A) components,
and

L∗AA = (1− η)L−AA + ηL+
AA,

M∗
PP = (1− η)M−

PP + ηM+
PP.

(A.14)

The strain and stress concentration matrices, A± and B±, respectively, are
given by

A± =
[

1 0
A±

AP A±
AA

]
, B± =

[
B±PP B±PA

0 1

]
, (A.15)

where
A−

AP = (1− η) L∗−1
AA (L+

AP − L−AP),

A+
AP = η L∗−1

PP (L−AP − L+
AP),

A−
AA = L∗−1

AA L+
AA,

A+
AA = L∗−1

AA L−AA,

and
B−PP = M∗−1

PP M+
PP,

B+
PP = M∗−1

PP M−
PP,

B−PA = (1− η) M∗−1
PP (M+

PA −M−
PA),

B+
PA = η M∗−1

PP (M−
PA −M+

PA).

Finally, matrices P and S are given by

P =
[

0 0
0 L∗−1

AA

]
, S =

[
M∗−1

PP 0
0 0

]
. (A.16)

Note that, for η = 0, matrices P and S reduce to P0 and S0, respectively,
specified by equation (A.10).
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Material data of selected shape memory alloys

B.1. Transformation strains and microstructures

B.1.1. Cubic-to-orthorhombic transformation

The transformation strains of the six martensite variants in the cubic-to-
orthorhombic transformation, such as the β1→γ′1 transformation in CuAlNi,
are given by

(εt
1)ij =

 α 0 δ
0 β 0
δ 0 α

 , (εt
2)ij =

 α 0 −δ
0 β 0

−δ 0 α

 ,

(εt
3)ij =

 α δ 0
δ α 0
0 0 β

 , (εt
4)ij =

 α −δ 0
−δ α 0

0 0 β

 ,

(εt
5)ij =

 β 0 0
0 α δ
0 δ α

 , (εt
6)ij =

 β 0 0
0 α −δ
0 −δ α

 ,

(B.1)

relative to the cubic axes of the austenite. Parameters α, β, and δ are
calculated from the lattice constants of the austenite and the martensite.
The values of these parameters for the CuAlNi alloy are given in Table B.1
based on the lattice constants measured by Otsuka and Shimizu [86].

In the cubic-to-orthorhombic transformation in Cu-based alloys, the
compatibility at the austenite-martensite interface is obtained by twinning.
The crystallographic theory of martensite provides 96 distinct austenite-
martensite microstructures, cf. Bhattacharya [13], Hane and Shield [40, 42].
For each variant pair (I, J), solution of the twinning equation (7.11) pro-
vides two twin plane normal vectors l. So-called compound twins are ob-
tained for variant pairs (1, 2), (3, 4) and (5, 6), for which, however, the habit
plane equation (7.12) has no solution, i.e. a coherent stress-free austenite-
martensite interface does not exist. Each of the remaining twelve variant
pairs can form one Type I twin and one Type II twin, for which austenite-
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Table B.1. Cubic-to-orthorhombic transformation in CuAlNi.

Transformation strain parameters, cf. Eq. (B.1)

α = 0.0425, β = −0.0822, δ = 0.0194

Austenite-twinned martensite microstructure, variant pair (1,3)

Twin plane normal, l (0, 0.7071,−0.7071) Type I twins
(0.2155, 0.6905, 0.6905) Type II twins

Twin fraction, λ 0.3068

Habit plane normal, m (0.7330, 0.2009,−0.6499)
(0.6332, 0.2286, 0.7394)

martensite interfaces exist. For each of these twins, solution of the habit
plane equation (7.12) provides two twin fractions, λ1 = λ and λ2 = 1−λ, and
for each of them two habit planes are found. There are thus 12×2×2×2 = 96
distinct solutions to equations (7.11) and (7.12). Importantly, in the geo-
metrically linear theory, the four martensitic plates formed by the same vari-
ant pair and with the same twin fraction, though of different microstructure,
i.e. having different twin and habit plane normals, have identical effective
transformation strains, ε̂t

α = λεt
I + (1− λ)εt

J .
The basic microstructural parameters of the austenite-twinned marten-

site interfaces in the CuAlNi alloy, following from the geometrically linear
theory, are provided in Table B.1 for the (1,3) variant pair. These parame-
ters fully define four microstructures, as four distinct combinations of l and
m are possible. The remaining 96−4 = 92 microstructures can be obtained
by applying the rotations from the symmetry point group of cubic austenite.
These rotations are listed, for instance, in Hane and Shield [40].

B.1.2. Cubic-to-monoclinic transformation

The monoclinic 6M martensites in Cu-based alloys have the “cubic axes”
structure with a unique twofold axis along the edge of the original cubic unit
cell, cf. Pitteri and Zanzotto [99]. The components of the transformation
strain tensor of the first variant are given in the cubic basis by

(εt
1)ij =

 ξ 0 0
0 % σ
0 σ τ

 , (B.2)



Material data of selected shape memory alloys 219

Table B.2. Cubic-to-monoclinic transformation in CuAlNi and CuZnAl.

Transformation strain parameters, cf. Eq. (B.2)

CuAlNi CuZnAl

ξ −0.0823 −0.0907
% 0.1002 0.0838
τ −0.0151 0.0105
σ 0.0194 0.0267

Austenite-martensite interface, variant 1

CuAlNi CuZnAl

Shear magnitude, ksf 0.03962 −0.00453

Habit plane normal, m (0.701,−0.693,−0.167) (0.700,−0.682,−0.212)
(0.701, 0.693, 0.167) (0.700, 0.682, 0.212)

Shear direction, s (0, 0.7071, 0.7071)
Shear plane normal, n (0,−0.7071, 0.7071)

the transformation strains of the other variants are obtained by applying the
rotations from the symmetry point group of the cubic austenite. Parameters
ξ, %, τ , and σ are calculated from the lattice constants of the austenite and
martensite, cf. Stupkiewicz [124]. The values of these parameters for the 6M
(M18R) martensites in CuAlNi and CuZnAl alloys are given in Table B.2.
The transformation strain parameters are computed using the lattice con-
stants measured by Otsuka et al. [88] (for CuAlNi) and Chakravorty and
Wayman [20] (for CuZnAl).

The monoclinic 6M martensites, such as the martensitic β′1 phase in
CuAlNi, form internally faulted (untwinned) plates. The crystallographic
theory of martensite provides 24 distinct austenite-martensite microstruc-
tures: for each martensite variant the habit plane equation (7.14) provides
the shear magnitude ksf and two habit plane normals m. The habit planes
and other microstructural parameters of the first variant are given in Ta-
ble B.2. The habit plane normals and the shear systems of the remaining
variants can be obtained by applying the rotations relating the variants.
These rotations can be found in Pitteri and Zanzotto [99].
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Table B.3. Elastic constants of CuAlNi single crystals.

Austenite (β1 phase)a

c11 c12 c44 [GPa]

142 126 96
a Suezawa and Sumino [134]

2H martensite (γ′1 phase)b

c11 c22 c33 c44 c55 c66 c12 c13 c23

189 141 205 54.9 19.7 62.6 124 45.5 115
b Yasunaga et al. [158]

Table B.4. Elastic constants of CuZnAl single crystals.

Austenitea

c11 c12 c44 [GPa]

130 118.4 86
a Guenin et al. [36]

6M (M18R) martensiteb

c11 c22 c33 c44 c55 c66 c12 c13 c15 c23 c25 c35 c46

175 156 235 54 28 48 118 40 10 150 0 0 -10
b Rodriguez et al. [109]

B.2. Elastic constants

In general, for a specified alloy and a specified phase transformation, it is
rather difficult to find in the literature the complete set of elastic constants,
i.e. those of single crystals in the austenitic state and in the martensitic
state. The available elastic constants of the CuAlNi and CuZnAl alloys are
given in Tables B.3 and B.4, respectively.

Elastic constants of the cubic austenite of DO3 type ordered structure
in the CuAlNi alloy (β1 phase) have been measured by Suezawa and Sum-
ino [134]. Consistent data has recently been reported by Landa et al. [72]
who also measured the third order elastic constants (TOEC). While several
martensitic phases are observed in the CuAlNi alloy, elastic properties of
the orthorhombic γ′1 phase (2H structure) are only available, cf. Yasunaga
et al. [158]. Similarly, in the case of the CuZnAl alloy, elastic constants
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of the cubic austenite (DO3 structure) and of the monoclinic martensite
(6M structure) are only available, cf. Guenin et al. [36] and Rodriguez et
al. [109]. Note that in the case of both alloys, the measured elastic proper-
ties of the austenite and of the martensite refer to alloys of slightly different
composition.

Due to the lack of the required elastic properties, only two martensitic
transformations are characterized completely: the cubic-to-orthorhombic
transformation in CuAlNi and the cubic-to-monoclinic transformation in
CuZnAl. However, in the context of stress-induced transformations, the
cubic-to-monoclinic (β1→β′1) transformation in CuAlNi is of great inter-
est, as the β′1 phase is the typical stress-induced martensite in the popular
CuAlNi alloy. In order to allow simulations of this transformation, the elas-
tic constants of the monoclinic β′1 phase can be estimated using the elastic
constants of the similar martensitic phase in CuZnAl. We note that both
martensites have the same 6M (M18R) type structure, so one may assume
that the elastic moduli tensors are, in a sense, similar. Such similarity is
noticeable in the case of the austenitic phases of both alloys, both having
the DO3 structure, cf. Tables B.3 and B.4. It is thus assumed that the
elastic constants of the monoclinic martensite in CuAlNi are equal to the
corresponding constants in CuZnAl scaled by a constant C, namely

cCuAlNi
ij = C cCuZnAl

ij . (B.3)

The scaling constant C = 1.091 is assumed as the mean ratio of the cor-
responding elastic constants of austenitic phases of CuAlNi and CuZnAl.
Elastic constants of the monoclinic β′1 martensite in CuAlNi, estimated ac-
cording to (B.3), are used in the numerical simulations in Section 8.3.2.
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ization of Cu–Al–Ni single crystals lattice stability in the vicinity of
the phase transition. Ultrasonics, 42:519–526, 2004.



BIBLIOGRAPHY 229

[73] Y.-H. Lee and D. Kwon. Estimation of biaxial surface stress by instru-
mented indentation with sharp indenters. Acta Mater., 52:1555–1563,
2004.

[74] C. Lexcellent, B.C. Goo, Q.P. Sun, and J. Bernardini. Characteriza-
tion, thermomechanical behaviour and micromechanical-based consti-
tutive model of shape-memory Cu–Zn–Al single crystals. Acta Mater.,
44(9):3773–3780, 1996.

[75] R. Luciano and J.R. Willis. Boundary-layer corrections for stress and
strain fields in randomly heterogeneous materials. J. Mech. Phys.
Solids, 51:1075–1088, 2003.

[76] G. Maciejewski, S. Stupkiewicz, and H. Petryk. Elastic micro-strain
energy at the austenite–twinned martensite interface. Arch. Mech.,
57(4):277–297, 2005.
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miȩcia̧ kszta ltu. In W.K. Nowacki, editor, Podstawy termomechaniki
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[127] S. Stupkiewicz and Z. Mróz. A model of third body abrasive friction
and wear in hot metal forming. Wear, 231:124–138, 1999.



234 BIBLIOGRAPHY
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Mikromechanika warstw kontaktowych
i miȩdzyfazowych

Streszczenie

Mikromechanika materia lów niejednorodnych pozwala przewidywać ich
w laściwości makroskopowe na podstawie znanych w laściwości, mikrostruk-
tury oraz mechanizmów deformacji w skali mikro. Jest wiȩc atrakcyjnym
i efektywnym narzȩdziem nowoczesnej mechaniki materia lów. Niniejsza
rozprawa habilitacyjna jest poświȩcona mikromechanicznemu modelowaniu
warstw i powierzchni.

W mechanice ośrodków cia̧g lych makroskopowa̧ powierzchniȩ o zerowej
grubości można zazwyczaj traktować w skali mikro jako warstwȩ o grubości
niezerowej, charakteryzuja̧ca̧ siȩ pewna̧ mikrostruktura̧. Celem analizy mi-
kromechanicznej jest wtedy określenie makroskopowych w laściwości takiej
powierzchni w zależności od jej mikrostruktury i zjawisk zachodza̧cych w
skali mikro.

W pierwszej czȩści niniejszej rozprawy, w rozdzia lach 3–6, powyższe
podej́scie mikromechaniczne wykorzystano do analizy warstw kontaktowych.
Mikrostrukturȩ warstwy kontaktowej tworza̧ w tym przypadku chropowa-
tość oddzia luja̧cych powierzchni i zwia̧zane z nia̧ niejednorodności defor-
macji w warstwie wierzchniej.

Mikromechanika powierzchni obejmuje również prowadzona̧ w różnych
skalach analizȩ materia lów, które zawieraja̧ powierzchnie (warstwy) miȩ-
dzyfazowe i w których te powierzchnie zasadniczo wp lywaja̧ na makrosko-
powe w laściwości tych materia lów. Z taka̧ sytuacja̧ mamy do czynienia, na
przyk lad, w materiale podlegaja̧cym przemianie fazowej, w której trakcie
nastȩpuje propagacja frontów przemiany fazowej i zwia̧zana z nia̧ ewolucja
mikrostruktury materia lu.

Analizie mikromechanicznej i modelowaniu ewolucji warstwowych struk-
tur martenzytycznych, naprȩżeniowo indukowanych w kryszta lach stopów
z pamiȩcia̧ kszta ltu, poświȩcona jest druga czȩść niniejszej rozprawy, roz-
dzia ly 7–9. Unikalne zachowanie i w laściwości tych materia lów, podlegaja̧-
cych martenzytycznej przemianie fazowej, wynikaja̧ ze zjawisk zachodza̧cych
w skali mikro na frontach przemiany fazowej.

Podstawowym celem niniejszej pracy jest opracowanie metod mikrome-
chanicznej analizy warstw i powierzchni. Podej́scie mikromechaniczne jest
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niezwykle atrakcyjne, gdyż pozwala przewidywać w laściwości makrosko-
powe przy wykorzystaniu znanych i lepiej określonych praw i w laściwości w
skali mikro. Celem pracy jest również rozwia̧zanie, z wykorzystaniem opra-
cowanych narzȩdzi, konkretnych zagadnień z zakresu stosowanej mechaniki
materia lów.

Zastosowania opisane w pracy dotycza̧ dwóch obszarów tematycznych
(mikromechanika warstw kontaktowych oraz ewolucja mikrostruktur mar-
tenzytycznych w stopach z pamiȩcia̧ kszta ltu). Choć zjawiska leża̧ce u ich
podstaw sa̧ zdecydowanie różne, w obu przypadkach zasadniczym elemen-
tem, którego nie można pomina̧ć przy próbach modelowania, sa̧ powierzch-
nie i warstwy, a także zjawiska zachodza̧ce w tych warstwach. Wspólne
ujȩcie obu obszarów zainteresowań w niniejszej rozprawie pozwoli lo na po-
szerzenie zakresu analizowanych konfiguracji (warstwy jednorodne i nie-
jednorodne, warstwy o grubości infinitezymalnej lub skończonej, uk lady o
znanej lub nieznanej mikrostrukturze). Cecha̧ wspólna̧ wszystkich anali-
zowanych przypadków jest również centralna rola warunków zgodności (Roz-
dzia l 2.4) w opisie mechaniki warstw i powierzchni.

Szczegó lowe wnioski p lyna̧ce z niniejszej pracy podano na końcu każdego
rozdzia lu. Otrzymane wyniki w pe lni potwierdzaja̧ znane zalety podej́scia
mikromechanicznego. Zjawiska w skali mikro, które poddaje siȩ analizie w
celu opisania zjawisk i wyznaczenia efektywnych w laściwości w skali makro,
sa̧ zazwyczaj lepiej poznane i  latwiejsze w opisie. Opis mikromechaniczny
wymaga też wprowadzania mniejszej liczby parametrów materia lowych, do-
datkowo maja̧cych jasna̧ interpretacjȩ fizyczna̧. W pracy wskazano również
na ograniczenia podej́scia mikromechanicznego. Dok ladność opisu zależy
od dok ladności, z jaka̧ jesteśmy w stanie scharakteryzować mikrostruk-
turȩ i zachowanie w skali mikro. Ponadto, modelowanie mikromechanicz-
ne wymaga czȩsto znacza̧cych nak ladów obliczeniowych, co wskazuje na
potrzebȩ równoleg lego rozwijania modeli fenomenologicznych, które w moż-
liwie dużym stopniu powinny korzystać z przes lanek p lyna̧cych z mikro-
mechaniki.

Uk lad pracy jest nastȩpuja̧cy. Rozdzia l 1 stanowi wstȩp zawieraja̧cy
motywacjȩ, zakres oraz cel badań. Rozdzia l 2 zawiera te podstawowe (i
zazwyczaj dobrze znane) elementy wspó lczesnej mikromechaniki, które sa̧
wykorzystane w kolejnych czȩściach pracy: rozk lad symetrycznego tensora
na sk ladowe wewnȩtrzna̧ i zewnȩtrzna̧ wzglȩdem wyróżnionej powierzchni;
podstawowe elementy teorii homogenizacji; warunki zgodności na powierz-
chni niecia̧g lości; równania przej́scia mikro-makro dla prostego laminatu
dwufazowego. W rozdzia lach 3–6 oraz 8–9 zamieszczono oryginalne wyniki
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badań w lasnych, czȩściowo opublikowane w pracach [124, 128–133]. Wyniki
te pokrótce omówiono poniżej. Rozdzia l 7 jest krótkim wprowadzeniem
do mikrostruktur martenzytycznych. Rozdzia l 10 zawiera podsumowanie,
wnioski oraz perspektywy dalszych badań. Na końcu pracy zamieszczono
dwa aneksy oraz spis cytowanej literatury.

Analiza jednorodnych warstw wierzchnich

Rozdzia l 3 jest w wiȩkszości poświȩcony modelowaniu zmian rzeczywistej
powierzchni kontaktu w procesach plastycznej przeróbki metali. Celem
modelowania jest ilościowy opis wp lywu, jaki makroskopowe odkszta lcenia
plastyczne elementu obrabianego wywieraja̧ na sp laszczanie nierówności
powierzchni i na zwia̧zany z tym wzrost rzeczywistej powierzchni kontaktu.
Tematyka ta stanowi jedna̧ z motywacji dla mikromechanicznej analizy
warstw kontaktowych, przeprowadzonej w rozdzia lach 4–6.

W Rozdziale 3.2 wyprowadzono, jako punkt wyj́scia do dalszej ana-
lizy, równania konstytutywne w postaci mieszanej dla cienkich, jednorod-
nych warstw sprȩżystych, sprȩżysto-plastycznych i sztywno-plastycznych.
Mieszana postać równań konstytutywnych bazuje na rozk ladzie tensorów
odkszta lcenia i naprȩżenia na sk ladowe wewnȩtrzna̧ i zewnȩtrzna̧ (Hill [47],
por. Rozdzia l 2.2). Wykorzystuja̧c warunki cia̧g lości na powierzchni roz-
graniczaja̧cej warstwȩ od pod loża, równanie konstytutywne warstwy można
przekszta lcić tak, aby wewnȩtrzna̧ sk ladowa̧ naprȩżenia oraz zewnȩtrzna̧
sk ladowa̧ odkszta lcenia w warstwie wyrazić w funkcji zewnȩtrznej sk ladowej
naprȩżenia i wewnȩtrznej sk ladowej odkszta lcenia pod loża.

W Rozdziale 3.3 zaproponowano model jednorodnej warstwy wierzchniej
reprezentuja̧cej, w sposób czysto fenomenologiczny, cienka̧ podpowierzch-
niowa̧ warstwȩ materia lu os labiona̧ na skutek zlokalizowanych kontaktowych
oddzia lywań nierówności powierzchni. Przyjȩto, że makroskopowy warunek
plastyczności warstwy (3.26) zależy dodatkowo od parametru α (rzeczywis-
tej powierzchni kontaktu), opisuja̧cego proces sp laszczania nierówności po-
wierzchni. Identyfikuja̧c zewnȩtrzna̧ sk ladowa̧ tensora naprȩżenia z makro-
skopowymi miarami si l kontaktowych, wyprowadzono warunek sp laszcza-
nia nierówności w postaci mieszanej (3.27). Nastȩpnie go przekszta lcono
w prawo ewolucji parametru α (3.32). Przewidywania modelu porównano
z istnieja̧cymi modelami mikromechanicznymi oraz z dostȩpnymi wynikami
doświadczalnymi, a także pokazano zastosowanie otrzymanego prawa ewo-
lucji rzeczywistej powierzchni kontaktu do opisu tarcia w procesach prze-
róbki plastycznej.
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Warstwy graniczne wywo lane mikroniejednorodnymi warunkami
brzegowymi

Wykorzystuja̧c metodȩ rozwiniȩć asymptotycznych, w Rozdziale 4 przepro-
wadzono analizȩ warstw granicznych, wywo lanych mikroniejednorodnymi
warunkami brzegowymi. Motywacja̧ tej czȩści pracy sa̧ kontaktowe od-
dzia lywania cia l chropowatych. Charakterystyczny wymiar nierówności po-
wierzchni jest zwykle dużo mniejszy niż inne wymiary kontaktuja̧cych siȩ
cia l. W skali mikro powierzchnie chropowate oddzia luja̧ w izolowanych ob-
szarach rzeczywistego styku, tak wiȩc lokalne naprȩżenia kontaktowe sa̧
silnie niejednorodne, co skutkuje niejednorodnościa̧ deformacji w cienkiej
warstwie podpowierzchniowej. Z kolei w skali makro o deformacji kontak-
tuja̧cych siȩ cia l jako ca lości decyduja̧ wolnozmienne uśrednione (makro-
skopowe) naprȩżenia kontaktowe. Jednoczesna analiza zjawisk zachodza̧-
cych na tych dwóch poziomach, przeprowadzona np. przy pomocy me-
tody elementów skończonych, jest zazwyczaj niemożliwa, ponieważ rozmiar
zadania umożliwiaja̧cego poprawny opis zjawisk w skali mikro wielokrotnie
by przekracza l wspó lczesne możliwości obliczeniowe—sta̧d potrzeba metod
analizy bazuja̧cych na podej́sciu mikromechanicznym.

W niniejszej rozprawie zaproponowano takie podej́scie dwuskalowe,
oparte na metodach asymptotycznych teorii homogenizacji (Sanchez-
Palencia [118]), przy za lożeniu, że warunek brzegowy (naprȩżeniowy, prze-
mieszczeniowy lub kontaktowy) jest mikro-periodyczny. Rozwia̧zanie prob-
lemu podstawowego otrzymuje siȩ jako superpozycjȩ rozwia̧zania problemu
makroskopowego, odpowiadaja̧cego uśrednionym mikrojednorodym warun-
kom brzegowym, oraz rozwia̧zania sekwencji problemów mikroskopowych
formu lowanych dla każdego punktu na rozpatrywanym brzegu cia la.

Równania problemu mikroskopowego otrzymuje siȩ wprowadzaja̧c ma ly
parametr ε, bȩda̧cy stosunkiem wymiarów charakterystycznych w skali mi-
kro i makro, oraz dwie zmienne przestrzenne: makroskopowa̧ x oraz mi-
kroskopowa̧ y = x/ε, a nastȩpnie wprowadzaja̧c w warstwie granicznej
rozwiniȩcia asymptotyczne pól przemieszczeń, odkszta lceń i naprȩżeń wzglȩ-
dem parametru ε. W granicy, przy ε da̧ża̧cym do zera, w równaniach
uwzglȩdnia siȩ tylko cz lony pierwszego rzȩdu. W efekcie problem mikro-
skopowy jest zagadnieniem brzegowym określonym dla pó l-nieskończonego
s lupka V , a poszukiwanym polem jest V -periodyczna korekta pola prze-
mieszczeń w warstwie granicznej.

W Rozdziale 4.2 pokazano ogólna̧ metodologiȩ asymptotycznej analizy
warstw granicznych dla przypadku mikroniejednorodnego naprȩżeniowego
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warunku brzegowego w dwuwymiarowym zadaniu liniowej sprȩżystości, w
Rozdziale 4.3 zaś—dla warunku przemieszczeniowego. W rozdzia lach 4.4
i 4.5 uwzglȩdniono warunki kontaktu jednostronnego i tarcia dla zagadnienia
kontaktu cia la chropowatego ze sztywna̧, g ladka̧ powierzchnia̧.

Wynikiem przeprowadzonej analizy jest miȩdzy innymi postać pola prze-
mieszczenia w warstwie granicznej, bȩda̧cego suma̧ przemieszczeń makro-
skopowych oraz V -periodycznej korekty. W efekcie pole odkszta lceń w war-
stwie granicznej jest suma̧ odkszta lcenia makroskopowego oraz odkszta l-
cenia zwia̧zanego z cz lonem korekcyjnym. Uzyskano również postać mi-
kroskopowych oraz makroskopowych warunków kontaktu jednostronnego i
tarcia. Omówienie pozosta lych wyników oraz wnioski zamieszczono w Roz-
dziale 4.6.

Mikromechanika warstw granicznych

W Rozdziale 5 przeprowadzono mikromechaniczna̧ analizȩ warstw granicz-
nych, wywo lanych mikroperiodycznymi warunkami brzegowymi. Podsta-
wowym elementem analizy jest operacja uśredniania mikroniejednorodnych
pól w warstwach granicznych, w której uśrednieniu podlegaja̧ fluktuacje
w kierunku stycznym, natomiast pozostawiona jest zależność średnich w
kierunku normalnym do powierzchni.

Wyprowadzono szereg w laściwości tak określonych średnich, w tym wa-
runki zgodności (5.29) oraz wyrażenie (5.40) na uśredniona̧ pracȩ w warstwie
granicznej, spe lnione dla kinematycznie dopuszczalnych pól przemieszczeń
i dla statycznie dopuszczalnych pól naprȩżeń. Pokazano, że w przypadku
cia la sprȩżystego o jednorodnych w laściwościach sprȩżystych średnie od-
kszta lcenia i średnie naprȩżenia w warstwie granicznej równe sa̧ odpowiada-
ja̧cym im wielkościom makroskopowym. Pokazano również, że średnie od-
kszta lcenia i naprȩżenia w sprȩżysto-plastycznych warstwach granicznych
spe lniaja̧ warunki (5.49) analogiczne do warunków (2.33), spe lnianych lo-
kalnie na powierzchniach niecia̧g lości (Hill [47]). W końcu pokazano, że
efektywna granica plastyczności w uśrednionym warunku plastyczności dla
warstwy granicznej jest mniejsza od lokalnej granicy plastyczności, co po-
twierdza za lożenia fenomonologicznego modelu warstwy wierzchniej, oma-
wianego w Rozdziale 3.3.

Ilustracja̧ zaproponowanego podej́scia mikromechanicznego jest opisany
w Rozdziale 5.4 przyk lad sprȩżystej warstwy granicznej, obcia̧żonej sinu-
soidalnie zmiennym naprȩżeniem normalnym. W przyk ladzie tym wyko-
rzystano rozwia̧zanie analityczne podane przez Johnsona [54].
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Analiza MES warstw kontaktowych

W Rozdziale 6 przeprowadzono numeryczna̧ analizȩ kontaktowych warstw
granicznych. Omówiono szereg aspektów zastosowania metody elementów
skończonych do analizy kontaktowych warstw granicznych, w tym kwestiȩ
wyboru podstawowej niewiadomej problemu mikroskopowego oraz sposób
zadawania warunków brzegowych dla obciȩtego s lupka VH , stanowia̧cego
komórkȩ periodyczna̧ dla analizowanego zagadnienia brzegowego. Jako
punkt wyj́scia do sformu lowań MES podano zasadȩ prac wirtualnych w
kilku postaciach, odpowiadaja̧cych różnym sposobom zadawania warunków
brzegowych, równania (6.3)–(6.7).

W przyk ladach numerycznych nacisk po lożono na analizȩ oddzia lywa-
nia mikrojednorodnych odkszta lceń makroskopowych z mikroniejednorod-
nymi polami deformacji w sprȩżysto-plastycznych kontaktowych warstwach
granicznych. Przebadano również wp lyw odkszta lceń makroskopowych na
efektywne w laściwości kontaktowe (tarcie, podatność kontaktowa). Kon-
takt g ladkiego cia la sprȩżysto-plastycznego ze sztywna̧ powierzchnia̧ z si-
nusoidalnymi nierównościami przeanalizowano w Rozdziale 6.3. Miȩdzy in-
nymi wyznaczono efektywny wspó lczynnik tarcia, wynikaja̧cy ze sprȩżysto-
plastycznego oddzia lywania nierówności (Rys. 6.9). Wyniki przeprowadzo-
nych symulacji sugeruja̧, że odkszta lcenia makroskopowe maja̧ pomijalny
wp lyw na ten wspó lczynnik tarcia, natomiast zasadniczo wp lywaja̧ na na-
prȩżenia resztkowe w warstwie (rysunki 6.11 i 6.12).

W Rozdziale 6.4 przebadano podatność kontaktowa̧ powierzchni pod-
danej piaskowaniu. W obliczeniach wykorzystano trójwymiarowa̧ chropo-
watość powierzchni, otrzymana̧ z pomiarów profilometrem skanningowym.
Przeprowadzono weryfikacjȩ modelu MES przez porównanie wyników obli-
czeń z krzywymi doświadczalnymi (císnienie kontaktowe–zbliżenie powierz-
chni) otrzymanymi z dedykowanych pomiarów wykonanych w Pracowni
Warstwy Wierzchniej IPPT (rysunki 6.19 i 6.20). Przeanalizowano rów-
nież wp lyw odkszta lceń makroskopowych na normalna̧ podatność kontak-
towa̧ (rysunki 6.21 i 6.22) oraz na wzrost rzeczywistej powierzchni kontaktu
(Rys. 6.23). W obu przypadkach wp lyw ten jest nieznaczny.

Wstȩp do mikrostruktur martenzytycznych

Rozdzia l 7 jest krótkim wprowadzeniem do problematyki przemian marten-
zytycznych w stopach z pamiȩcia̧ kszta ltu. Omówiono interesuja̧ce w laści-
wości tych materia lów (efekt pamiȩci kszta ltu, zjawisko pseudosprȩżystości)
oraz podano podstawowe za lożenia i równania tzw. teorii krystalograficznej,
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pozwalaja̧cej przewidywać orientacjȩ oraz inne parametry mikrostruktu-
ralne zbliźniakowanych p lytek martenzytu (Ball and James [8]) oraz nie-
zbliźniakowanych p lytek martenzytu z wewnȩtrznymi b lȩdami u lożenia
(Hane [39], Stupkiewicz [124]). Podano równania dla skończonych defor-
macji oraz przybliżone równania dla przypadku ma lych odkszta lceń.

Ewolucja warstwowych struktur martenzytycznych w kryszta lach
stopów z pamiȩcia̧ kszta ltu

W Rozdziale 8 opracowano i przeanalizowano mikromechaniczny model
martenzytycznej przemiany fazowej, naprȩżeniowo indukowanej w pojedyn-
czym krysztale stopu z pamiȩcia̧ kszta ltu. Zgodnie z licznymi obserwac-
jami doświadczalnymi przyjȩto, że naprȩżeniowo indukowana przemiana za-
chodzi przez ewolucjȩ warstwowych struktur martenzytycznych, w najprost-
szym przypadku przez nukleacjȩ i wzrost równoleg lych p lytek martenzytu.
Wykorzystuja̧c koncepcjȩ wartości progowych dla si l termodynamicznych,
powoduja̧cych przemianȩ fazowa̧, wyprowadzono kompletny uk lad równań
opisuja̧cy ewolucjȩ takiej mikrostruktury, na poziomie makroskopowym od-
powiadaja̧ca̧ zjawisku pseudosprȩżystości z pȩtla̧ histerezy. Uwzglȩdniono
przy tym różnice anizotropowych w laściwości sprȩżystych austenitu i mar-
tenzytu oraz zwia̧zana̧ z tym redystrybucjȩ naprȩżeń wewnȩtrznych w trak-
cie przemiany.

W Rozdziale 8.2.3 wykazano, że makroskopowe zwia̧zki przyrostowe
(8.16) i (8.28) maja̧ strukturȩ analogiczna̧ jak w teorii plastyczności. Po-
nadto przy sta lej progowej wartości si ly termodynamicznej, fc = const,
przemiana martenzytyczna jest zwia̧zana z os labieniem, por. (8.26), (8.24)2.

Ważnym elementem modelowania jest opracowany przez autora schemat
obliczeniowy do symulacji ewolucji naprȩżeniowo indukowanych warstwo-
wych struktur martenzytycznych. W schemacie tym można wyróżnić trzy
podstawowe kroki: wyznaczanie efektywnych w laściwości zhomogenizowa-
nego materia lu o zadanej mikrostrukturze, wyznaczanie lokalnych naprȩżeń
i si l termodynamicznych oraz określanie ewolucji mikrostruktury wed lug
termodynamicznego kryterium przemiany fazowej. Rozdzia l 8.3 zawiera
szereg nowych, niepublikowanych wyników symulacji numerycznych, w tym
porównanie wyników obliczeń z dostȩpnymi wynikami doświadczalnych ba-
dań zjawiska pseudosprȩżystości w kryszta lach CuAlNi (dla przemiany
β1→β′1 oraz β1→γ′1).

W Rozdziale 8.3.4 rozszerzono model na przypadek przemian adiaba-
tycznych, co pozwoli lo w prosty sposób pokazać wp lyw efektów sprzȩżeń
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termodynamicznych na krzywe prostego rozcia̧gania (Rys. 8.10). Natomiast
w Rozdziale 8.4 uwzglȩdniono zmiany mikrostruktury p lytki martenzytu w
trakcie przemiany, spowodowane wtórnym bliźniakowaniem i reorientacja̧
wariantów martenzytu. W efekcie krzywe prostego rozcia̧gania maja̧ charak-
ter jakościowo inny. Charakteryzuja̧ siȩ znacznym os labieniem, a nawet
spadkiem naprȩżenia do zera w przypadku braku dodatkowych ograniczeń
na lożonych na odkszta lcenie makroskopowe (Rys. 8.12).

Mikrostruktura naprȩżeniowo indukowanych p lytek martenzytu

Rozdzia l 9 jest poświȩcony analizie mikrostruktury p lytek martenzytu, pow-
staja̧cych pod naprȩżeniem, a w szczególności wp lywowi, jaki energia b lȩdu
u lożenia oraz anizotropia sprȩżysta maja̧ na powstaja̧ce mikrostruktury.
Analizowano pocza̧tek przemiany indukowanej naprȩżeniowo, tzn. chwilȩ
pojawienia siȩ pierwszych, cienkich p lytek martenzytu. Sformu lowano prob-
lem minimalizacji (9.11), którego rozwia̧zaniem sa̧ optymalne parametry mi-
krostruktury (orientacja granicy austenit-martenzyt i gȩstość b lȩdów u loże-
nia), a także naprȩżenie, przy którym zachodzi przemiana martenzytyczna.

We wzorze (9.9) dodatkowa̧ energiȩ wewnȩtrzna̧, zwia̧zana̧ z b lȩdami
u lożenia w p lytce martenzytu, wyznaczono jako iloczyn parametru Γ/|d|,
nazwanego w laściwa̧ gȩstościa̧ energii b lȩdu u lożenia (specific stacking fault
energy (SFE) density), oraz parametru |ksf |, czyli wielkości dodatkowego
odkszta lcenia ścinaja̧cego, wywo lanego b lȩdami u lożenia. Parametr Γ to
energia b lȩdu u lożenia, natomiast |d| jest wartościa̧ bezwzglȩdna̧ przemiesz-
czenia ścinaja̧cego na p laszczyźnie bazowej, wywo lanego przez pojedynczy
b la̧d u lożenia.

Obliczenia, ilustruja̧ce proponowany model, przeprowadzono dla prze-
miany kubicznego austenitu o strukturze DO3 w monokliniczny martenzyt o
strukturze 18R (w innej nomenklaturze—6M) w stopie CuZnAl. Pokazano,
że gȩstość b lȩdów u lożenia, a także zwia̧zane z nimi makroskopowe od-
kszta lcenie ścinaja̧ce, zależa̧ od temperatury i stanu (kierunku) naprȩżenia,
a także od parametru Γ/|d| (rysunki 9.6–9.8, Tablica 9.1). Orientacja p lytki
również zależy od tych parametrów, ale różnice sa̧ niewielkie—rzȩdu 1–2
stopni (rysunki 9.9 i 9.10).

Zaproponowane podej́scie różni siȩ zasadniczo od klasycznej teorii krys-
talograficznej. Jednakże ilościowe różnice przewidywanych parametrów mi-
krostrukturalnych, takich jak orientacja p lytki martenzytu czy makrosko-
powe odkszta lcenie transformacji, sa̧ niewielkie.
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