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Abstract The concept of topological sensitivity deriva-
tive is introduced and applied to study the problem of
optimal design of structures. It is assumed, that virtual
topology variation is described by topological parame-
ters. The topological derivative provides the gradients
of objective functional and constraints with respect to
these parameters. This derivative enables formulation
of the conditions of topology transformation. In this
paper formulas for the topological sensitivity derivative
for bending plates are derived. Next, the topological
derivative is used in the optimization process in order
to formulate conditions of finite topology modifications
and in order to localize positions of the modifications.
In the case of plates they are related to introduction
of holes and introduction of stiffeners. The theoret-
ical considerations are illustrated by some numerical
examples.
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1 Introduction

The problems of optimal design with account for topol-
ogy modification have been recently studied both for
material and structural parameters. In the case of ma-
terial parameters the topology variation corresponds to
introduction of voids, inclusions, cracks, nucleation of
different crystalline phases, etc. When structural para-
meters are used the topology variation corresponds to
introduction or removing of holes, stiffeners, members,
supports, nodes etc., and to replacement of existing
elements by new elements.

The uniform treatment of topology and shape opti-
mization by modification of material can be obtained
by assuming a microstructure with its parameters op-
timized at the element level, for instance, by homog-
enization technique and with the spatial evolution of
microstructure generated by a global solution for the
whole structure. A simplified approach of this type is
based on the artificial density distribution specifying the
microstructure evolution in terms of one scalar vari-
able, cf. Bendsoe and Kikuchi (1988), Bendsoe (1997)
and Allaire (2002). The stiffness moduli are assumed to
be proportional to the relative material density raised
to some power. A number of numerical schemes have
been developed within the homogenization method
using the penalization of intermediate densities (SIMP-
method). An alternative approach such as bubble
method proposed by Eschenauer et al. (1994), gener-
ates the topology variation by introduction of holes
into the structure domain with subsequent optimization
of their position, size and shape. An alternative vari-
ant of this method was presented by Xie and Steven
(1993), where the concept of gradual removal of the
material in order to attain the optimal design is used.
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This approach based on evolutionary strategy (ESO)
proved to be efficient in effective redesign of structural
elements. The concept of virtual topology variation and
topological sensitivity derivative for truss and beam
structures by specifying a class of admissible topologies
in the redesign process was introduced by Bojczuk and
Mróz (1998a, b, 1999, 2005) and Mróz and Bojczuk
(2000). The topological sensitivity derivative provides
the gradients of objective function and constraints with
respect to topology parameters. This derivative pro-
vides the conditions for acceptance or rejection of a
new topology. Once a new topological structure is ac-
cepted, the usual shape and material optimization is
performed in order to determine optimal configuration,
cross-sectional and material parameters. The case of
hole generation in an elastic material was studied by
Sokołowski and Żochowski (1999), Cea et al. (2000),
Garreau et al. (2001), Novotny et al. (2005), Bojczuk
and Szteleblak (2006), Mróz and Bojczuk (2006), while
the case of reinforcement introduction was examined
by Bojczuk (2006), Mróz and Bojczuk (2006), Bojczuk
and Szteleblak (2008), where analytical expressions
for the topological sensitivity derivative were derived
and applied. The evolutionary algorithms combined
with the boundary element method were developed by
Burczyński and Kokot (2003) and applied in topology
and shape optimization. The optimality conditions for
simultaneous topology and shape optimization under
volume constraints were formulated by Sokolowski and
Żochowski (2003). The review of optimal topology
design of truss or plate structures was provided by
Kirsch (1989).

The combined shape and topology optimization was
recently developed by applying the level-set-based
method originally devised by Osher and Sethian (1988).
This approach was used in the papers by Sethian and
Wiegmann (2000), Osher and Santosa (2001), Allaire
et al. (2002, 2004), Wang et al. (2004) and Xia et al.
(2006). Relationship between the level set method and
the topological derivative was analyzed in the pioneer-
ing papers by Burger et al. (2004) and Allaire et al.
(2005). In fact, the shape sensitivity for an assumed
integral of state fields is expressed in terms of boundary
energy or mutual energy of primary and adjoint states,
cf. Dems and Mróz (1984) or Petryk and Mróz (1996).
The optimality conditions then require uniform values
of generalized energy on the varying boundary. In the
level-set method, the structure boundary is assumed
to coincide with the iso-values of the assumed scalar
function Φ representing the generalized energy with
higher values within the structure domain and lower in
its exterior. The generation of holes is then naturally

induced in domains of lower values of Φ than the
assumed design value.

In Section 2 the formulas for topological derivative
with respect to introduction of circular holes into plates
are derived. In Section 3 the topological derivative
with respect to introduction of ribs is discussed. Some
heuristic algorithms of optimization of plates based on
topological derivatives are presented in Section 4. In
Section 5 problems of topology, shape and reinforce-
ment optimization of plate structures are discussed and
illustrated by simple examples.

2 Topological derivative with respect to introduction
of hole into a plate in bending

Consider now a plate in bending, whose middle surface
occupies the domain A ⊂ R2, with a boundary Γ . The
plate is subjected to transverse load p0 in A, whereas
either generalized traction T0 or displacements u0 are
specified on Γ . Here, the Kirchhoff theory of thin plates
is applied.

The topological derivative of functional G with
respect to introduction of infinitesimally small cir-
cular hole (Fig. 1), analogously as in Sokołowski and
Żochowski (1999), is defined as follows

TG
,A0

(x) = lim
ρ→0

G
(

Aρ

) − G (A)

πρ2
, x ∈ A, (1)

where Aρ = A − B̄ρ (x) and B̄ρ (x) denotes a circular
hole of area A0 with its center at the point x and ra-
dius ρ, so B̄ρ (x) = {

y ∈ R2 : ∣∣y − x
∣∣ ≤ ρ

}
. Let us notice,

that this formulation of the topological derivative is
valid only in the case, when Neuman or free boundary
conditions are satisfied on the hole boundary.

ρ 

θ 
r

x2

x1

Aρ

Γ

Fig. 1 Introduction of circular hole of radius ρ



Topological sensitivity derivative and finite topology modifications: application to optimization of plates in bending 3

2.1 Basic relations for plates in the polar coordinates

The stress–strain law, in the polar coordinates r, θ takes
the form

Mrr = D (κrr + νκθθ ) ,

Mθθ = D (κθθ + νκrr) ,

Mrθ = 1

2
(1 − ν) Dκrθ , (2)

where Mrr, Mθθ , Mrθ are the bending moments, D =
Eh3

12(1−ν2)
denotes the stiffness modulus of the plate and

ν is the Poisson ratio. The curvatures are

κrr = −∂2w

∂r2
,

κθθ = −1

r
∂w

∂r
− 1

r2

∂2w

∂θ2
,

κrθ = 2

(
1

r
∂2w

∂r∂θ
− 1

r2

∂w

∂θ

)
. (3)

where w(r, θ) denote transverse displacements. The shear
forces can be expressed as follows (cf. Timoshenko and
Woinowsky-Krieger 1959)

Qr = −D
∂

∂r
(
w) and Qθ = −D

∂ (
w)

r∂θ
, (4)

where


w = ∂2w

∂r2
+ 1

r
∂w

∂r
+ 1

r2

∂2w

∂θ2
. (5)

The free boundary conditions on the hole boundary
can be written in the form

Vr|r=ρ =
(

Qr − ∂ Mrθ

r∂θ

)∣∣
∣∣
r=ρ

= 0, Mrr|r=ρ = 0. (6)

2.2 Displacement and bending moment fields in plates:
uniform and weakened by a hole

2.2.1 Uniform elastic plate under biaxial bending

Let us assume, that at the point x(0;0) of the plate with-
out hole the principal moments M1 = Mx1, M2 = Mx2

occur in directions x1, x2 (Fig. 2a). Using polar coordi-
nates, the displacement field in the neighborhood of the
point x (cf. Timoshenko and Woinowsky-Krieger 1959)
can be presented in the form

w(0) (r, θ) = w0 − (M1 + M2) r2

4D (1 + ν)
− (M1 − M2) r2

4D (1 − ν)
cos 2θ,

(7)

where w0 = w(0) (0;0) denotes displacement at the cen-
ter of the coordinate system. In view of the relations
(2), (3) formulas for distribution of moments M(0)

rr , M(0)
θθ ,

M(0)
rθ take the form

M(0)
rr (r, θ) = M1 + M2

2
+ M1 − M2

2
cos 2θ , (8)

M(0)
θθ (r, θ) = M1 + M2

2
− M1 − M2

2
cos 2θ , (9)

M(0)
rθ (r, θ) = M1 − M2

2
sin 2θ . (10)

2.2.2 Elastic plate with hole under biaxial bending

Now, let us assume, that at the point x(0;0) an infinitesi-
mally small hole of radius ρ is introduced. The principal
moments M1 = Mx1 , M2 = Mx2 , as previously occur in
directions x1, x2 (Fig. 2b). Then, the displacement field

M
1 M

1

M
2

M
2

x1

x2

x3

r

θ 

a)

M
1 M

1

M
2

M
2

x1

x2

x3

r

θ 

b)

 ρ

Fig. 2 Infinitesimally small element of the primary plate: a without hole; b with hole
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in the neighborhood of the hole (cf. Timoshenko and
Woinowsky-Krieger 1959) can be presented in the form

w (r, θ) = w0 − (M1 + M2) r2

4D (1 + ν)
− (M1 − M2) r2

4D (1 − ν)
cos 2θ +

− (M1 + M2) ρ2

2D
A ln r

− (M1 − M2) ρ2

2D

(
B + C

ρ2

r2

)
cos 2θ , (11)

where three unknown constants A, B, C occur. The
values of these constants can be determined using the
boundary conditions (6), so we have

A = 1

1 − ν
, B = 1

3 + ν
, C = − 1

2 (3 + ν)
. (12)

Now, using relations (2), (3), the formulas for distribu-
tion of moments Mrr, Mθθ , Mrθ in the neighborhood of
the hole take the form

Mrr (r, θ) = M1 + M2

2

(
1 − ρ2

r2

)
+ M1 − M2

2

×
(

1 − 4ν

3 + ν

ρ2

r2
− 3 − 3ν

3 + ν

ρ4

r4

)
cos 2θ , (13)

Mθθ (r, θ) = M1 + M2

2

(
1 + ρ2

r2

)
− M1 − M2

2

×
(

1 + 4

3 + ν

ρ2

r2
− 3 − 3ν

3 + ν

ρ4

r4

)
cos 2θ, (14)

Mrθ (r, θ)= M1 − M2

2

(
1− 2−2ν

3+ν

ρ2

r2
+ 3−3ν

3+ν

ρ4

r4

)
sin 2θ .

(15)

It is easy to check, that Vr|r=ρ = 0, Mrr|r=ρ = 0, while
values of the moments Mθθ , Mrθ on the boundary of the
hole are equal to

Mθθ|r=ρ = (M1 + M2) − α (M1 − M2) cos 2θ, where

α = 2 (1 + ν)

3 + ν
, (16)

Mrθ|r=ρ = β (M1 − M2) sin 2θ, where β = 2

3 + ν
.

(17)

Let us notice, that each expression for distribution of
moments can be presented as the sum of terms corre-
sponding to solution of the plate without hole derived
in Section 2.2.1 and of the additional terms responsible
for introduction of the hole. Moreover, for r �= 0 the
following relationships occur

w (r, θ)|ρ=0 = w(0) (r, θ) (18)

and

Mrr (r, θ)|ρ=0 = M(0)
rr (r, θ) ,

Mθθ (r, θ)|ρ=0 = M(0)
θθ (r, θ) ,

Mrθ (r, θ)|ρ=0 = M(0)
rθ (r, θ) . (19)

Similarly, in view of (2), we have

κrr (r, θ)|ρ=0 = κ(0)
rr (r, θ) ,

κθθ (r, θ)|ρ=0 = κ
(0)
θθ (r, θ) ,

κrθ (r, θ)|ρ=0 = κ
(0)
rθ (r, θ) , (20)

where κ
(0)
rr , κ

(0)
θθ , κ

(0)
rθ are the curvatures for the uniform

plate, while κrr, κθθ , κrθ denote the curvatures for the
plate with hole.

2.3 Variational formulation of the topological
derivative for a functional of curvatures
and displacements

Consider the case when a functional of curvatures

κ = [κ11, κ22, κ12]T =
[
−∂2w

∂x2
1

, −∂2w

∂x2
2

, −2
∂2w

∂x2∂x1

]T

(21)

and transverse displacements w is of the form

G =
∫

Aρ

F (κ)dA +
∫

Aρ

f (w) dA. (22)

Let us notice, that in view of (18), (20), we have

lim
ρ→0

G = G∗, (23)

where G∗ = ∫

A
F
(
κ(0)

)
dA + ∫

A
f
(
w(0)

)
dA denotes a

value of the functional for the uniform plate. It means,
that the topological derivative of the functional G*



Topological sensitivity derivative and finite topology modifications: application to optimization of plates in bending 5

dependent on the fields κ(0) =
[
κ

(0)
11 , κ

(0)
22 , κ

(0)
12

]T
and w(0)

for the uniform plate can be treated as the topological
derivative of the functional G defined by (22).

The first variation of this functional with respect to
expansion of an infinitesimally small hole of radius ρ

introduced at the point x can be presented as follows

δG =
∫

Aρ

∂ F
∂κ

· δκ dA +
∫

Aρ

∂ f
∂w

δwdA

+
2∑

k=1

∫

Γρ

(F + f ) nkδϕkdΓρ, (24)

where n = [n1, n2]T is the unit vector normal to the
boundary Γρ of the hole, δϕ = [δϕ1, δϕ2]T is the vector
function of shape transformation of the hole and (·)
denotes the scalar product. Let us introduce an ad-
joint plate subjected to initial bending moments Mai =[
Mai

11, Mai
22, Mai

12

]T and transverse load pa0, namely

Mai = Dκai = ∂ F
∂κ

in Aρ, pa0 = ∂ f
∂w

in Aρ. (25)

The field of initial moments Mai induces a field of global
moments Ma = Dκa in the form

Ma = Mai + Mar, (26)

where Mar denotes field of the elastic moments, κa is the
adjoint plate curvature field and D is the elastic stiffness
matrix. The initial moment Mai is induced by the initial
curvature field κai not satisfying the compatibility con-
dition, so the field of elastic moments Mar satisfies the
equilibrium conditions for the loading specified by (25).
Moreover, the support conditions on the boundary Γ of
the adjoint plate are the same as those of the primary
plate (cf. Dems and Mróz 1989). Now, taking into

account (25) and the relationship
2∑

k=1
nkδϕk = −δρ, (24)

becomes

δG =
∫

Aρ

Mai · δκ dA +
∫

Aρ

pa0δwdA −
∫

Γρ

(F + f ) δρdΓρ .

(27)

Now, the virtual work equation is

∫

Aρ

Mar · δκ dA =
∫

Aρ

pa0δwdA, (28)

and the complementary virtual work equation takes
the form
∫

Aρ

Ma · δκ dA =
∫

Aρ

κa · δM dA =
∫

Γρ

M · κaδρdΓρ

−
∫

Γρ

p0waδρdΓρ , (29)

where wa is the adjoint plate deflection field. Equation
(29) results from the observation that δM = −M and
δp0 = −p0 over the hole area. In view of (26), (28),
(29), the first variation (27) of the functional G takes
the form

δG =
∫

Γρ

(
M · κa − F − f − p0wa)dΓρδρ. (30)

Let us introduce the polar coordinates r, θ with the
origin at the center of the hole (Fig. 1). Taking into
account, that δG = ∂G

∂ρ
δρ and applying integration with

respect to θ , (30) can be rewritten as follows

∂G
∂ρ

=
2π∫

0

(
M · κa − F − f − p0wa) ρdθ . (31)

It is easy to notice that the first derivative with respect
to hole radius for ρ = 0 is equal to zero. In order to
determine the topological derivative with respect to
hole area A = πρ2 at the point x, we use the following
relationship

TG
,A0

(x) =
(

∂G
∂ρ

∂ρ

∂ A

)∣∣
∣∣
ρ=0

. (32)

Taking into account, that dA = 2πρdρ and substituting
(31) into (32), the topological derivative can be ex-
pressed in the form

TG
,A0

(x) = 1

2π

2π∫

0

(
M · κa − F − f − p0wa)dθ. (33)

In order to obtain the final formula for topological
derivative, we need to determine distribution of mo-
ments (curvatures) on the boundary of hole in the
primary and adjoint structures.

2.4 Adjoint plate with hole under biaxial bending

Let us assume, that at the point x(0;0) of the adjoint
plate, where the infinitesimally small hole of radius ρ
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is introduced, the principal moments Ma
1, Ma

2 occur.
The angle between principal directions corresponding
to moments M1 and Ma

1 is denoted by χ (Fig. 3).
Now, analogously as in the case of the primary plate,
distributions of moments Ma

θθ , Ma
rθ in the adjoint plate

and their values on the boundary of the hole are

Ma
rr (r, θ)= Ma

1 +Ma
2

2

(
1− ρ2

r2

)
+ Ma

1 −Ma
2

2

×
(

1− 4ν

3 + ν

ρ2

r2
− 3−3ν

3+ν

ρ4

r4

)
cos 2 (θ−χ) ,

(34)

Ma
θθ (r, θ)= Ma

1+Ma
2

2

(
1+ ρ2

r2

)
− Ma

1−Ma
2

2

×
(

1+ 4

3+ν

ρ2

r2
− 3−3ν

3+ν

ρ4

r4

)
cos 2 (θ−χ) ,

(35)

Ma
rθ (r, θ) = Ma

1 − Ma
2

2

(
1 − 2 − 2ν

3 + ν

ρ2

r2
+ 3 − 3ν

3 + ν

ρ4

r4

)

× sin 2 (θ − χ) , (36)

Ma
θθ

∣
∣
r=ρ

= (
Ma

1 + Ma
2

) − α
(
Ma

1 − Ma
2

)
cos 2 (θ − χ) ,

(37)

Ma
rθ

∣
∣
r=ρ

= β
(
Ma

1 − Ma
2

)
sin 2 (θ − χ) , (38)

while in accordance with the boundary conditions (6)
there is Va

r

∣
∣
r=ρ

= 0 and Ma
rr

∣
∣
r=ρ

= 0.

x1

x2

x3

r

θ 

ρ 
χ

M
1

a

M
2

a

M
1

a

M
2

a

Fig. 3 Infinitesimally small element of the adjoint plate

2.5 Topological derivative for a functional
of curvatures and displacements

We can note, that for the adjoint plate the relations
analogous to (2–6) are also valid. Then, we get the
following relationships

κa
rr

∣
∣
r=ρ

=−ν κa
θθ

∣
∣
r=ρ

and κa
θθ

∣
∣
r=ρ

= Ma
θθ

D
(
1−ν2

)

∣
∣∣
∣
∣
r=ρ

.

(39)

Now taking into account (2), (6), (39), the topological
derivative (33) of the analyzed functional G takes the
form

TG
,A0

(x) = 1

2π D
(
1 − ν2

)

2π∫

0

Mθθ Ma
θθdθ

+ 1

π D (1 − ν)

2π∫

0

Mrθ Ma
rθdθ

− 1

2π

2π∫

0

F (Mθθ , Mrθ ) dθ

− 1

2π

2π∫

0

(
f + p0wa)dθ, (40)

where F (Mθθ , Mrθ ) corresponds to the function F (κ)

expressed on the boundary of the hole in terms of the
moments Mθθ , Mrθ .

Next, we will determine values of the two first terms
on the right hand side of (40). Taking into account
(16), (17), (37), (38), we obtain

2π∫

0

Mθθ Ma
θθdθ =2π

[
(M1+M2)

(
Ma

1 +Ma
2

)

+ 1

2
α2 (M1−M2)

(
Ma

1 −Ma
2

)
cos 2χ

]
,

(41)

and

2π∫

0

Mrθ Ma
rθdθ = πβ2 (M1 − M2)

(
Ma

1 − Ma
2

)
cos 2χ.

(42)
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Moreover, we have

2π∫

0

[
f (w) + p0wa]dθ = 2π

[
f (w0) + p0wa

0

]
, (43)

where wa
0 = w(0)a (0; 0) denotes displacement of the un-

modified adjoint plate at the point x.
Finally, taking into account (41), (42), (43) in (40),

the topological derivative with respect to introduction
of an infinitesimally small hole at the point x of the
Kirchhoff’s plate can be presented in the form

TG
,A0

(x)= 12

Eh3

[
(M1+M2)

(
Ma

1 +Ma
2

)

+2 (1+ν)

3+ν
(M1−M2)

(
Ma

1 −Ma
2

)
cos2χ

]

− 1

2π

2π∫

0

F (Mθθ , Mrθ ) dθ− f (w0)− p0wa
0 ,

(44)

where the expression
2π∫

0
F (Mθθ , Mrθ ) dθ should be de-

termined separately for each form of the function F.
In the case, when the functional (22) corresponds to
the strain energy U , the problem becomes self-adjoint.
Moreover, assuming that f = 0 and p0 = 0 on bound-
ary Γρ of a new hole, the topological derivative (44) can
be rewritten as follows (cf. Novotny et al. 2005)

TU
,A0

(x)= 6

Eh3

[
(M1+M2)

2+ 2 (1+ν)

3+ν
(M1 − M2)

2

]
.

(45)

2.6 Topological derivative for a functional of bending
moments and reactions

Now, let us consider the following functional of mo-
ments and reactions

G =
∫

Aρ

H (M)dA +
∫

Γu

g (T) dΓu, (46)

where H(M) is the function of moments M = [M11,

M22, M12]T and g(T) denotes function of reaction

forces acting on boundary Γ u (Γ u ⊂ Γ ). In this case the
adjoint structure is specified by the relations

κai = ∂ H
∂M

, pa0 = 0 in Aρ , ua0 = − ∂g
∂T

on Γu, (47)

where κai are the initial curvatures. The field of the
initial curvatures induces the field of global curvatures
in the form κa = κai + κar, where κar is the field of the
elastic curvatures. Moreover, ua0 denotes the general-
ized displacements corresponding to the reactions T.
Now, in view of (47), sensitivity of the functional (46)
with respect to introduction of a hole of infinitesimally
small radius ρ at point x, can be expressed analogously
to (27), namely

δG =
∫

Aρ

κai · δMdA −
∫

Γu

ua0 · δTdΓu −
∫

Γρ

HdΓρδρ,

(48)

where Γρ denotes boundary of this hole. So, in view of
the virtual work equation

∫

Aρ

κar · δMdA =
∫

Aρ

Mar · δκdA =
∫

Aρ

pa0δwdA = 0,

(49)

and the complementary virtual work equation

∫

Aρ

κa · δMdA =
∫

Γρ

M · κadΓρδρ+
∫

Γu

ua0 · δTdΓu

−
∫

Γρ

p0wadΓρδρ, (50)

next of the relation δG = ∂G
∂ρ

δρ, the first derivative of
the functional (46) takes the form

∂G
∂ρ

=
2π∫

0

(
M · κa − H − p0wa) ρdθ. (51)

Now, taking into account (32), the topological deriv-
ative of the considered functional with respect to the
hole area is

TG
,A0

(x) = 1

2π

2π∫

0

(
M · κa − H − p0wa)dθ. (52)
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Finally, following the previous derivation, the topolog-
ical derivative of the functional of static fields (46) can
be written as follows

TG
,A0

(x)= 12

Eh3

[
(M1+M2)

(
Ma

1 + Ma
2

)+ 2 (1+ν)

3+ν

× (M1−M2)
(
Ma

1−Ma
2

)
cos 2χ

]

− 1

2π

2π∫

0

H (Mθθ , Mrθ ) dθ − p0wa
0, (53)

where the expression
2π∫

0
H (Mθθ , Mrθ ) dθ should be

determined separately for each form of the function H.

2.7 Topological derivative of the cost functional

Now, let us consider the topological derivative of the
global cost C. When we assume, that the cost of the
structure is proportional to the material volume, it can
be expressed as follows

C = c
(
V0 − πρ2h

)
, (54)

where c is a unit cost, V0 denotes initial volume of the
considered structure, and, as previously, h denotes its
thickness and ρ is the radius of the inserted small hole.
Thus, the topological derivative of the cost functional
with respect to introduction of this infinitesimally small
hole, takes the form

TC
,A0

(x) =
(

∂C
∂ρ

∂ρ

∂ A

)∣∣∣
∣
ρ=0

= −ch. (55)

3 Topological derivative with respect to introduction
of ribs into plate

The analysis presented in this section is based on the
results obtained in the paper by Bojczuk and Szteleblak
(2008). We shall consider an elastic plate made of iso-
tropic material, which after rib introduction behaves as
the orthotropic structure.

3.1 Topological derivative for functional of curvatures
and displacements

Now, the constitutive relations for the plate in the
principal directions of orthotropy are

M = D0κ. (56)

They can also be presented in the extended form as
follows

⎡

⎢⎢
⎣

M11

M22

M12

⎤

⎥⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

D0
11 D0

12 0

D0
21 D0

22 0

0 0 D0
66

⎤

⎥
⎥
⎥
⎦

⎡

⎢⎢
⎣

κ11

κ22

κ12

⎤

⎥⎥
⎦ , (57)

where D0 denotes the bending stiffness matrix. Assume
that on the interface SC separating rib and remaining
part of the plate, the continuity conditions can be pre-
sented as follows

[w] = 0, [κ11] = [κtt] = 0 [M22] = [Mnn] = 0,

[M21] = [Mnt] = 0, (58)

where the last condition also can be assumed in the
form (cf. Woźniak 2001)

[κ21] = [κnt] = 0. (59)

Moreover, [ ] denotes the jump of the enclosed quantity
on SC calculated as a difference of the respective values
in the plate and in the rib. Now, using homogenization
theory (cf. Lewiński and Telega 2000; Woźniak 2001),
the average stiffnesses of the plate in domain collabo-
rating with the rib, which is specified by dimension a,
take the form

D0
11 = E

12

a1h3
1 + a2h3

3

a
+ Eν2

12
(
1 − ν2

)
a

a1

h3
1
+ a2

h3
3

,

D0
22 = E

12
(
1 − ν2

)
a

a1

h3
1
+ a2

h3
3

,

D0
12 = D0

21 = νD0
22,

D0
66 = 1 − ν

2
D0

22 = E
24 (1 + ν)

a
a1

h3
1
+ a2

h3
3

, (60)

where a2 denotes the width of the rib, a1 = a − a2, while
h3 (h3 = h1 + 2h2) is the total height of the rib, which is
equal to the sum of the plate thickness h1 and two one-
sided rib heights h2 (Fig. 4).

Let us consider the functional of curvatures and dis-
placements (22). We choose as the topological design
parameter the width of the rib a2 and the topological
derivative should be determined for a2 = 0. Now, using
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Fig. 4 Geometry of the plate
reinforced by the rib

stiffenera

n
t

x2

x1 x3

h 2 h1 h 2

h3

a2

x2

the adjoint method, where adjoint plate is defined anal-
ogously as in Section 2, the topological derivative of the
functional (22) with respect to introduction of the rib
along line l defining position of the rib, takes the form

TG
,a2

(l)= ∂G
∂a2

∣
∣∣
∣
a2=0

=
∫

Am

(
∂ F
∂a2

∣
∣∣
∣
a2=0

−κT ∂D0

∂a2

∣
∣∣
∣
a2=0

κa

)

dAm

=a
∫

l

(
∂ F
∂a2

∣
∣
∣∣
a2=0

−κT ∂D0

∂a2

∣
∣
∣∣
a2=0

κa

)

dl, (61)

where Am denotes the domain (zone) collaborating
with the rib, of the shape of narrow strip. Here, l is
the line defining position of the rib and a denotes the
width of this strip. It is assumed, that the considered
modification can be treated as replacement of primary,
isotropic material in the zone by material with struc-
tural orthotropy induced by introduction of rib. As the
width of this zone is small, the respective integral with
respect to the domain Am can be substituted by integral
along line l coincident with virtual rib.

Taking into account, that derivatives of the compo-
nents of the stiffness matrix D0 are of the form

∂ D0
11

∂a2

∣
∣
∣∣
a2=0

= E

12a
(
1 − ν2

)
(
h3

3 − h3
1

) (
1 − ν2 + h3

1

h3
3

ν2

)
,

∂ D0
22

∂a2

∣
∣
∣∣
a2=0

= E

12a
(
1 − ν2

)
(
h3

3 − h3
1

) h3
1

h3
3

,

∂ D0
12

∂a2

∣
∣
∣∣
a2=0

= ν
∂ D0

22

∂a2

∣
∣
∣∣
a2=0

,

∂ D0
66

∂a2

∣
∣∣
∣
a2=0

= 1 − ν

2

∂ D0
22

∂a2

∣
∣∣
∣
a2=0

, (62)

the topological derivative (61) finally can be presented
as follows

TG
,a2

(l)= ∂G
∂a2

∣
∣
∣∣
a2=0

=
∫

l

[

a
∂ F
∂a2

∣
∣∣
∣
a2=0

− Dr

(
1−ν2+ h3

1

h3
3

ν2

)
κ11κ

a
11

− Dr
h3

1

h3
3

κ22κ
a
22 − νDr

h3
1

h3
3

(
κ11κ

a
22 + κ22κ

a
11

)

−Dr
1 − v

2

h3
1

h3
3

κ12κ
a
12

]
dl, (63)

where Dr = E
12(1 − ν2)

(
h3

3 − h3
1

)
. More details of this

approach is presented in Bojczuk and Szteleblak
(2008).

A similar topological sensitivity analysis can be
presented for functionals of moments and reactions.
Analogous considerations can also be formulated for
problems of introduction of stiffening fibers.

3.2 Topological derivative of the cost functional

Now, let us consider cost functional expressed as
follows

C = Cm + Cr, (64)

where Cm denotes the total cost of the material and Cr

is the installation cost of the rib. The material cost is
the sum of the plate material cost and rib material cost,
namely

Cm = c ( Vd + Vr) = c

⎛

⎝
∫

A

h1dA + 2a2

∫

l

h2dl

⎞

⎠ , (65)

where c is the unit cost of the plate and rib material, Vd

denotes the volume of the unmodified plate and Vr the
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volume of the introduced rib. The installation cost of
the rib can be written in the following form

Cr = crVr = 2cra2

∫

l

h2dl, (66)

where cr denotes the unit installation cost.
Assuming, as previously, that the rib width a2 is the

design parameter, the sensitivity of the cost functional
can be presented as follows

TC
,a2

(l) = ∂C
∂a2

∣∣
∣
∣
a2=0

= 2 (c + cr)

∫

l

h2dl, or when

h2 = const TC
,a2

(l) = ∂C
∂a2

∣
∣∣
∣
a2=0

= 2h2l (c + cr) .

(67)

4 Heuristic algorithms of plate optimization

Consider a general optimization problem of the form

min G, subject to C − C0 ≤ 0, (68)

where G is the objective functional (function), C de-
notes the global cost and C0 is the upper bound on the
global cost. Introducing the Lagrangian

L = G + λ (C − C0) , (69)

where λ ≥ 0, the optimality conditions with respect to
design parameters pi can be presented in the form

∂G
∂pi

+ λ
∂C
∂pi

= 0 , i = 1, 2, . . . , r,

λ (C − C0) = 0. (70)

The optimal values of the design parameters and of
Lagrange multiplier λ can be determined in the incre-
mental process of gradient optimization. Next, we try
to introduce topology modification. So, the condition of
introduction of an infinitesimally small topology varia-
tion can be presented in the form

T L
,s = TG

,s + λTC
,s < 0, (71)

where T L
,s , TG

,s , TC
,s are the topological derivatives,

respectively of the Lagrangian, objective functional

G and cost functional C with respect to topological
parameter s at the point corresponding to the struc-
ture with unchanged topology. When the condition
(71) is satisfied, the modification is introduced. Next,
additional standard optimization with respect to design
parameters pi should be performed, where parameters
describing new topological element should be added.

4.1 Algorithm of topology and shape
optimization of plates

In the case of topology and shape optimization of
plates, the condition (71) of introduction of infinites-
imally small circular hole of area A0 at the arbitrary
point x, using the concept of the topological derivative,
takes the form

T L
,A0

(x) = TG
,A0

(x) + λTC
,A0

(x) < 0, (72)

where T L
,A0

(x), TG
,A0

(x), TC
,A0

(x) are the topological
derivatives, respectively of the Lagrangian L, objec-
tive functional G (see (44), (45) and (53)) and cost
functional C (see (55)). Moreover, a new small hole
should be introduced at a point, where T L

,A0
(x) attains

a minimal value (cf. bubble method, Eschenauer et al.
1994). It means, that the topological derivative can also
be used to localize position of modification.

However, in order to accelerate optimization
process, a finite modification can be applied (cf. Mróz
and Bojczuk 2003). Now, the problem consists in
introduction of finite holes of unknown size and
shape together with introduction of finite changes of
other boundaries. It is assumed, that domains of rel-
atively small values of the topological derivative of
Lagrangian, which is expressed by (72), should be elim-
inated. It can be performed using the level-set method
by removal of all domains, where this topological deriv-
ative is smaller than adequately chosen negative iso-
value. However, an alternative approach can be used.
Taking into account that for the considered redesign
process there is TC

,A0
(x) < 0, the local condition of

modification (72) can be rewritten in the form

� < λ, where � = TG
,A0

(x)

−TC
,A0

(x)
. (73)

Here � is the local measure of increment of the ob-
jective functional G per unit decrease of the cost C
induced by introduction of a small hole. In order to
determine finite domain A f for which the condition
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(73) is satisfied and � attains values smaller than the
selected iso-value, the following auxiliary problem is
formulated

min
A f

� f , (74)

where

� f = μλ + 
G
μ − 
C

=
μλ + ∫

A f

TG
,A0

(x) dA

μ − ∫

A f

TC
,A0

(x) dA

= μλ + T̄G A f

μ − T̄C A f
, (75)

is the specially constructed design quality function,
while μ (μ > 0) denotes the scaling factor controlling
amount of removed domain A f related with the
respective iso-value. Here 
G, 
C are the evaluations
of the corresponding finite increments induced by
finite modification and T̄G, T̄C denote the average
values of the respective topological derivatives in the
modification domain. The function � f before modifica-
tion equals to Lagrange multiplier λ. When μ→0, only
domain for which � attains minimum, denoted by �min,
is eliminated. Then, modification usually corresponds
to introduction of infinitesimally small hole, analo-
gously as in the bubble method. It is important to
note, that if the bigger value of μ is chosen, the bigger
domain is eliminated (Fig. 5). In particular, when
μ→ ∞, the whole domain for which the condition (73)
is satisfied, will be removed. The condition of finite
topology transformation analogous to (73) and size

μ

min

Λ 

Λ 

min

f

λ 

Fig. 5 Example relation between scaling factor μ and minimal
value �min

f of design quality function

of eliminated domain determined from (74) take
the form

�min
f < λ, where �min

f = min
A f

� f and

A f = −
μ
(
λ − �min

f

)

T̄G + �min
f T̄C

. (76)

Finally, the following algorithm of topology and
shape optimization of plates can be proposed.

1. Formulate in detail optimization problem (68) and
select initial design.

2. Specify the vector of dimensional and shape design
parameters pi.

3. Determine optimal values of the design parameters
pi and of Lagrange multiplier λ in order to satisfy
optimality conditions (70) using arbitrary method
of gradient optimization.

4. Calculate field of the topological derivative of
Lagrangian T L

,A0
(x) in the domain of the structure.

5. In order to determine domain A f , solve the
problem (74).

6. Check the modification condition (76). If the con-
dition is not satisfied, go to step 9.

7. Introduce finite modification by removal of the
domain A f and distribute material proportionally
to the plate stiffness to achieve maximal global
cost C0.

8. Calculate new value of the objective function. If
this value is smaller than the previous smallest
value of the objective function, accept the modi-
fication and return to step 4, otherwise reject the
modification.

9. If any finite modification is not introduced after
the last execution of step 3 terminate optimization
process. Otherwise update vector of dimensional
and shape design parameters pi and return to
step 3.

4.2 Remarks about algorithm of optimization
of stiffened plates

In the case of introduction of infinitesimally thin stiff-
eners lying along certain line l, the condition of modifi-
cation acceptance can be presented analogously to (71)
and (72), namely

T L
,a2

(l) = TG
,a2

(l) + λTC
,a2

(l) < 0, (77)

where T L
,a2

(l), TG
,a2

(l), TC
,a2

(l) are the topological deriv-
atives, respectively of the Lagrangian L, objective
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Fig. 6 Geometry, loading and boundary conditions of the analyzed plate

functional G (see (63)) and cost functional C (see (67))
with respect to width of rib a2 at the point correspond-
ing to zero width i.e. a2 = 0. It is important to notice,
that the line l should be chosen in such a way that T L

,a2
(l)

attains minimum. For this purpose parameterization of
this line using, for example, B-splines can be done. Now
minimization problem takes the form

min
p1, p2,...pr

T L
,a2

(p1, p2, . . . , pr) , (78)

where pi, i = 1,2,. . . ,r, are the parameters describing the
line l.

Let us notice, that the algorithm of optimization of
plates with stiffeners can be formulated analogously to
the algorithm presented in Section 4.1. However, in this
case auxiliary problem analyzed in point 5 corresponds
to the problem (78). More details of this approach is
presented in Bojczuk and Szteleblak (2008).

5 Illustrative examples

In this section numerical examples are discussed in
order to show applicability and usefulness of heuristic
algorithms presented in the previous section for prob-
lems of structural optimization.

5.1 Example: optimal design of topology
and shape of plate

Consider the optimization problem (68) for the plate
structure (2,000 mm × 1,000 mm) presented in Fig. 6
(cf. Bojczuk and Szteleblak 2005). Here, G corresponds
to the elastic energy U and C denotes volume of the
structure, while C0 corresponds to the initial volume.
The plate is clamped on two edges and loaded by
uniformly distributed forces (5 kN/m) on two other
edges. Structure is made of steel (Young’s modulus is
E = 205 GPa and Poisson’s ratio ν = 0.3). The initial

Fig. 7 Each third finite
topology modification
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a) b)

Fig. 8 Optimal designs: a the case with the condition imposed on the maximal thickness of the plate; b the case without thickness
constraints

thickness of the plate is 10 mm. In order to avoid
removal of loaded domain, geometrical constraints
imposed on the design area are introduced. They are
denoted by dashed line in Fig. 6. Also maximum thick-
ness of the plate is limited to 50 mm.

In the present example, using solutions of the prelim-
inary problem (74), successive finite topology modifica-
tions are introduced. Optimization process is stopped
after 15 modifications (Fig. 7), when the constraints im-
posed on maximum thickness of the structure become
active. Next, final correction of the shape is carried out
and the optimal design is shown in Fig. 8a. The ratio
of the strain energies of the initial and final design is
U (init)/U (opt) = 37.33, while the corresponding ratio of
the optimal and initial thickness is h(opt)/h(init) = 5.00.

In the case, when constraints imposed on thickness
of the plate are not used, optimal design is determined
by geometric constraints imposed on loaded area.
Then, the optimal structure is the simple frame shown
in Fig. 8b. Here, we have significant increase of the
thickness of the structure h(opt)/h(init) = 13.56 and large
reduction of the elastic energy U (init)/U (opt) = 151.45.

5.2 Example: reinforcement of plate by ribs

The rectangular plate (3,000 mm × 2,000 mm) shown
in Fig. 9a is analyzed (cf. Bojczuk and Szteleblak 2005).
The structure is made of steel (Young’s modulus is E =
2.05 · 105 MPa and Poisson’s ratio is ν = 0.3). Its initial
thickness is 15 mm. The plate is clamped on three edges,
while the fourth (upper) edge is free. Transverse load
varies linearly along the height of the plate.

Here, the optimization problem (68) corresponds
to minimization of the strain energy of the structure
with constraint imposed on the total volume of the
plate, where C0 corresponds to the initial volume. It is
assumed that ribs connect points on the boundary of the
structure. Also, geometrical constraints limiting mini-
mum distance between non-intersecting ribs to 200 mm
and the minimum thickness of the plate to 10 mm, are
used.

Rectilinear ribs of cross-sectional dimensions: width
a2 = 50 mm, total height h2 = 40 mm, are introduced
into positions, which are specified from the solution
of the problem of initial localization. It corresponds

20
00

a)

300015kN/m2

1

5

3

6

4 2 4

b)

Fig. 9 Optimal design of plate under transverse load reinforced by ribs: a geometry of the plate; b optimal layout of ribs
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to minimization of the topological derivative (77) of
Lagrangian with respect to positions of the ribs ends.
In the first stage, seven ribs are introduced, and next,
slight correction of their position is performed. The
constraint imposed on minimum thickness of the plate
is active. Figure 9b shows layout of ribs and order of
their introduction. The ratio of the strain energies of the
initial design and optimal design is G(init)/G(opt) = 2.35.

6 Conclusions

The expressions for topological derivative with respect
to introduction of small circular holes and with respect
to introduction of stiffeners into plates are derived in
the paper. Next, the heuristic algorithms of topological
optimization of plates are formulated. In particular, the
finite topology modification approach, which uses topo-
logical derivative with respect to introduction of holes,
is applied in problems of topology and shape optimiza-
tion of plates. Moreover, in problems of optimization
of plates with reinforcement, topological derivative is
used in order to determinate initial position of ribs.

Numerical examples shown in the paper confirm
applicability and usefulness of the approach based on
the topological derivative concept. It is noted, that the
application of finite modifications essentially reduces
computation time required for generation of improved
or optimal designs.
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chanics, Częstochowa (Poland), on CD-ROM

Bojczuk D, Szteleblak W (2006) Application of finite varia-
tions to topology and shape optimization of 2D structures. J
Theoret Appl Mech 44:323–349

Bojczuk D, Szteleblak W (2008) Optimization of layout and
shape of stiffeners in 2D structures. Comp Struct 86:1436–
1446
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