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Simple Summary: Uveal melanoma is the most common intraocular cancer. The current eye-sparing
treatment options include mostly plaque brachytherapy. However, the effectiveness of these methods
is still unsatisfactory. In this article, we review several possible new treatment options. These methods
may be based on the physical destruction of the cancerous cells by applying ultrasounds. Another
approach may be based on improving the penetration of the anti-cancer agents. It seems that the
most promising technologies from this group are based on enhancing drug delivery by applying
electric current. Finally, new advanced nanoparticles are developed to combine diagnostic imaging
and therapy (i.e., theranostics). However, these methods are mostly at an early stage of development.
More advanced studies on experimental animals and clinical trials would be needed to introduce
some of these techniques to routine clinical practice.

Abstract: Uveal melanoma is the most common intraocular malignancy and arises from melanocytes
in the choroid, ciliary body, or iris. The current eye-sparing treatment options include surgical
treatment, plaque brachytherapy, proton beam radiotherapy, stereotactic photon radiotherapy, or
photodynamic therapy. However, the efficacy of these methods is still unsatisfactory. This article
reviews several possible new treatment options and their potential advantages in treating localized
uveal melanoma. These methods may be based on the physical destruction of the cancerous cells by
applying ultrasounds. Two examples of such an approach are High-Intensity Focused Ultrasound
(HIFU)—a promising technology of thermal destruction of solid tumors located deep under the
skin and sonodynamic therapy (SDT) that induces reactive oxygen species. Another approach may
be based on improving the penetration of anti-cancer agents into UM cells. The most promising
technologies from this group are based on enhancing drug delivery by applying electric current.
One such approach is called transcorneal iontophoresis and has already been shown to increase
the local concentration of several different therapeutics. Another technique, electrically enhanced
chemotherapy, may promote drug delivery from the intercellular space to cells. Finally, new advanced
nanoparticles are developed to combine diagnostic imaging and therapy (i.e., theranostics). However,
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these methods are mostly at an early stage of development. More advanced and targeted preclinical
studies and clinical trials would be needed to introduce some of these techniques to routine clinical
practice.

Keywords: uveal melanoma; HIFU; iontophoresis; electrotherapy; nanoparticles; theranostics

1. Introduction

Uveal melanoma (UM) is the most common intraocular malignancy and arises from
melanocytes in the choroid (90%, Figure 1), ciliary body (6%), or iris (4%) [1]. In UM,
the median age at diagnosis is 62 years; congenital or infantile melanoma is rare and is
not common in children [2,3]. It is a disease with a poor prognosis as in the metastatic
setting; expected overall survival is no longer than 12 months [4]. In Europe, UM incidence
increases with latitude and ranges from 2/106 in Spain and Italy, 4–6/106 in Central Europe,
and >8/106 in Denmark and Norway. Worldwide UM incidence is 1–9/100,000 [5]. Around
50% of patients with UM will develop metastasis regardless treatment with average survival
time of 6–12 months [6,7].
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UM’s signs and symptoms are non-specific and include high intraocular pressure,
myodesopsia, photopsia, and, finally, loss of vision. These tumors are most often detected
incidentally in an ophthalmological exam [8]. Besides fair skin type and sunlight ultraviolet
(UVA/UVB) exposures, general risk factors of UM development, mutations in the tumor
suppressor gene, encoding BRCA1 associated protein 1 (BAP1) have been found to increase
the risk of UM development. BAP1 mutations are detected in 47% of cases [9] Furthermore,
GNAQ and GNA11 gene mutations are often detected in UM and SF3B1 and EIF1AX
gene mutations. Moreover, mutations in the promoter of BRAF, NRAS, and TERT genes
have been described. The presence of TETR, BAP1, SF3B1, and EIF1AX mutations has a
prognostic significance [10].

The management of localized UM is either globe-preserving therapy or enucleation.
Globe-preserving therapies may be surgical, radiation therapy, or laser therapy. In general,
all the treatments are still unsatisfactory in terms of local disease control, as the average
treatment failure in all radiation therapies is 6.15%, 18.6% in surgical, and 20.8% in laser
therapies [11]. In particular, radiation therapy modalities include brachytherapy, photon-
based external-beam radiation, and charged-particle radiation. For brachytherapy reported
local recurrence rates are 14.7% for 106Ru treatment, 7–10% for 125I, and 3.3% for 103Pd.
Brachytherapy does not lead to increased survival rates as compared to enucleation [5].
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On the other hand, photodynamic laser photocoagulation and transpupillary thermal
therapy (TTT) are treatment modalities that directly focus energy to destroy tumor vascula-
ture and reduce local recurrences by injecting and activating light-sensitive compounds
and free radicals. TTT was effective in 80% of cases of small or indeterminate lesions with
few risk factors. Finally, no adjuvant (chemo) therapy has been shown to prolong survival
to date [5].

This study aimed to review current and prospective approaches in the eye-preserving
treatment of localized ocular melanoma.

2. Ocular Pharmacology

Ocular pharmacology is unique. The drug administration routes and therapeutic
challenges vary depending on the eye segment [12]. The anterior segment of the eye
includes the cornea, iris, ciliary body, and lens. Topical application (e.g., drops) is the
most common form of pharmacotherapy in this segment. Since the volume of an eye drop
(50 µL) significantly exceeds the normal tear volume (7 µL), most drugs get drained by the
nasolacrimal duct or spill over the eyelids.

Moreover, irritant drugs may induce lacrimation causing drug loss. Other factors
affecting topical drug residence time include tear film turnover and low corneal permeabil-
ity [12,13]. This results in low bioavailability (<5%) of topically applicated treatment [14].
Additionally, self-administration of drops requires high patient compliance, which impacts
the therapeutic efficacy. To improve drug contact time and result efficiency in drug delivery,
various strategies have been utilized. This includes the development of mucoadhesive
polymeric gels, ointments, liposome formulations to increase the carrier’s viscosity, and the
introduction of sustained and controlled-release therapeutics, such as hydrogel lenses or
collagen shields, or drug-cyclodextrin complexes, which increase the aqueous solubility of
drugs [13,15,16].

The tissues of the posterior segment of the eye (vitreous humor, retina, choroid, optic
nerve, sclera) are mostly reached by systemic and intraocular drug administration [13].
However, oral or intravenous routes are heavily impaired due to the presence of ocular
blood barriers. The blood–aqueous barrier (BAB) consists of the non-pigmented epithelium
of the ciliary body, the endothelial cells in the iris vessels, the posterior iridial epithelium,
and the Schlemm canal endothelium. On the other hand, the blood–retinal barrier (BRB) is
formed by the retinal pigment epithelial cell layer and retinal vascular endothelium [15,16].
Both are responsible for maintaining intraocular homeostasis and restricting the passage
of blood elements and macromolecules into eye chambers [13,15]. Consequently, limited
drug influx into the retina and vitreous body require administering high doses of systemic
drugs, which causes various undesirable side effects [17]. With recent developments in
nanomedicine, the use of nanoparticles in systemic drug delivery may overcome ocular
physiological barriers since they have shown the ability to pass through capillaries and
reach the desired site with high selectivity via specific targeting systems [15]. Hence,
intravitreal injections remain the most straightforward method in drug administration to
the posterior eye segment. However, they mostly require repeated injections, resulting
in potential side effects including retinal detachment, intraocular hemorrhage, infection,
and endophthalmitis [13,18]. Additionally, the procedure is unpleasant for the patient
and must be performed by an ophthalmologist, which requires monthly or bi-monthly
visits [12]. Intravitreal sustained-release devices have been introduced to address the issue
(e.g., Vitrasert ganciclovir implant for cytomegalovirus retinitis treatment). The devices
are inserted through intraocular surgery; they require periodic replacements, and potential
complications are similar to intravitreal injections [17].

3. Radiotherapy

Radiotherapy (RT) is the mainstay of therapy for most patients with localized uveal
melanoma. Due to the predicted radioresistance of melanoma cells, high fraction doses
are required to achieve a satisfactory response and local control [19]. Thus, the preferred
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RT methods comprise plaque brachytherapy (BT), charged-particle RT (CRT), and photon-
based stereotactic RT (SBRT) [20,21]. Conventional photon-based external beam radiother-
apy is not recommended due to no benefit in survival [22]. Importantly, the occurrence
of local relapse of uveal melanoma is related to the risk of distant metastases [23,24]. In
a systematic review of 49 studies on local therapies for uveal melanoma, the authors re-
ported the local treatment failure rate from 0% to 55.6%, with follow-up ranging from 10
to 150 months. The weighted average of local failure in all RTs was 6.15% compared with
18.6% in eye-sparing surgeries and 20.8% in laser therapies. However, local control rates
varied even between centers that used similar techniques. Therefore, proper RT modality is
crucial and should be based on various factors and institutional experience (Figure 2 and
Table 1).
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Table 1. Selected characteristics of radiotherapy modalities used to treat uveal melanoma.

Brachytherapy Particle Therapy Photon Stereotactic Body
Radiotherapy

Availability Moderate Low High
Cost Moderate High Low

Tumor size Small, medium Medium, large Medium, large

Specific toxicity Visual acuity loss, immediate
procedural discomfort Anterior eye complications

Indications
Majority of uveal melanomas
(also with limited extrascleral

extension)

Tumors surrounding the optic
disk and fovea; an attempt of
eye-sparing treatment in large

tumors

Rapidly growing tumors

Particular contraindications
Gross orbital extension, blind

painful eyes, no light
perception

None
Young age predicted long

survival (higher late
complications rate)
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3.1. Brachytherapy

Plaque BT is the most widespread RT method for uveal melanoma available in many
specialized RT departments. The main principle is to place radioactive isotopes on the
outer surface of the sclera and deliver the prescribed dose to the target volume. It requires
ophthalmological surgery due to plaque insertion, suturing, and plaque removal. The
irradiation usually lasts between two and four days [25].

Plaque BT replaced enucleation due to favorable results of the COMS study meta-
analysis published in 2006 that showed equivalence in the survival of patients with choroidal
melanomas randomly allocated to receive iodine-125 brachytherapy or enucleation [26].
The used isotopes include cobalt-60, iodine-125 (125I), iridium-192, palladium-103, and
ruthenium-106 (106Ru). In clinical practice, the most frequently applied isotopes are 106Ru
and 125I due to their wide availability and favorable dose distribution. However, 125I
is preferred in larger tumors due to its physical properties, namely, emission of gamma
radiation which penetrates deeper than beta-emitters like 106Ru. These observations were
confirmed in several studies [27–31]. Intraoperative ultrasonography to verify plaque
placement improved the treatment results, especially for tumors localized in anatomically
challenging eye parts, such as its posterior area [32–34].

According to the consensus opinion guidelines published by the American Brachyther-
apy Society, most melanomas of the iris, ciliary body, and choroid could be treated with
BT. Data regarding application technique, dose rate, dosimetry, and quality assurance are
presented in detail in this consensus [35].

3.2. Stereotactic Body Radiotherapy

Photon-based SBRT is also a viable treatment option for uveal melanoma; however, it
has been less investigated than BT and CRT. The indisputable advantage of SBRT is the
broad accessibility to this technique based on linear accelerators available in the majority
of RT departments. The most common fractionation regimen comprises between 50 and
70 Gy given in five successive fractions. Despite much less extensive experience with SBRT
for uveal melanoma than for other RT methods, data regarding local efficacy seem to be
equivalent. However, SBRT is linked with a higher risk of late complications than BT and
PT [36].

3.3. Charged-Particle Radiotherapy

Another RT technique used in the treatment of uveal melanomas is CRT. It includes
protons, carbon ions, and helium ions [37–40]. Unfortunately, the availability of CRT,
especially ion therapy, remains poor due to the high cost of equipment and treatment
(availability according to the data by the Particle Therapy Co-Operative Group [41]). The
unique physical properties of CRT beams, namely, the Bragg peak, allow the deposition of
most energy in a precisely defined volume with subsequent sharp dose fall-off behind the
target volume. CRT provides excellent local control around 90%, similar to that achieved
with BT [42]. Nonetheless, due to external beam delivery, there is still the risk of damage to
eye structures such as lashes, macula, retina, lens, iris, or cornea.

Interestingly, worse local control after CRT could be associated with several factors:
reduced safety margins, presence of large ciliary body tumors, presence of eyelids within
the treatment field, wrong positioning of tantalum clips, and male gender [43].

3.4. Ocular Complications of RT

The risk of ocular complications after RT depends on many factors, including the tech-
nique, delivered dose, margins, tumor size, and comorbidities. The ocular complications
comprise retinopathy, cataracts, maculopathy, vitreous hemorrhage, retinal detachment,
strabismus, secondary glaucoma, optic neuropathy, scleral necrosis, uveitis, and others [44].

Brachytherapy is the most common treatment option for patients with small- and
medium-sized UM, allowing preservation of the eye globe. However, this treatment is
associated with possible severe adverse reactions. The most frequent complications include
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radiation-induced retinopathy (45–67%), cataracts (44%), neovascular glaucoma (28%), and
macular edema (25%). They can result in moderate vision loss in 58% of patients and poor
visual acuity (best corrected worse than 5/200) in 28% within two years [5]. Therefore, the
development of safer treatment modalities is needed.

The frequent ocular complication of RT is cataracts. The risk factors include the total
dose (especially over 12 Gy) and anterior tumors (65–90% risk of cataract development).
The most efficient management is cataract surgery that could be safely performed despite
previous irradiation.

Retinopathy may manifest clinically or be asymptomatic. Early diagnosis of radiation-
induced retinopathy can be performed using optical coherence tomography. The typical
signs are telangiectasia, exudates, cotton wool spots, and microaneurysms. In advanced
stages, it could lead to vision loss due to ischemic necrosis. The most important risk factors
of radiation-induced retinopathy are diabetes, hypertension, total delivered dose, thick
tumors, and proximity of the target volume to the foveola. The available treatment methods
include photodynamic therapy, laser photocoagulation, vitrectomy, oral pentoxifylline,
hyperbaric oxygen, and intravitreal injection of corticosteroids or anti-VEGF agents [45].

Maculopathy and optic nerve neuropathy occur in 25% and 8–14% of patients, respec-
tively, after RT [46,47]. These complications severely affect visual acuity [48]. The most
important risk factors for their development are tumor location, thickness, volume, and
total dose given to the fovea [49,50]. Radiation-induced maculopathy may be effectively
managed by intravitreal injections of anti-VEGF drugs or dexamethasone [51].

A less frequent but severe complication is secondary glaucoma that is typically refrac-
tory to intraocular pressure-reducing agents. It occurs in 2–15% of patients who underwent
eye RT and is the second most frequent reason for enucleation after irradiation [52,53]. The
risk factors for secondary glaucoma are larger and thicker tumors, more advanced age,
chronic retinal detachment, and high tumor vascularity [46,52]. The available treatment
methods include intravitreal injection of anti-VEGF agents, trans-scleral cyclophotocoagu-
lation, and enucleation [54,55].

In summary, RT is an effective but relatively toxic treatment for uveal melanoma.
The proper qualification should include a comprehensive ophthalmologic and oncologic
assessment of the risks and benefits of each RT method. The development of equally
effective but less toxic eye-sparing treatment strategies is warranted.

4. Eye-Preserving Surgical Resection

Another possible treatment of uveal melanoma is surgical resection. Surgical treatment
leads to avoiding functional blindness caused by enucleation and allows histopathologic
and cytogenic analysis. Surgical procedures involved transretinal (endoresection) and
transscleral (exoresection), which are technically difficult and require highly experienced
surgeon-ophthalmologist and health professional staff. Surgical eye-preservation tech-
niques can be applied in small melanoma or choroidal naevus. Furthermore, large tumors
may be removed by transscleral resection, but eye-retaining treatment may be applied if
patients do not qualify for radiotherapy. Local resection could be used when iris and ciliary
body melanomas occur [3,56,57]. Compared to (125I) brachytherapy, transscleral tumor
resection treatment incidence of secondary glaucoma is lower, and patients retain a better
visual function [58,59]. Eye-preserving methods enable vision preservation, but it may also
be associated with many complications like retinal detachment, ocular hypertension, and
submacular hemorrhage. Another disadvantage of these methods is repeated reoperation.
Patients must be informed about the risk of treatment like visual loss or metastasis [3,59].
After vitreoretinal surgery, local recurrence risk after five years of treatment is 10.4%, and
metastasis occurs at a 40.3% level [60].

5. Photodynamic Therapy

Photodynamic therapy (PDT) is a commonly used modality in treating various kinds
of eye diseases, including UM [61]. Photodynamic therapy (PDT) action is based on the
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selective destruction of cancer cells or pathological vessels. The PDT mechanism uses
light to activate photosensitizers, generating reactive oxygen species that kill cells [62–64].
Due to its specific mechanism of action, photodynamic therapy minimizes damage to
normal cells [62]. An important factor determining the effectiveness of this method is the
selection of the photosensitizer, which should preferentially accumulate in cancer cells and
be susceptible to light activation.

Additionally, it should be non-toxic to normal cells. An example of such a compound is
Tanshinone IIA, which accumulates in the nucleus of human choroidal melanoma MUM-2B
cells and, upon light activation, generates ROS and induces apoptosis [65]. Another
group of compounds commonly used in PDT is porphyrins and their derivatives. Studies
carried out by Leviskas et al. have shown that Metalloporphyrin Pd (T4) used alone or in
combination with 5-aminolevulinic acid (the porphyrin synthesis precursor) is effective in
PDT against highly invasive uveal melanoma cell line C918 in vitro [63].

Currently, in clinical settings, a derivative of porphyrin—verteporfin—is used as a
photosensitizer (Supplementary Table S1). Although it is approved for treating AMD and
CNV [45], studies have shown that verteporfin-mediated PDT is an effective, safe, and
well-tolerated method of uveal melanoma treatment [66,67]. In a case series conducted
on 15 patients with small pigmented posterior poles, choroidal melanoma response to
treatment was confirmed in 12 patients. The main outcomes were reduced subretinal fluid,
improved visual acuity in some patients, and decreased tumor thickness [66,68]. In another
study, complete tumor regression was observed in 67% (n = 12) and improved visual acuity
in one patient and stable results in the others. PDT therapy is also characterized by a good
prognosis, allowing patients to maintain good vision. Although numerous advantages
were shown in the studies, most observations of patients after PDT were performed for a
limited time. Therefore, to confirm the long-term effects of PDT, longer observations are
necessary [68,69].

Recent studies carried out by Roelofs et al. indicate a risk of recurrence following PDT,
suggesting that PDT with verteporfin should only be applied in these cases of choroidal
melanoma, where other treatment methods that could provide better control of the tumor
cannot be implemented [70]. A recently published meta-analysis summarized verteporfin-
mediated PDT results in uveal melanoma from seven studies involving 162 patients. The
main outcomes of this meta-analysis were regression of the disease and response to treat-
ment observed in 80% of patients, with a mean follow-up of 50 months [71]. It is worth
considering improving PDT or finding a more effective method with a similar mechanism.
Perhaps sonodynamic therapy could be a better therapeutic option. It works similarly to
PDT, with the difference that ultrasounds are used to activate the photosensitizer. The
potential advantages and possibilities of using SDT in ocular oncology are described in the
later section.

6. High Intensity Focused Ultrasound Ablative Technology

In recent years, an innovative therapeutic approach using High-Intensity Focused
Ultrasound (HIFU) has been proposed to treat solid tumors located in various organs.
The HIFU technique is a promising and dynamically developing technology of thermal
destruction of solid tumors located deep under the skin due to its non-invasive nature
(without surgical intervention), lack of ionization, the possibility of repeated treatment,
minimal pain for the patient, low treatment and operating costs, as well as minimal side
effects. In clinical practice, the ablative technique using HIFU has been used recently to
treat solid tumors of the prostate [72], liver [73,74], kidney [73], or breast [73,75–78] cancers,
as well as uterine fibroids [79].

This technique is based on a very quick (<3 s) heating of a small local volume inside
the treated tumor to a temperature above 56 ◦C, leading to its coagulation necrosis [80] due
to the absorption of the energy of ultrasonic waves concentrated in the focal volume of the
beam (Figure 3), as well as due to the cavitation [81] that destroys the tissue mechanically.
The critical condition is to raise the temperature very quickly to a cytotoxic level so that the
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tissue vascular system does not significantly influence the volume of damaged tissue. The
extent of the ellipsoidal volume of the necrotic lesion formed by the HIFU beam reflects its
focal volume. Its size depends on the geometry and acoustic properties of the HIFU beam
used and the acoustic and thermal properties of the tissues through which the ultrasonic
waves propagate.

Cancers 2022, 14, x FOR PEER REVIEW 8 of 22 
 

 

mechanism. Perhaps sonodynamic therapy could be a better therapeutic option. It works 
similarly to PDT, with the difference that ultrasounds are used to activate the photosensi-
tizer. The potential advantages and possibilities of using SDT in ocular oncology are de-
scribed in the later section. 

6. High Intensity Focused Ultrasound Ablative Technology 
In recent years, an innovative therapeutic approach using High-Intensity Focused 

Ultrasound (HIFU) has been proposed to treat solid tumors located in various organs. The 
HIFU technique is a promising and dynamically developing technology of thermal de-
struction of solid tumors located deep under the skin due to its non-invasive nature (with-
out surgical intervention), lack of ionization, the possibility of repeated treatment, mini-
mal pain for the patient, low treatment and operating costs, as well as minimal side effects. 
In clinical practice, the ablative technique using HIFU has been used recently to treat solid 
tumors of the prostate [72], liver [73,74], kidney [73], or breast [73,75–78] cancers, as well 
as uterine fibroids [79]. 

This technique is based on a very quick (<3 s) heating of a small local volume inside 
the treated tumor to a temperature above 56 °C, leading to its coagulation necrosis [80] 
due to the absorption of the energy of ultrasonic waves concentrated in the focal volume 
of the beam (Figure 3), as well as due to the cavitation [81] that destroys the tissue me-
chanically. The critical condition is to raise the temperature very quickly to a cytotoxic 
level so that the tissue vascular system does not significantly influence the volume of dam-
aged tissue. The extent of the ellipsoidal volume of the necrotic lesion formed by the HIFU 
beam reflects its focal volume. Its size depends on the geometry and acoustic properties 
of the HIFU beam used and the acoustic and thermal properties of the tissues through 
which the ultrasonic waves propagate. 

The typical dimensions of the ellipsoidal necrotic lesions are as follows: the diameter 
is in the order of one acoustic wavelength λ, and the length is in the order of 5–7 λ [82]. 
For example, for a 1MHz HIFU beam, the wavelength in soft tissues is approximately 1.6 
mm. Therefore, the necrotic lesion created by such a beam will have approx. 1.6 mm in 
diameter and approx. 10 mm in length. Meanwhile, for a beam with a frequency of 10 
MHz, the diameter of the necrotic lesion will be about 0.16 mm, and the length about 1 
mm. The microscopic image of necrosis induced by HIFU differs from that caused by is-
chemia. The margin between completely damaged cells and healthy tissues is not more 
than 50 μm [83]. High precision of the therapy is very important for the patient’s safety. 

 
Figure 3. An illustration of High Intensity Focused Ultrasound ablative technology. This technique 
is based on very quick heating of a small local volume inside the treated tumor, leading to its coag-
ulation necrosis and cavitation. 

Figure 3. An illustration of High Intensity Focused Ultrasound ablative technology. This technique is
based on very quick heating of a small local volume inside the treated tumor, leading to its coagulation
necrosis and cavitation.

The typical dimensions of the ellipsoidal necrotic lesions are as follows: the diameter
is in the order of one acoustic wavelength λ, and the length is in the order of 5–7 λ [82]. For
example, for a 1MHz HIFU beam, the wavelength in soft tissues is approximately 1.6 mm.
Therefore, the necrotic lesion created by such a beam will have approx. 1.6 mm in diameter
and approx. 10 mm in length. Meanwhile, for a beam with a frequency of 10 MHz, the
diameter of the necrotic lesion will be about 0.16 mm, and the length about 1 mm. The
microscopic image of necrosis induced by HIFU differs from that caused by ischemia. The
margin between completely damaged cells and healthy tissues is not more than 50 µm [83].
High precision of the therapy is very important for the patient’s safety.

To cover the entire tumor with necrosis, it is necessary to penetrate its entire volume
with the focal volume of the HIFU beam. The entire tumor volume can be ablated by
scanning it with a series of single exposures to the HIFU beam moved along a programmed
trajectory (with a selected distance and time interval between exposures) using a mechanical
precision positioning using an electronic control system [80].

The concentration of energy of ultrasonic waves into a small local volume inside the
tumor can be achieved by using both single-element piezoceramic HIFU transducers in the
shape of a spherical bowl of large diameter and by arranging many small piezoceramic
transducers on the surface of the spherical bowl. Depending on the excitation mode, the
HIFU transducer can generate continuous or pulsed waves. In older generation devices,
the tumor is scanned using a HIFU beam generated by a single-element transducer with a
fixed focal length, moved in 3D space by a mechanical precision positioning system [84].
Thanks to the development in the field of electronics and the technology of producing multi-
element piezocomposite transducers, it has become possible to build new generation HIFU
devices in which the focusing of the beam in 3D space and time, as well as the scanning of
the tumor by this beam, are carried out using electronic control of the amplitude and time
delay of pulses exciting each element of the transducer separately [80].

Multi-element phased-array HIFU probes provide faster movement of the HIFU beam
focus within the tumor and greater possibilities of adjusting its geometric dimensions
thanks to the flexibility of electronic control and the ability to create multiple foci at once,
the spatial synthesis of which leads to a shorter treatment time. Since the heterogeneity
of the tissues through which the pulsed focused ultrasound waves propagate can reduce
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the focus sharpness, especially in tumors located deep under the skin, various methods of
phase correction are used to ensure the safety of the therapy for the patient [80].

The choice of the optimal frequency of the HIFU beam depends on the organ to be
treated and is a compromise between the depth of the tumor under the skin and the desired
rate of temperature increase. The more shallowly the tumor is located under the skin,
the higher the HIFU beam frequencies used. For example, to treat tumors located inside
the eye (e.g., uveal melanoma), a HIFU beam with a frequency above 10 MHz would be
needed [80,84].

HIFU transducers in ablative devices have a large radiation aperture, and the ratio
of their diameter to the radius of curvature is smaller or close to 1. The choice of such
transducers is dictated by the beam they generate, which should have a large opening
angle. As a result, it penetrates deep into the body by passing through a large skin surface,
where its intensity is much lower than at the focus of the HIFU beam. This helps to avoid
skin burns [80].

To couple the acoustic impedances of the HIFU transducer and tissue, a matching
medium is used, usually water, which is also a cooling medium. Planning the therapy and
monitoring and controlling its course may be achieved using two visualization techniques:
ultrasound imaging (USI) or magnetic resonance imaging (MRI).

So far, the main clinical application of the HIFU technique in ophthalmology is the
treatment of patients with refractory glaucoma. For this purpose, older-generation HIFU
devices have been used. Devices such as the Sonocare CST-100 (SonocareInc, Ridgewood,
NJ, USA) have been used in clinical practice primarily for the treatment of eyes with
refractory glaucoma by thermal damage to the ciliary body (HIFU cyclocoagulation),
leading to a significant reduction in intraocular pressure [85,86]. However, due to the
complexity and duration (approx. 2 h) of the treatment procedure, as well as the relatively
large focal volume of the HIFU beam used, resulting from its too low frequency (5 MHz)
and leading to complications caused by damage to adjacent healthy tissues, the use of
this device was discontinued. In 2011, to reduce intraocular pressure in patients with
refractory glaucoma, Aptel et al. used circular ultrasound cycloagulation using HIFU
beams generated by six rectangular concave transducers evenly spaced on the surface of
the annular segment of the sphere [87]. Six locations around the circumference, 1 mm
behind the corneal limbus, were subjected to continuous ultrasound waves focused on
the ciliary body, causing thermal damage to the body at six locations. For this purpose, a
miniaturized HIFU EyeOP1 device was built.

The use of high-intensity focused ultrasound in oncology has been studied for many
years. However, the standards for using the HIFU technique for the ablative treatment of
uveal melanoma are much stricter than any other anatomical organ. Such requirements
would be met by new-generation miniaturized multi-element phased array HIFU devices.
The position and size of the focal volume of the HIFU beam can be electronically controlled,
synthesized, and guided to the treated tumor volume using magnetic resonance imaging
combined with thermometry or utilizing high-frequency ultrasound imaging.

At the current stage of development, such devices have not yet been created. How-
ever, the implementation of miniaturized multi-element high-frequency (>10 MHz) HIFU
phased array transducers capable of generating pulsed beams with electronically steered
and synthesized focus, targeted on the treated tumor using MR imaging combined with
thermometry or high-frequency ultrasound imaging will open up new perspectives for
development HIFU techniques in the treatment of various eye diseases including uveal
melanoma. Such a new generation device that will ensure the effectiveness and safety of
therapy has a good chance of achieving commercial success.

7. Sonodynamic Therapy

Sonodynamic therapy (SDT) was developed from photodynamic therapy (PDT) [1]. A
similar effect of both therapies is to induce the reactive oxygen species (ROS) and kill cancer
cells, but the excitation mechanisms of SDT and PDT are different (Figure 4). Moreover,
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SDT relies on the synergy of ROS production and mechanical pressure. It damages the mi-
tochondrial membrane (and structures on its surface) opposite PDT, where this membrane
remains intact. SDT is less invasive than PDT—it does not require endoscopic pierced
optical fiber or surgical exposure of the tumor, guidance by CT or MRI. Ultrasounds may
penetrate deep into tissues (Figure 3), in contrast to photodynamic treatment in which light
permeability to deep tumor tissues is limited [88,89].
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Treated lesions are accessible, and this type of therapy is less effective for large tumors.
Usage of photosensitizers is associated with the necessity of avoiding sunlight for several
weeks by a treated patient. Moreover, SDT kills cancer cells by simultaneously reducing the
damage of adjacent normal tissue [90]. SDT gives a better outcome on high pigmentation
melanoma skin cancer than PDT [91,92].

The detailed mechanism of SDT is still unclear. Sound waves deliver a portion of
energy absorbed by the sonosensitizer, and its excited electrons initiate chemical reactions
with biomolecules and water. The products of these reactions are free radicals. Conse-
quently, sonodynamic therapy induces a cavitation effect, generation of free radicals, and
direct apoptosis of cancer cells. Cavitation is divided into non-inertial and inertial. Non-
inertial cavitation occurs in low-intensity ultrasound. Cavitation bubbles that appear in
water oscillate and affect surrounding suspended particles. Inertial cavitation occurs when
liquid is subjected to high-intensity ultrasound. Bubbles absorb more energy and release it
on a small area, resulting in high temperature, pressure, and generation of free radicals [91].
The biological effect on cells of non–inertial cavitation is limited to changing membrane
permeability. Inertial cavitation may destroy the cytoskeleton, cell membrane structures,
and enzymes, killing surrounding cells [91]. Tumor treatment requires both types of cavita-
tion (damaging tumor cells by protecting the surrounding tissues or destroying tumor cells
with some margin). Non-inertial cavitation may turn into inertial [91].

Sonodynamic therapy induces apoptosis. A large quantity of ROS produced during
SDT reduces mitochondrial membrane potential and leads to apoptosis. SDT also induces
the expression of Bcl-2 family proteins, increases the amount of BAX/BAX or BAX/Bcl-2
dimers, which leads to apoptosis. STD leads to Ca2+ overload. In vitro studies on glioma
cell line (C6) show that treating cells with low-level ultrasound in combination with hemato-
porphyrin monomethyl ether (HMME) increases ROS production and the intercellular Ca2+

level, decreases mitochondrial membrane potential, and releases cytochrome c [93]. HMME-
SDT or protoporphyrin IX (PpIX)-mediated sonodynamic therapy (PpIX-SDT) also induces
apoptosis in leukemia U937 and K562 cell lines. Changes after sonodynamic treatment on
the cellular level include nuclear morphology (chromatin condensation), translocation of
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BAX protein (from the cytoplasm to mitochondria), and caspase activation [94,95]. Apopto-
sis activation by SDT may also occur by activating exogenous pathways and up-regulating
the expression of FAS/FASL receptors [91].

Low-intensity therapeutic ultrasound (5-aminolevulinic acid as a sonosensitizer) in
mice transplanted with B16F10 melanomas activates a local immune response. M1 type
macrophage cells, a high level of inflammatory cytokines TNF-α and IFN-γ, and faster
maturation of dendritic cells were observed in the tumor microenvironment [95].

Some sonosensitizers are derived from photosensitizers, e.g., protoporphyrin deriva-
tives [90]. First, SDT was applied to treat mouse sarcoma and rat ascites hepatoma cells by
hematoporphyrin in the acoustic field [96]. This group of compounds consists of hemato-
porphyrin (Hp), photofrin, hematoporphyrin monomethyl ether (HMME), protoporphyrin
IX (PpIX), ATX-70, and their novel derivatives. These compounds were tested in cell and
animal models in several tumor types (mammary or breast cancer, glioma, osteosarcoma,
or leukemia) [90].

A newer group of compounds used in SDT therapy are nano-sensitizers. These
compounds possess good solubility and could prolong blood circulation and accumulate in
tumor lesion sites [97]. They can be divided into intrinsic sonosensitizers (titanium dioxide—
TiO2; nanoparticles—NPs) and nanoparticle-assisted sonosensitizers. From the first group,
the most extensively studied is TiO2. It is low-cost and easy to produce, and due to its
semiconductor properties, it may generate ROS [98]. In melanoma cell line (C32), irradiation
by ultrasound in the presence of TiO2 results in damage of cell membranes and induction
of apoptosis. In the mouse in vivo model, a combination of SDT with TiO2 resulted in
significant inhibition of tumor growth compared with untreated mice. Histopathological
analysis of tumors shows the presence of necrotic cells and neutrophils [99].

Another group of sonosensitizers are xanthenes. Compounds belonging to this group
like eosin, fluorescein, and rhodamines possess good water solubility [90]. One of them
is Rose Bengal, which is a fluorescein derivative. It is used to stain the ocular surface
epithelium to assess damage in ocular surface diseases [100]. It was tested in melanoma cell
lines [101,102]. In A375 cells, after sunlight exposure, it causes a phototoxic effect resulting
in DNA damage and apoptosis of tumor cells. It is recommended to avoid natural sunlight
exposure after using Rose Bengal [102].

Attempts to apply sonodynamic therapy have been made concerning many types
of neoplasms, such as glioblastoma, lung adenocarcinoma, human lung adenocarcinoma,
leukemia, melanoma, sarcoma, squamous tongue carcinoma, breast and hepatocellular
carcinoma [103]. So far, this form of therapy has not been studied for uveal melanoma. SDT
seems to be safer and more specific than PDT. Ultrasound can be tightly focused with good
penetration through soft tissue [104]. There is a possibility of non-invasive ultrasound of
the eye (through the front of the eye). Still, the application of several transducers should be
tested in vivo for their safety and effectiveness.

8. Electrically Enhanced Drug Delivery

Enhancing drug delivery with physical forces and specifically with the application of
the electric current (Figure 5) seems to be a new promising approach in many oncological
applications [105]. In the case of ocular oncology, and specifically UM, two approaches
could be currently considered: iontophoresis and electrochemotherapy (ECT).
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Iontophoresis is a non-invasive technique in which using low-intensity electric current
allows to increase the biodistribution of ionized drug molecules in the tissues of the
eyeball, particularly in the cornea and sclera. Transcorneal iontophoresis has been shown
to increase the local concentration of antibacterial and antifungal drugs, steroids, DNA, and
RNA molecules [106,107]. EyeGate company has developed a transscleral iontophoresis
device and has completed Phase III clinical trials of EPG-437 formulation (dexamethasone
formulation developed for iontophoresis administration) for anterior uveitis. The treatment
results were similar to the standard therapy (prednisolone in the form of eye drops). Still,
the risk of increased intraocular pressure and the frequency of drug administration was
lowered [108].

Iontophoresis with carboplatin delivery was a promising option for retinoblastoma
treatment. Transcorneoscleral delivery of the drug results in dose-dependent inhibition
of intraocular retinoblastoma. In the mouse model, a 7.0 mg/mL dose was evaluated as
a tumor control dose for 50% of treated eyes. At this dose, no corneal toxicity signs were
observed [109]. There were no toxicity signs in the rabbit eye (more anatomically similar to
the human eye) after six transscleral applications of carboplatin at 14 mg/mL [110].

The disadvantage of the iontophoresis technique is its low effectiveness to deeper
tissues of the eyeball, its limited effectiveness of supporting the internalization of drug
molecules into cells, and its limited ability to precisely administer drugs locally. However,
there are attempts to deliver nanoparticles to sites near the posterior pole region of the
eye. In ex vivo and in vivo animal models, iontophoresis using microneedle-based devices
allows delivering charged nanoparticles to the posterior region of the suprachoroidal space
(SCS; >9 mm from the limbus) with average 6 nm penetration [111].

In electrochemotherapy, electric pulses generate and open transient pores in the cell
membrane and enable the influx of drug (chemotherapeutic) molecules into the cytosol.
Its principal advantage is local dose intensity. A high intratumoral drug concentration
is achieved, and cytotoxicity is increased by ~8000 fold for bleomycin and ~80 fold for
cisplatin [112]. Besides electropermeabilization and electrophoresis, other mechanisms that
might also play a role in electroporation are passive diffusion, convection, macropinocytosis,
and endocytosis (electroendocytosis) possible uptake-mechanisms for neutral particles
during electroporation. Recently, a meta-analysis of ECT clinical trials showed that the
overall objective response rate (ORR) ranges from 62.6% to 82.2%, depending on the drug
type and route of administration, type of cancer, and tumor size. Over the last few years,
great efforts have been made to extend ECT to non-cutaneous tumor locations, including
the liver, pancreas, bones, and brain. Moreover, an endoscopic electrode was developed to
treat colon and rectal cancer [113].

In preclinical studies, several centers use needle-like electrodes for localized electropo-
ration in the postnatal brain in rats and mice. Electroporation does not result in behavioral
side effects, and no motor response or seizure-like activity was observed. Most recently,
in vivo single-cell electroporation was used in rats for Ca2+ indicator loading. Successful
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loading of these tracers into the neurons was also confirmed [114]. The extracellular matrix
composition influences electroporation efficiency: soft tumors with larger spherical cells,
low proteoglycan and collagen content, and low cell density are more effectively trans-
fected [115]; therefore, uveal melanoma seems like a good potential candidate for that type
of treatment.

In the case of intraocular administration, an additional limitation is the presence of the
blood–retinal, blood–aqueous humor, and blood–vitreous barriers. It seems that electropo-
ration should bring the greatest benefits in the case of administering drugs with low perme-
ability through biological, hydrophobic barriers. ECT was evaluated in in vitro (spheroid)
and in vivo (chick embryo chorioallantoic membrane, CAM) primary and metastatic UM
models. Compared to chemotherapy or electroporation, ECT caused a reduction in tumor
size and viability of tumor cells. Spheroids treated by ECT (with bleomycin in lower
concentration 2.5 µg/mL than peak plasma) lose sphericity. Peripherally located cells
detach from the main spheroid body. ECT treatment changes the spheroid shape, alters the
inner area core with necrotic cells, and the outer area consists of proliferative cells [116,117].
Bleomycin combined with electroporation reduced the viability of conjunctival cell lines
(CRMM1, CRMM2). Electroporation highly enhances the activity of bleomycin chemother-
apy in vitro [118]. In the in vivo model, apoptosis and necrosis areas in the peripheral graft
region were observed after intraarterial infusion in the tumor’s proximity. The intratumoral
treatment gives large necrosis in the center of the tumor mass [117].

Simulation studies on the 3D mathematical model of the eye show that nonthermal
irreversible electroporation can be safely applied to treat intraocular tumors [119]. Ex vivo
experiments demonstrated ablation of uveal melanoma tumors, but tumor conductivity
increased during treatment [120]. Optimization of pulse parameters and electrode configu-
ration are important factors before planning treatment. Animal and human studies are still
needed to develop ECT for clinical use [119].

9. Theranostics

Theranostics, also known as theragnosis, is a modern technique in personalized
medicine incorporating both diagnostic imaging and therapy. Instead of utilizing two
different materials for both purposes, theranostics uses a single probe combing two fea-
tures into one platform (Figure 6) [121]. This dual property allows recognition of the
specific disease, understanding the cellular phenotype, and provides immediately targeted
treatment to monitor and observe its efficacy [122,123]. Therefore, most direct targets in
oncology of this method include antigens and receptors expressed specifically by certain
tumor cells (e.g., insulin-like growth factor 1 receptor—IGF1R; epidermal growth factor
receptor—EGFR; human epidermal growth factor receptor 2—HER2), elements of the
tumor microenvironment as well as altered cell metabolism or hypoxia, and extracellular
acidosis caused by abnormal vasculature. Such cancer-specific targeting results in selective
action of anti-cancer substances and limiting or even eliminating systemic side effects by
reducing its harmful effects on healthy tissues [124].

Nuclear oncology is one of the main fields which integrated theranostics into clinical
practice. Radiopharmaceuticals with γ-emitting or positron-emitting radionuclides can be
easily visualized by positron emission tomography (using emitters such as fluorine-18 or
gallium-68), or single-photon emission computed tomography (with the use of emitters
such as technetium-99m). When labeled with β-emitting radionuclides (e.g., lutetium-177),
they can be utilized as a treatment modality [122,125].
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One of the most remarkable achievements of the modern theranostic radionuclide
approach was accomplished with the NETTER-1 study [126]. After many years of clini-
cal development, 177-lutetium-DOTA-octreotate for peptide receptor radionuclide ther-
apy (PRRT) of gastroenteropancreatic neuroendocrine tumors (NETs) obtained overall
approval. A landmark study involving patients with advanced somatostatin-receptor
positive mid-gut NETs was published in 2017. It led to the elevation of PRRT to level 1b
evidence and FDA approval of 177-lutetium-DOTA-octreotate PRRT of gastroenteropan-
creatic NETs [127,128]. Additionally, currently, a new somatostatin-receptor antagonist
(the pair 68-gallium-JR11 and 177-lutetium-DOTA-JR11) is tested in patients with not
only gastroenteropancreatic NETs but also other cancers, including bronchial carcinoid or
phaeochromocytoma (NCT02592707) [127]. Current receptor ligands might be labeled with
new radionuclides, e.g., 47-scandium, 161-terbium, 213-bismuth, as evaluated in preclinical
trials [128].

Theranostics is a field that strongly benefits from the fast development of nanomedicine.
Nanoparticles (NPs) offer multifunctionality as they can integrate a few imaging or ther-
apeutic agents and enhance circulation time in the blood. Additionally, by controlling
the size and shape of NPs, different demands of biological systems can be met [129,130].
Theranostics NPs are engineered in several ways, e.g., by encapsulating therapeutic and
imaging agents in platforms such as micelles and polymeric NPs, or by loading therapeutic
agents into existing imaging NPs such as gold nanocages and iron oxide NPs, or quan-
tum dots. Theranostics NPs surface is also modified with specific targeting ligands and
polyethylene glycol to allow active tumor targeting and improve the blood circulation
half-life [131]. However, many limitations still exist, including costs and toxicity (e.g.,
impairment of mitochondrial function, DNA damage) that must be studied and evaluated
before introducing theranostics NPs in everyday clinical practice [121,132].

One of the first introduced theranostics NP was Herceptin®, developed to treat
metastatic breast cancer with HER-2 overexpression [121]. Since then, a lot of new de-
velopments have arrived. NPs with anti-cancer drugs (e.g., Doxorubicin or Paclitaxel) were
combined with imaging agents for simultaneous imaging and targeted chemotherapy. Kim
et al. [133] introduced chitosan-based NPs labeled with Cy5.5 (fluorescent dye) for imaging
purposes and loaded them with an anti-cancer drug, paclitaxel. The compound exhibited
high accumulation in tumor tissues and resulted in high therapeutic efficacy. Other ex-
amples include EGFR-targeted liposomes loaded with DNA bio-dots and a combination
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of anti-cancer drugs cetuximab and etoposide in treating advanced non-small cell lung
carcinoma [134].

Additionally, in the treatment of glioblastoma, circulating tumor DNA is evaluated
as a theranostic marker (NCT03115138). New compounds and materials with appropriate
modification and use of long-known anti-cancer substances allow for selective cancer
management.

Although no theranostic NPs have been developed specifically for uveal melanoma,
some NPs have already found use in ophthalmology. With limitations from conventional
therapies during drug delivery to the eye, nanotechnology-based drug delivery allows
better uptake across ocular barriers, sustained drug release, and tissue targeting. For exam-
ple, Restasis® was developed as a nanoemulsion with cyclosporin A to treat chronic dry
eye. At the same time, intravitreal injection with Macugen®, an anti-vascular endothelial
growth factor, was approved for age-related macular degeneration treatment [135,136].
With increased bioavailability and drug targeting, theranostic NPs for use in imaging
and treating uveal melanoma could be an attractive modality, especially in patients with
early-stage disease, to reduce side effects and spare healthy tissues of the eye.

10. Conclusions

Uveal melanoma is the most common intraocular malignancy and arises from melanocytes
in the choroid, ciliary body, or iris. UM signs and symptoms are non-specific and include
high intraocular pressure, myodesopsia, photopsia, and, finally, loss of vision. The manage-
ment of localized UM is either globe-preserving therapy or enucleation. Globe-preserving
therapies may be surgical, radiation therapy, or laser therapy.

Ocular pharmacology is unique. The drug administration routes and therapeutic
challenges vary depending on the eye segment. The anterior segment of the eye includes
the cornea, iris, ciliary body, and lens. Topical application is the most common form of
pharmacotherapy in this segment.

Radiotherapy is the mainstay of therapy for most patients with localized uveal
melanoma. Due to the predicted radioresistance of melanoma cells, high fraction doses are
required to achieve satisfactory response and local control. Another RT technique used in
the treatment of uveal melanomas is charged-particle radiotherapy. It includes protons,
carbon ions, and helium ions. Unfortunately, the availability of CRT, especially ion therapy,
remains poor due to the high cost of equipment and treatment.

Among eye-preserving methods in treatment of UM, surgical resection is one possible
treatment option. Despite it being a clinical challenge and associated with many complica-
tions, it allows vision preservation and retains a better visual function vs. brachytherapy.
Photodynamic therapy is a commonly used modality in treating various kinds of eye
diseases, including uveal melanoma. Photodynamic therapy action is based on the selective
destruction of cancer cells or pathological vessels. The PDT mechanism uses light (laser
energy) to activate photosensitizers, generating reactive oxygen species that kill cells. Ad-
ditionally, it should be non-toxic to normal cells. Currently, in clinical settings, verteporfin
is used as a photosensitizer. Although it is approved for the treatment of AMD and CNV,
studies have shown that verteporfin-mediated PDT is an effective, safe, and well-tolerated
method of uveal melanoma treatment.

High-Intensity Focused Ultrasound has been proposed to treat solid tumors located in
various organs. The HIFU technique is a promising and dynamically developing technology
of thermal destruction of solid tumors located deep under the skin. This technique is based
on very quick heating of a small local volume inside the treated tumor to a temperature
above 56 ◦C, leading to its coagulation necrosis due to the absorption of the energy of
ultrasonic waves concentrated in the focal volume of the beam, as well as due to the
cavitation that destroys the tissue mechanically. The critical condition is to raise the
temperature very quickly to a cytotoxic level so that the tissue vascular system does not
significantly influence the volume of damaged tissue.
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Sonodynamic therapy was developed from photodynamic therapy. A similar effect
of both therapies is to induce the reactive oxygen species and kill cancer cells, but the
excitation mechanisms of SDT and PDT are different. SDT is less invasive than PDT.
Ultrasounds may penetrate deep into tissues, in contrast to photodynamic treatment in
which light permeability to deep tumor tissues is limited.

Electroporation applied in vivo delivers drugs or genetic material from the intercel-
lular space to the cells by temporarily permeabilizing cell membranes using a short-term
high voltage electrical pulse. The first stage is the introduction of a substance (drug, DNA)
into the intercellular space. This approach can be achieved through intravenous or local
administration (e.g., intratumorally, directly into cancerous tissue). Intravenous administra-
tion is less effective in tumors because of the usually increased pressure in the intercellular
space. Data from the in vitro studies indicate that electroporation-assisted administration
of chemotherapeutic agents in ocular neoplasms may be a promising new therapy.

Iontophoresis is a non-invasive technique in which using a low-intensity electric
current allows to increase the biodistribution of ionized drug molecules in the eyeball
tissues, particularly in the cornea and sclera. Transcorneal iontophoresis has been shown to
increase the local concentration of antibacterial and antifungal drugs, steroids, DNA, and
RNA molecules.

Theranostics is a modern technique in personalized medicine incorporating both diag-
nostic imaging and therapy. Instead of utilizing two different materials for both purposes,
theranostics uses a single probe combing two features into one platform. Cancer-specific
targeting results in selective action of anti-cancer substances and limiting or even eliminat-
ing systemic side effects by reducing its harmful effects on healthy tissues. Although no
theranostic markers have been developed specifically for uveal melanoma, some NPs have
already found use in ophthalmology. With limitations from conventional therapies during
drug delivery to the eye, nanotechnology-based drug delivery allows better uptake across
ocular barriers, sustained drug release, and tissue targeting.

Definitely, treatment for uveal melanoma presents an unmet clinical need. More novel
eye-preserving therapeutic approaches for localized disease are desperately needed. Both
preclinical research and clinical trials would help to develop these therapies.
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