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a b s t r a c t 

The effect of formation and evolution of stress-induced martensitic microstructures on macroscopic me- 

chanical properties of shape memory alloys in the pseudoelastic regime is investigated with account for 

size-dependent energy of interfaces. A quantitative relationship is established between the changes in free 

energy and dissipation on the interfaces at three microstructural scales and the overall mechanical char- 

acteristic of the material under tensile loading. The multiscale analysis carried out for a polycrystalline 

NiTi shape memory alloy has revealed that the interfacial energy storage and dissipation can strongly af- 

fect the shape and width of the stress–strain hysteresis loop. The predicted non-monotonic stress–strain 

response for the material of a selected grain size shows a remarkable similarity to the experimental 

one extracted from a tensile test of a laminate by Hallai and Kyriakides (2013). By the classical Maxwell 

construction, the non-monotonic response for a material element results in a commonly observed stress 

plateau for a tensile specimen, which is associated with the propagation of phase transformation fronts. 

This behaviour is confirmed with striking accuracy by 3D finite-element computations performed for a 

macroscopic tensile specimen, in which propagating instability bands are treated explicitly. 

© 2020 Institute of Fundamental Technological Research PAS. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The unique behaviour of shape memory alloys (SMAs), no-

ably the shape memory effect and pseudoelasticity, results from

he martensitic phase transformation ( Otsuka and Wayman, 1998 ).

he transformation is reversible in the sense that the overall in-

lastic strain can be induced and fully recovered upon adequate

hermomechanical loading. This is accompanied by formation and

volution of martensitic microstructures at several spatial scales

o that the martensitic transformation in SMA polycrystals is a

ruly multi-scale phenomenon. The present paper deals with quasi-

tatic, stress-induced and nearly isothermal transformation in the

seudoelastic regime, with the emphasis put on rarely studied ef-

ects of the interfacial energy and dissipation at lower-scale inter-

aces. 

The overall behaviour of SMAs is described by numerous phe-

omenological models (e.g., Raniecki et al., 1992; Auricchio and

etrini, 2002; Lagoudas et al., 2012; Sedlák et al., 2012; Stup-

iewicz and Petryk, 2013; Qiao and Radovitzky, 2016; Jiang et al.,

016 ), and many others, where basic properties of SMAs are as-

umed at the macroscopic level. However, several important fea-
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ures of the macroscopic behaviour of SMAs can be predicted

y micromechanical models that typically consider the individual

artensite variants within the differently oriented grains and ap-

ly scale-transition schemes to arrive at the overall response of

 polycrystalline aggregate. A number of related micromechani-

al models of various complexity and various predictive capabili-

ies can be found in the literature, cf. some representative models

 Siredey et al., 1999; Gall and Sehitoglu, 1999; Šittner and Novák,

0 0 0; Thamburaja and Anand, 2001; Hackl and Heinen, 2008; Lev-

tas and Ozsoy, 2009; Sengupta and Papadopoulos, 2009; Stup-

iewicz and Petryk, 2010a; Yu et al., 2015; Xiao et al., 2019 ) and

 review ( Cisse et al., 2016 ). 

The feature that is not yet included (to the best knowledge

f the authors) in any existing micromechanical model of poly-

rystalline SMAs is the effect of interfacial energy at lower-scale

nterfaces on the overall non-monotonic response of a material

ample. The entire formation and evolution of microstructure is

ccompanied by nucleation, propagation and annihilation of inter-

aces at multiple scales. Depending on the type, character and rel-

vant spatial scale, each interface is associated with some energy –

he interfacial energy of the density referred to the area of an in-

erface. Evolution and ultimately annihilation of an interface may

lso be associated with dissipation of the interfacial energy. The

elated contributions to the total free energy and dissipation in a
evier Ltd. This is an open access article under the CC BY license. 
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Fig. 1. Nominal stress–elongation response measured for a NiTi strip under tension 

and the intrinsic material response extracted from a laminate with steel face-strips, 

after Hallai and Kyriakides (2013) (reproduced with permission from Elsevier). 
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macroscopic volume element depend on the characteristic dimen-

sions of microstructural elements, and thus the overall energy bal-

ance includes size-dependent contributions. As a result, the in-

terfacial energy can govern the overall behaviour of SMAs in a

size-dependent manner, see ( Petryk and Stupkiewicz, 2010 ) for a

general theory and ( Petryk et al., 2010 ) for its application to a

simplified case of a rank-three laminate. The conclusion that the

interfacial energy can significantly influence the overall response of

SMAs can be traced back to Müller and Xu (1991) , but the respec-

tive macroscopic free energy factor has remained unknown. The

aim of this work is to develop a hierarchical multi-scale frame-

work for predictive modelling of the interfacial energy effects in

SMA polycrystals. 

The specific focus of this work is on pseudoelastic behaviour

of SMA polycrystals under quasi-static tension, with the restric-

tion to the stress-induced transformation and isothermal condi-

tions. In this regime, the material is initially in the austenitic state,

and application of a mechanical load, after an initial stage of elas-

tic response, induces the martensitic transformation that is accom-

panied by an overall inelastic strain. Upon unloading, the inelas-

tic strain vanishes, and the initial undeformed state is recovered.

The pseudoelastic response exhibits then two characteristic fea-

tures, namely the hysteresis and frequently the stress plateau on

the nominal stress–elongation diagram. The origin of the plateau

and hysteresis has been widely discussed in the literature, but ap-

parently not yet fully clarified. The present paper is intended to

make a progress in this direction, although with the limitation of

the analysis to the tensile loading/unloading. 

Nowadays, the aforementioned stress–elongation plateau is, or

should be, no longer understood as a physical property of the ma-

terial, but rather as the effect of propagating instability due to a

negative slope on a part of the stress–strain diagram for the mate-

rial . This has been clearly shown in the experiment by Hallai and

Kyriakides (2013) , in which the intrinsic material response of NiTi

under tension has been extracted from a laminate of a NiTi strip

and steel face-strips that practically enforce a uniform deforma-

tion of the NiTi strip. Such a uniform deformation cannot be ob-

served for a free-standing strip because the negative slope of the

uniaxial stress–strain diagram leads to path instability in the form

of strain localization. The transformation proceeds then through

propagation of macroscopic transformation fronts that separate the

transformed and untransformed domains. The fronts propagate at

an approximately constant load under end-displacement control,

hence a plateau is observed on the load–elongation diagram which

should not be interpreted as a stress–strain diagram for the ma-

terial. Fig. 1 reproduced from ( Hallai and Kyriakides, 2013 ) shows

both the intrinsic material response and the specimen response.
Please cite this article as: S. Stupkiewicz, M. Rezaee-Hajidehi and H. 
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he former exhibits a negative slope on a significant part of the

tress–strain diagram, the latter shows a load plateau. 

The scenario discussed above (from propagating instability to

oad plateau) is in fact commonly observed in experiment. Strain

ocalization and propagation of Lüders-like bands have been ob-

erved in NiTi strips and wires under tension ( Shaw and Kyri-

kides, 1997; Pieczyska et al., 20 06; Churchill et al., 20 09; Zhang

t al., 2010; Sedmák et al., 2016 ), and instabilities leading to com-

lex transformation patterns have been observed in NiTi tubes

nder tension and combined tension–torsion ( Sun and Li, 2002;

eedlunn et al., 2014; Bechle and Kyriakides, 2016 ) and under

ending ( Bechle and Kyriakides, 2014; Reedlunn et al., 2014 ). The

tress plateau has also been observed in numerous experiments

ithout direct characterization of strain localization. 

The stress plateau during the forward transformation under

ension is often accompanied by a lower stress plateau during

he reverse transformation upon unloading, with the related rate-

ndependent hysteresis (e.g., Shaw and Kyriakides, 1997; Churchill

t al., 2009; Bechle and Kyriakides, 2014; Reedlunn et al., 2014 ).

his suggests that the respective material stress–strain response is

lso non-monotonic, however, it has never been determined exper-

mentally. 

From a mathematical point of view, the effect of a non-

onotonic local response on macroscopic behaviour in 1D

etting has been widely studied in the literature, following

ricksen (1975) . Several macroscopic models of phenomenological

ype have also been developed for SMAs and implemented nu-

erically in order to simulate the related phenomena in 1D set-

ing ( Chang et al., 2006; Alessi and Bernardini, 2015; León Baldelli

t al., 2015; Rezaee-Hajidehi and Stupkiewicz, 2018 ) and in 2D/3D

etting ( Duval et al., 2011; Jiang et al., 2017a; 2017b; Badnava

t al., 2018; Rezaee-Hajidehi et al., 2020 ). A simplified form of

he non-monotonic local response is then usually adopted, often

 piecewise-linear one, although the actual response may exhibit

 visible non-linearity, cf. Fig. 1 . Note that a non-monotonic lo-

al response results also from phase-field approaches applicable to

MA single crystals (e.g. Esfahani et al., 2018; T ̊uma et al., 2018 ).

he models mentioned above involve some kind of regulariza-

ion (gradient enhancement, non-local formulation, or viscous ef-

ects) that introduces a characteristic length-scale into the model

nd improves the robustness of the corresponding computational

chemes. As an exception, the only regularization in the model of

iang et al. (2017a,b) is that due to the natural 3D effects at the

acroscopic transformation fronts. 

In this paper, a multiscale framework for a quantitative anal-

sis of the effect of interfacial energy on non-monotonic stress–

train response of pseudoelastic SMA polycrystals is developed, ap-

arently for the first time. The framework involves three essen-

ially independent models, two of them are micromechanical mod-

ls themselves, and the multi-scale coupling between the models

s performed in a hierarchical manner, i.e. the results of the model

t a lower scale are transferred to the model at a higher scale in

he form of constitutive functions or parameters that are identified

sing the lower-scale data. The multiscale framework is schemati-

ally shown in Fig. 2 , and the structure of the paper is presented

elow. The whole approach is built on the previous extensive work

y the authors, which is referred to in the sequel. Each specific

odel used in this work relies on the incremental energy mini-

ization, and the related framework that includes the interfacial

nergy effects is briefly recalled in Section 2 . 

At the lowest scale, we apply the model of a spherical sub-

rain with a rank-two laminate of twinned martensite plates

ithin the austenite matrix to determine the size-dependent in-

erfacial energy contributions coming from the interfaces at three

cales: at the twin boundaries, at the austenite–martensite inter-

aces, and at the boundary of the sub-grain. The model is adopted
Petryk, Multiscale analysis of the effect of interfacial energy on 

ational Journal of Solids and Structures, https://doi.org/10.1016/j. 
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Fig. 2. Hierarchical multiscale modelling approach for the analysis of interfacial energy effects in SMA polycrystals. 
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rom ( Stupkiewicz and Petryk, 2010b ) and is briefly presented in

ection 3.1 ; the basic equations are provided in Appendix A . In this

odel, the results of yet another micromechanical model (which

s not indicated in Fig. 2 nor discussed in detail in the paper) are

tilized, namely the estimate of the elastic micro-strain energy at

he austenite–twinned martensite interface in NiTi is taken from

 Stupkiewicz et al., 2012 ). The outcome of the sub-grain model, i.e.

losed-form expressions for the size-dependent interfacial energy

ontributions, constitutes then the input to the model of a SMA

olycrystal to be considered at a higher scale. 

At the intermediate scale, the overall response of a SMA poly-

rystal is obtained by applying a respective multiscale model

hat is enhanced with the interfacial energy effects. This is pre-

ented in Section 4 . First, in Section 4.1 , the interfacial energy

ffects are introduced to the model of a single grain, which is

one in a quite general setting without specifying the explicit

orm of the bulk free energy and dissipation contributions. The

nterfacial energy contributions are evaluated for a representa-

ive spherical sub-grain, and the respective results are taken from

ection 3.1 . This general framework is then combined with a mul-

iscale model of a SMA polycrystal. Here, the bi-crystal aggre-

ate model ( Stupkiewicz and Petryk, 2010a ) is employed, which is

riefly introduced in Section 4.2 and the equations are provided

n Appendix B . Application of the complete scheme to polycrys-

alline NiTi under uniaxial tension is then reported in Section 4.3 .

he predicted stress–strain response is non-monotonic during both

oading and unloading and exhibits a significant dependence on

he grain size, which is due to the interfacial energy effects. 

Considering that the non-monotonic stress–strain response is

xpected to cause the path instability and strain localization, we

nally carry out 3D finite-element simulations of the tension test

n order to study the related effects quantitatively. To this end,

n Section 5 , the macroscopic finite-strain model of pseudoelastic-

ty ( Stupkiewicz and Petryk, 2013 ) is extended in order to accu-

ately represent the intrinsic material response predicted by the

icromechanical model in Section 4 . Specifically, by following the

ierarchical multi-scale approach, the dissipation and free energy

unctions are fitted to the respective data resulting from the lower-

cale analysis. To efficiently treat the instabilities and nonuniform
Please cite this article as: S. Stupkiewicz, M. Rezaee-Hajidehi and H. 
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ransformation patterns, the finite-element implementation of the

odel employs the gradient regularization that has been recently

eveloped by Rezaee-Hajidehi et al. (2020) . The finite-element sim-

lations deliver the expected load–elongation response with two

lateaus, as well as the transformation pattern in the form of a

rowing martensite band with inclined macroscopic transforma-

ion fronts. 

. Incremental energy minimization framework 

It is well known that the stress-induced martensitic transfor-

ation in SMAs in the pseudoelastic regime proceeds on the mi-

roscopic scale by formation and evolution of laminate microstruc-

ures composed of crystallographic variants of martensite. In view

f a large number of possible combinations of different variants

f martensite, the micromechanical modelling of SMAs requires

 method of selection of their physically favourable combination

or a single grain. Under the assumption of isothermal conditions

nd an additional symmetry restriction imposed on dissipation,

his is offered by the incremental energy minimization method

 Petryk, 2003 ) extended to the interfacial contributions to free en-

rgy and dissipation by Petryk and Stupkiewicz (2010) . On the time

cale adopted in the rate-independent modeling, a negative incre-

ent of the interfacial energy, as in Eq. (3) below, is locally related

o the annihilation of interfaces. This is associated with a sudden

elease of the interfacial energy that can hardly be reverted into

he bulk free energy. Therefore, in the model it contributes pre-

ominantly to the rate-independent dissipation ( Petryk and Stup-

iewicz, 2010 ). 

In outline, the incremental energy minimization framework

ith interfacial energy effects on different scales indexed by s can

e summarized as follows ( Petryk and Stupkiewicz, 2010 ): 

(i) Split of the total free energy into bulk and interfacial contri-

butions, 

� = �v + �i , �i = 

∑ 

�i 
s . (1) 
s 

Petryk, Multiscale analysis of the effect of interfacial energy on 

ational Journal of Solids and Structures, https://doi.org/10.1016/j. 
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Fig. 3. Spherical sub-grain with periodic rank-two laminated microstructure and 

interfacial energy at three scales. 
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(ii) Split of the dissipation increment into bulk and interfacial

contributions, 

�D = �D 

v + �D 

i , �D 

i = 

∑ 

s 

�D 

i 
s . (2)

(iii) Negative increments of interfacial energy contribute to dis-

sipation, 

�D 

i 
s = κs 〈−��i 

s 〉 , 0 ≤ κs ≤ 1 , 〈 ψ〉 = 

{
ψ if ψ > 0 , 

0 if ψ ≤ 0 . 

(3)

(iv) Microstructure evolution is determined by succesive mini-

mization of the incremental energy supply, 

�E = �� + �D → min subject to kinematical constraints .

(4)

The aforementioned scheme can be applied at any level of a hi-

erarchical model, either separately or jointly for all levels of a poly-

crystalline aggregate. The theory is described by Petryk (2003) and

Petryk and Stupkiewicz (2010) . Further details of the microme-

chanical model are discussed in the next sections. 

3. Compound interfacial energy in a spherical sub-grain 

3.1. Interfacial energy contributions at three scales (Stupkiewicz and 

Petryk, 2010b) 

The model developed by Stupkiewicz and Petryk (2010b) is em-

ployed here in order to estimate the interfacial energy contribu-

tions in a spherical domain. With reference to the micromechan-

ical model of a polycrystalline aggregate discussed in Section 4 ,

consider a spherical domain of diameter d that is identified with

a sub-grain , i.e. a part of a grain occupied by a single family of

internally twinned martensite plates (habit-plane variants) within

the austenite matrix, see Fig. 3 . The microstructure is assumed suf-

ficiently fine so that, in view of the assumed periodicity, it is fully

characterized by specifying the volume fraction of martensite η,

the twin spacing h tw 

and the plate thickness M (or equivalently

the plate spacing H = M/η). 

Following Stupkiewicz and Petryk (2010b) , by exploiting the

assumptions of separation of scales and periodicity of the mi-

crostructure, the total free energy density (per unit volume of the

sub-grain) is decomposed into bulk and interfacial contributions, 

φ( ε , η, M, h tw 

) = φv ( ε , η) + φ i (η, M, h tw 

) , 

φ i = φ i 
tw 

+ φ i 
am 

+ φ i 
gb , (5)

where ε is the average strain in the sub-grain in the small-

deformation setting. We note that the entire interfacial contri-

bution φ i does not depend on the strain ε . Assumption (3) ,
Please cite this article as: S. Stupkiewicz, M. Rezaee-Hajidehi and H. 
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hich we adopt here, means that interfacial energy release is not

ully converted into the bulk elastic energy but is at least par-

ially dissipated. The interfacial contribution to dissipation is ex-

ressed through the negative increments of the interfacial contri-

utions to the free energy, and thus it does not depend on the

train either. Accordingly, by applying the incremental energy min-

mization (4) , the evolution of the microstructural length param-

ters (here, M and h tw 

) along a transformation path parameter-

zed by η can be determined by minimizing the interfacial energy

ontributions independently of the bulk part. The corresponding

odel developed for the spherical sub-grain under consideration

s briefly described below, and the set of respective equations is

rovided in Appendix A . For more details the reader is referred to

tupkiewicz and Petryk (2010b) . 

The analyzed microstructure, cf. Fig. 3 , involves three types of

nterfaces, namely the twin boundaries, the austenite–martensite

nterfaces and the sub-grain boundary, each associated with

he corresponding spacial scale indicated by the subscript s =
w, am, gb . The interfacial energy contributions from the three

cales are specified by the respective densities φ i 
s per unit volume

f the sub-grain, cf. Eqs. (A .2) –(A .4) . 

Two sources of interfacial energy are accounted for, namely the

tomic-scale energy of phase boundaries and the energy of elas-

ic micro-strains. The atomic-scale interfacial energy is considered

t the twin boundaries and at the austenite–martensite interfaces,

nd the corresponding energy densities per unit area are denoted

y γ a 
tw 

and γ a 
am 

, respectively. The transformation-induced changes

n the atomic-scale energy of grain (sub-grain) boundaries are as-

umed negligible, and hence the respective atomic-scale interfacial

nergy is not considered. 

The energy of elastic micro-strains results from local incompat-

bility of transformation strains. At the austenite–twinned marten-

ite interfaces, the individual martensite variants are usually not

ompatible with the austenite, while compatibility in the average

ense can be achieved due to twinning ( Bhattacharya, 2003 ). The

nergy of the elastic strains that accommodate the local incompat-

bility, when integrated over the volume and referred to the nom-

nal interface area, is interpreted as an interfacial energy denoted

y γ e 
am 

. Note that this energy is not a material parameter. It can

e shown that γ e 
am 

is proportional to the twin spacing h tw 

, thus
e 

am 

= 	e 
am 

h tw 

, where 	e 
am 

is a size-independent energy factor that

an be determined by energy minimization for each representative

icrostructure along with the corresponding corrugated interface

hape. This approach has been developed in a series of papers cited

n ( Stupkiewicz et al., 2012 ), where specific numerical results for

epresentative microstructures for a NiTi alloy can be found. Elastic

icro-strain energy is also associated with the martensite plates

hat terminate at the sub-grain boundary, and the related energy

ensity φ i 
gb 

is proportional to the plate spacing H , cf. Eq. (A.4) . 

At the initial stage of transformation ( η ≈ 0), nucleation of the

rst martensitic plates is associated with the increase of the in-

erfacial energy, and hence the interfacial contribution to dissipa-

ion is then equal to zero, cf. Eq. (3) . Energetically optimal mi-

rostructural parameters h 0 tw 

and M 

0 , cf. Eq. (A.5) , corresponding

o the initial stage of transformation are then obtained by mini-

izing the free energy alone, see Eq. (A.6) for the respective for-

ula for the compound interfacial energy at η ≈ 0. Note the char-

cteristic square-root scaling rule for the parameters h 0 tw 

and M 

0 

n Eq. (A.5) with the characteristic lengths 
 am 

and 
 gb defined

n terms of the interfacial energy parameters, which is typical for

ank-one laminates ( Khachaturyan, 1983 ). The subsequent evolu-

ion of the plate thickness M = ηH is obtained by minimizing φi 

or given η, while the twin spacing is kept constant, h tw 

= h 0 tw 

, cf.

qs. (A .7) –(A .8) . 

The predictive capabilities of the approach described above

ave been confirmed, both qualitatively and quantitatively, by the
Petryk, Multiscale analysis of the effect of interfacial energy on 
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Fig. 4. Evolution of microstructural length parameters predicted for a spherical sub-grain of diameter d during a complete forward–reverse transformation cycle: (a) plate 

thickness M , (b) number of plates per sub-grain d / H . Solid lines correspond to the forward transformation, dashed lines correspond to the reverse transformation. 
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Table 1 

Interfacial energy contributions and microstructural parameters predicted for a 

spherical sub-grain of NiTi. 

d gr [μm] d [μm] h 0 tw [μm] M 

0 [μm] φmax 
tw [MJ/m 

3 ] φmax 
am+gb 

[MJ/m 

3 ] 

20 13 0.014 0.14 1.95 2.56 

60 38 0.019 0.26 1.45 1.56 

180 113 0.026 0.48 1.07 0.96 

Fig. 5. Results for NiTi: interfacial contributions to free energy ( d = 13 μm). The 

dashed line depicts the approximation of φ i 
am + φ i 

gb 
by a quadratic function, Eq. (6) . 
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i  
hase-field computations carried out by T ̊uma et al. (2016) with

o a-priori assumptions concerning the microstructure. Specifi-

ally, the problem of a cylindrical grain with an austenite–twinned

artensite microstructure has been analyzed, and it has been

hown that the phase-field computations agree reasonably well

ith the square-root scaling of M , as predicted by the present ap-

roach, although with a somewhat different coefficient. 

.2. Application to NiTi alloy 

The procedure developed by Stupkiewicz and Petryk (2010b)

nd summarized in Section 3.1 and Appendix A is now applied to

 spherical sub-grain of a NiTi alloy. The computations are here

erformed for three sub-grain sizes d = 13 , 38 , 113 μm that corre-

pond to the three grain diameters d gr = 20 , 60 , 180 μm considered

n Section 4.3 . 

To estimate the elastic micro-strain energy factor 	e 
am 

,

e use the results of the computations carried out by

tupkiewicz et al. (2012) for the eight crystallographically distinct

icrostructures at the austenite–twinned martensite interface in

iTi, and we adopt the smallest value of this factor predicted for

icrostructure C-I-2, namely 	e 
am 

= 9 . 7 MJ/m 

3 , which is close to

he earlier simple estimate in Stupkiewicz and Petryk (2010b) .

he estimate of the elastic micro-strain energy at the sub-grain

oundary is given by Eq. (A.4) and results from a simplified

icromechanical model which, unlike the model used to estimate
e 
am 

, assumes elastic isotropy and small-strain kinematics. The

orresponding material parameters are the elastic shear modulus

= 26 . 3 GPa, Poisson’s ratio ν = 0 . 33 and shape-strain vector

odulus b = 0 . 1343 , as in ( Stupkiewicz and Petryk, 2010b ). Like-

ise, following Stupkiewicz and Petryk (2010b) , the atomic-scale

nterfacial energies are assumed equal to γ a 
tw 

= 0 . 014 J/m 

2 and
a 

am 

= 0 . 3 J/m 

2 . Parameters κ s are assumed to be close to unity,

pecifically, κtw 

= 1 , κam 

= 0 . 95 , and κgb = 0 . 9 . 

In Fig. 4 , the results of computations are presented in terms

f the evolution of plate thickness M during a complete forward

nd reverse transformation cycle and in terms of the number of

lates per sub-grain, treated here as a continuous variable equal to

 / H . The predicted microstructural parameters at the initial stage

f transformation, cf. Eq. (A.5) , are provided in Table 1 . 
Please cite this article as: S. Stupkiewicz, M. Rezaee-Hajidehi and H. 
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Fig. 5 shows the individual interfacial contributions φ i 
s to the

ree energy density, as predicted for d = 13 μm. Qualitatively, the

esults corresponding to the other sub-grain diameters are the

ame, the difference is only in the actual values of the individ-

al contributions. It can be seen that as long as φ i 
am 

and φ i 
gb 

ncrease, and thus there is no related interfacial dissipation, the

wo contributions are equal to each other, so that φ i 
am 

= φ i 
gb 

for

 ≤ η ≤ 0.5 during loading and for 0.5 ≤ η ≤ 1 during unloading.

his feature results from minimization of the interfacial contribu-

ion to the free energy in the absence of the related dissipation

cf. Stupkiewicz and Petryk, 2010b ). For 0.5 ≤ η ≤ 1 during load-

ng and for 0 ≤ η ≤ 0.5 during unloading, the interfacial dissipa-
Petryk, Multiscale analysis of the effect of interfacial energy on 
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tion defined by Eq. (A.8) is present in the incremental energy min-

imization scheme (cf. Section 2 ). It prevents the number of plates

and hence the interfacial energy φ i 
am 

to decrease within some pe-

riod after the maximum if κgb < κam 

< 1, until eventually φ i 
am 

falls to zero. 

The sum of the two contributions, φ i 
am 

+ φ i 
gb 

, can be well ap-

proximated by a quadratic function of the volume fraction η, as in-

dicated by the dashed line in Fig. 5 . At the same time, the free en-

ergy contribution of twin interfaces, φ i 
tw 

, is proportional to η. The

results of the present model can thus be summarized in the form

of the following useful formulae that will be exploited in Section 4 ,

φ i 
tw 

= ηφmax 
tw 

, φ i 
am 

+ φ i 
gb ≈ 4 η(1 − η) φmax 

am+gb , (6)

where 

φmax 
tw 

= 

2 γ a 
tw 

h 

0 
tw 

, φmax 
am+gb = 

	e 
am 

h 

0 
tw 

M 0 . 5 

+ 

γ a 
am 

M 0 . 5 

+ 

3 − 2 

√ 

2 

2 

	e0 
gb 

M 0 . 5 

d 
, 

M 0 . 5 = 

M 

0 √ 

3 − 2 

√ 

2 

. (7)

The closed-form formulae for the coefficients φmax 
tw 

and φmax 
am+gb 

have been derived by Stupkiewicz and Petryk (2010b) , and the val-

ues of those parameters corresponding to the three sub-grain di-

ameters considered are provided in Table 1 . 

The total interfacial contribution to the thermodynamic driving

force for phase transformation is 

f i = −∂φ i 

∂η
≈ −φmax 

tw 

− 4(1 − 2 η) φmax 
am+gb , 

∂ f i 

∂η
≈ 8 φmax 

am+gb > 0 . 

(8)

It follows that for the austenite-to-martensite transformation dur-

ing loading, the transformation driving force f i increases linearly

with η, which corresponds to the transformation stress decreas-

ing linearly with η. The latter property is frequently introduced as

a constitutive assumption into phenomenological models of pseu-

doelastic transformation, with the proportionality factor taken ar-

bitrarily. In contrast, the proportionality factor here takes the value

expressed by the closed-form formula (7) derived from the inter-

facial energy considerations alone. This remarkable conclusion will

have its consequences below when studying a more complex be-

haviour of a polycrystalline aggregate. 

4. Transition to the scale of a polycrystalline aggregate 

4.1. Interfacial energy contributions for a single grain 

A typical scheme of micromechanical modelling of a SMA poly-

crystal involves a certain model of overall behaviour of a sin-

gle grain that is combined with a suitable micro-macro transi-

tion from the scale of a single grain to that of a polycrystal.

Representative examples include ( Thamburaja and Anand, 2001;

Hackl and Heinen, 2008; Sengupta and Papadopoulos, 2009; Stup-

kiewicz and Petryk, 2010a; Xiao et al., 2019 ). The variables in-

volved in the constitutive description of a single grain, in ad-

dition to the overall stress and strain, include the volume frac-

tions of martensite variants, usually represented by the so-called

habit-plane variants (HPVs) that account for the compatibility of

average transformation strains at austenite–martensite interfaces

( Bhattacharya, 2003 ). Such a model does not involve any charac-

teristic dimension of the microstructure and thus is incapable of

describing size effects. Our aim here is to develop a model that,

in a simplified manner, accounts for the size-dependent interfacial

energy effects by exploiting the results of the model described in

Section 3 . 
Please cite this article as: S. Stupkiewicz, M. Rezaee-Hajidehi and H. 
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Assume that the size-independent bulk contribution to the

verall Helmholtz free energy density of a single grain in a poly-

rystalline aggregate depends on the average strain ε̄ in the grain

nd on the volume fractions ηk , k = 1 , . . . , N, of martensite variants

HPVs) in the grain, thus φ̄v = φ̄v ( ̄ε , ηk ) . As a rule, only several

k will be nonzero in a given grain. We further assume that the

icrostructure that develops within the grain during the stress-

nduced martensitic transformation divides the grain into several

ub-grains such that each sub-grain is occupied by one family of

arallel, internally twinned martensite plates corresponding to one

PV. Since individual volumes of the sub-grains can hardly be de-

ermined, a simplifying assumption is introduced that the inter-

acial energy contributions are only estimated for a representative

pherical sub-grain , of diameter d being a specified fraction of a

iameter d gr of the actual grain. Consequently, the volume frac-

ion of the parallel martensite plates within the representative sub-

rain is assumed equal to the average volume fraction of marten-

ite within the whole grain, η̄ = 

∑ 

k ηk . As a result, the total free

nergy density per unit volume of the grain can be written in the

ollowing form 

¯ ( ̄ε , ηk ) = φ̄v ( ̄ε , ηk ) + φ̄ i ( ̄η) , φ̄ i ( ̄η) = φ i 
tw ( ̄η) + φ i 

am 

( ̄η) + φ i 
gb ( ̄η) , 

η̄ = 

∑ 

k 

ηk ≤ 1 , (9)

here the interfacial energy contributions φ i 
s are determined using

he model described in Section 3 , with the sub-grain diameter d as

he input parameter. Recall that the model delivers the evolution

f microstructural parameters and the related interfacial energies

long a transformation path parameterized by the volume fraction

f martensite, and thus each individual interfacial energy contribu-

ion φ i 
s can be expressed as a function of η̄. 

The complete evolution problem for a grain is now again for-

ulated as the minimization problem for the incremental energy

upply �E , cf. Section 2 . In a strain-controlled process, the overall

train ε̄ is prescribed and minimization is performed with respect

o the volume fractions ηk . The incremental minimization problem

hen reads 

E( ̄ε , ηk ) → min 

ηk 

, �E = �φ̄v + �φ̄ i + �D̄ 

v + �D̄ 

i , (10)

here �D̄ 

i , the interfacial contribution to dissipation increment, is

xpressed in terms of the increments of individual interfacial free

nergy contributions according to Eq. (A.8) . The bulk contributions
¯ v and �D̄ 

v are here arbitrary. 

The results reported in Section 3.2 show that φ i 
am 

and φ i 
gb 

ttain maximum at η̄ = 0 . 5 , while φ i 
tw 

is proportional to η̄ and

hus reaches maximum for η̄ = 1 . Accordingly, during the forward

ransformation ( �η̄ > 0 ), the interfacial contribution to dissipation

anishes as long as η̄ ≤ 0 . 5 . For η̄ > 0 . 5 , the increments �φ i 
am 

nd �φ i 
gb 

are nonpositive and contribute to dissipation accord-

ng to Eq. (A.8) . Assuming for simplicity that κtw 

= κam 

= κgb =
 , cf. Appendix A.3 , for η̄ > 0 . 5 we have �φ i 

am 

+ �D 

i 
am 

= 0 and

φ i 
gb 

+ �D 

i 
gb 

= 0 so that the incremental energy supply during the

orward transformation takes the form 

E = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

�φ̄v + �D̄ 

v + �φ i 
tw 

+ �φ i 
am 

+ �φ i 
gb 

for �η̄ > 0 and 0 < η̄ ≤ 0 . 5 , 

�φ̄v + �D̄ 

v + �φ i 
tw 

for �η̄ > 0 and 0 . 5 < η̄ ≤ 1 . 

(11)

y a similar argument, during the reverse transformation ( �η̄ < 0 ),

e have 

E = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

�φ̄v + �D̄ 

v + �φ i 
am 

+ �φ i 
gb 

for �η̄ < 0 and 1 > η̄ ≥ 0 . 5 , 

�φ̄v + �D̄ 

v 

for �η̄ < 0 and 0 . 5 > η̄ ≥ 0 . 

(12)
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Fig. 6. Bi-crystal aggregate model: a polycrystal is treated as an aggregate of bi- 

crystals, and the corresponding additional level is introduced into the typical se- 

quential averaging scheme ( Stupkiewicz and Petryk, 2010a ). 
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ince minimization (10) does not involve evolution of dimensional

uantities, the approximate explicit formulae (6) for φ i 
tw 

and φ i 
am 

+
i 
gb 

can be used with η̄ in place of η, thus leading to a particularly

imple formulation. 

The model of a grain, as presented above, can now be combined

ith a suitable micromechanical model of a SMA polycrystal. 

.2. Bi-crystal aggregate model (Stupkiewicz and Petryk, 2010a) 

The transition from the level of a crystallographic lattice up to

he scale of a SMA polycrystal undergoing stress-induced marten-

itic transformation is in this work performed using the bi-crystal

ggregate model ( Stupkiewicz and Petryk, 2010a ). This multiscale

odel is illustrated graphically in Fig. 6 , and the underlying basic

quations are provided in Appendix B . The model is presented here

nly in outline; more details can be found in the reference, along

ith the discussion of the assumptions and results, and compari-

on with experiment. 

A distinctive feature of the model is that the scale transition

rom the scale of individual grains to that of a polycrystal is

erformed by introducing an intermediate scale of bi-crystals, cf.

ig. 6 . The polycrystal is thus treated as an aggregate of randomly

riented bi-crystals, each bi-crystal being formed by two neigh-

ouring grains separated by a planar interface (grain boundary).

ccordingly, grain interaction is accounted for by enforcing the

ompatibility conditions (B.5) on the average strains and stresses of

ach grain of the bi-crystal. Introduction of the intermediate scale

f bi-crystals and consideration of the respective grain interaction

echanism significantly improves, as shown in Stupkiewicz and

etryk (2010a) , the performance of the simple Taylor (Voigt) and

achs (Reuss) grain-to-polycrystal scale transition schemes when

pplied as the transition scheme between the bi-crystals and the

olycrystal. As a result, those simple transition schemes can be

sed with a higher confidence, and specifically the Taylor scheme

s employed in this work. 

A characteristic feature of the model is the quantitative descrip-

ion of the transformation at all scales using only a small number

f parameters that remain to be assumed arbitrarily, which will al-

ow us to predict the changes in the free energy and dissipation

uring transformation. This is done by step-by-step minimization

f the incremental energy supply with respect to the variables at

ll levels of the description, cf. Appendix B . 

.3. The effect of interfacial energy on non-monotonic stress–strain 

haracteristic 

A multiscale model of a SMA polycrystal with interfacial energy

ffects is now obtained in a straightforward manner by includ-
Please cite this article as: S. Stupkiewicz, M. Rezaee-Hajidehi and H. 

non-monotonic stress–strain response in shape memory alloys, Intern

ijsolstr.2020.04.006 
ng in the bi-crystal model the scheme developed in Section 4.1 .

pecifically, an enhanced model corresponding to the level of a

ingle grain is obtained by combining the bulk contribution φ̄v 

o the free energy, cf. Eq. (B.2) , and the bulk contribution �D̄ 

v to

he dissipation function, cf. Eq. (B.4) , with the respective interfacial

nergy contributions according to the general scheme outlined in

qs. (9) –(12) . The resulting single-grain model enhanced with the

nterfacial energy effects can then be seamlessly employed in the

verall scheme of the bi-crystal model. Importantly, the quadratic-

rogramming structure of the actual computational scheme is pre-

erved when the closed-form formulae (6) are used for φ i 
tw 

and
i 
am 

+ φ i 
gb 

. 

The results reported below have been obtained for a NiTi

olycrystal for three values of an average grain diameter, d gr =
0 , 60 , 180 μm. Following Stupkiewicz and Petryk (2010b) , it has

een assumed that the diameter of a representative spherical

ub-grain is such that its volume is equal to one fourth of the

olume of the grain, thus d = 4 −1 / 3 d gr . This choice is justified

y the analysis of the results of the bi-crystal aggregate model

 Stupkiewicz and Petryk, 2010a ) showing that typically three to

ve martensite variants (HPV’s) appear within one grain during

roportional loading. Accordingly, the estimates of the interfacial

nergy contributions have been computed in Section 3.2 for three

ub-grain diameters d = 13 , 38 , 113 μm. The respective material pa-

ameters used as the input to those computations are provided

n Section 3.2 , and the resulting interfacial energy contributions,

hich serve as the input to the present computations, are provided

n Table 1 . 

The remaining material parameters pertinent to the bi-

rystal model are the following. The elastic properties are as in

ection 3.2 , and the chemical energy, which is correlated with the

emperature and influences the level of the transformation stress,

s assumed equal to �am φ0 = 19 MPa. The bulk contribution to dis-

ipation is specified by the critical driving force for transformation

f c = 3 MPa and by the critical driving force for martensite reorien-

ation f r = f c / 2 . 

The transformation strains ε t 
k 

of martensite variants (HPV’s) of

iTi are determined using the crystallographic theory of marten-

ite ( Bhattacharya, 2003 ), and N = 48 variants are used in the

resent (small-strain) computations of the uniaxial tension test,

ee Stupkiewicz and Petryk (2010a) for details. A drawing texture

s assumed with the 〈 111 〉 poles of the cubic austenite preferably

ligned with the drawing direction (along which tension is ap-

lied) such that the angle between the 〈 111 〉 poles and the drawing

xis is randomly chosen between 0 and 30 ◦. Following the proce-

ure developed by Stupkiewicz and Petryk (2010a) , the total of 256

istinct grain orientations has been generated according to the as-

umed drawing texture. The grains have been arranged in pairs in

 random manner, and the orientation of the corresponding grain

oundary has also been generated in a random manner. The rela-

ive volume fraction of grains in each bi-crystal has been assumed

qual to 0.5. Overall, the bi-crystal averaging has been performed

or an aggregate of 128 randomly generated bi-crystals. It has been

hecked that this number is sufficient, and further increase of the

umber of bi-crystals does not influence the results visibly. 

Fig. 7 a shows the predicted pseudoelastic response of a rep-

esentative element of a NiTi polycrystal under uniaxial tension.

s expected, due to including the interfacial energy effects, the

esponse exhibits a significant dependence on the grain size. The

ashed line in Fig. 7 a indicates the underlying response predicted

y accounting only for the bulk contributions to the free energy

nd dissipation, i.e. in the limit of vanishing interfacial energy con-

ributions for d gr → ∞ . 

Several effects can be observed in Fig. 7 a. With decreasing grain

ize, the initiation of transformation is shifted to a higher stress.

he stress must increase to compensate the extra thermodynamic
Petryk, Multiscale analysis of the effect of interfacial energy on 
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Fig. 7. Grain-size effect on the stress–strain response of NiTi polycrystal under uniaxial tension: (a) material response, (b) specimen response predicted using the Maxwell 

construction. 
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driving force associated with the interfacial contribution to the free

energy, f̄ i = −∂ φ̄ i / ∂ ̄η. At the initial stage of transformation, the

interfacial contribution to the free energy increases, cf. Fig. 5 and

formula (8) , hence f̄ i is then negative. The initially negative driving

force f̄ i increases during transformation, which leads to a decrease

of the stress. Averaging over the polycrystalline aggregate causes

the stress to vary nonlinearly with the overall tensile strain. At the

later stage, the further decrease of the stress is suspended because

the negative increments in interfacial free energy are dissipated,

and ultimately the stress-strain slope becomes strongly positive in

the final stage of transformation. The final slope tends to the elas-

tic modulus since martensite detwinning has been excluded form

considerations. 

This provides an explanation, coming from the interfacial-

energy considerations, why the stress–strain relationship during

the forward transformation is non-monotonic. For the grain size

small enough, a significant branch of negative slope is observed,

in agreement with the experimental relationship quoted after

Hallai and Kyriakides (2013) in Fig. 1 . The maximum stress and

the subsequent stress drop increase with decreasing grain size. In-

terestingly, the predicted shape of the upper curve for grain size

d gr = 20 μm almost coincides with the experimental curve for the

material shown in Fig. 1 after Hallai and Kyriakides (2013) ; unfor-

tunately, the underlying average grain size of the material tested

was not provided in the reference. The response during the reverse

transformation upon unloading is similar to that during the for-

ward transformation, except that the stress is lower so that a hys-

teresis loop is observed. The area of the hysteresis loop, which is

equal to the energy dissipated in the complete loading-unloading

cycle (in isothermal conditions), also increases with decreasing

grain size. This illustrates the important effect of the interfacial

contribution to dissipation. 

Note that the ‘softening’ response, as predicted by the present

model, cannot be observed in a uniaxial tension experiment un-

less special means are taken to avoid the nonuniform deformation,

as in the experiment of Hallai and Kyriakides (2013) . Indeed, it is

commonly observed that the stress-induced transformation, par-

ticularly in NiTi in tension, proceeds through nucleation of local-

ized transformation bands followed by propagation of macroscopic

transformation fronts (e.g., Shaw and Kyriakides, 1997; Sun and Li,
Please cite this article as: S. Stupkiewicz, M. Rezaee-Hajidehi and H. 
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002; Zhang et al., 2010; Sedmák et al., 2016 ). This is typically ac-

ompanied by a stress plateau that is associated with propagation

f the fronts and does not represent the material behaviour at a

aterial point. 

Fig. 7 b shows hypothetical specimen responses corresponding

o the intrinsic material responses shown in Fig. 7 a. The uniax-

al stress–strain diagram with a negative slope leads to instability

f a uniform deformation path and hence cannot be reproduced

y the specimen ( Petryk, 20 0 0 ). Here, the classical Maxwell con-

truction has been used. The plateau segment connects the mono-

onically increasing segments of the original curve such that the

reas above and beneath the plateau and limited by the origi-

al stress–strain curve are equal. The plateau stress can be shown

o be the lowest thermodynamically admissible one for propaga-

ion of the transformation zone in which the original stress–strain

urve is traversed at every material point. Additionally, it has been

ssumed here that the hypothetical specimen response is formed

y the loading branch of the original stress–strain curve up to

he maximum stress, followed by an instanteneous stress drop, a

tress plateau corresponding to the Maxwell stress, and the final

ardening part towards the end of transformation. The unload-

ng part of the response is constructed analogously. The maximum

tress and the subsequent instanteneous stress drop are supposed

o correspond to nucleation of the first martensite band. Similar

eatures are commonly observed in experiments, although the ac-

ual stress overshoot is highly sensitive to imperfections, mate-

ial inhomogeneity, etc. The minimum stress followed by a stress

ncrease at the beginning of the reverse transformation would

orrespond to nucleation of the austenite band in a completely

ransformed specimen. If the reverse transformation does not re-

uire nucleation of the austenite band, but proceeds by a reverse

ropagation of an existing macroscopic transformation front, then

he corresponding feature is not expected since no energy barrier

ust then be overcome and the plateau can be followed from the

eginning. 

It is not evident in advance that the hypothetical behaviour de-

cribed above will agree with 3D simulations of the transformation

rocess. To investigate this, a detailed analysis of strain localization

nd nonuniform transformation is carried out in the next section

sing a phenomenological finite-strain model of pseudoelasticity. 
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. Macroscopic modelling of nonuniform phase transformation 

The micromechanical model developed in the previous sections

redicts the stress–strain response that exhibits a negative slope

uring stress-induced transformation. The related scenario of strain

ocalization in the macroscopic specimen has then been analyzed

ualitatively by employing the Maxwell construction, cf. Fig. 7 b. In

his section, nonuniform phase transformation is analyzed quanti-

atively using a macroscopic phenomenological model of pseudoe-

asticity implemented in a finite-element code. The model is briefly

escribed in Section 5.1 , its finite-element implementation is com-

ented in Section 5.2 , and the results of finite-element computa-

ions are reported in Section 5.3 . 

.1. Phenomenological finite-strain model of pseudoelastic SMAs 

The model used in this work is an extension of the model

eveloped recently by Rezaee-Hajidehi et al. (2020) by introduc-

ng a gradient regularization to the finite-strain 3D model of

seudoelasticity of Stupkiewicz and Petryk (2013) . The gradient

egularization has been introduced in order to adequately treat

train localization and propagation of macroscopic transformation

ronts. The model is formulated by specifying the free energy

unction and the dissipation function, and the complete evolution

roblem is then formulated within the incremental energy min-

mization framework. The reader is referred to Stupkiewicz and

etryk (2013) for a detailed presentation of the constitutive model

nd to Rezaee-Hajidehi et al. (2020) for the aspects related to the

radient regularization. Below we describe very briefly the exten-

ions introduced to the model in order to accurately represent

he intrinsic material response predicted by the micromechanical

odel. 

The modifications introduced in the present paper concern both

he free energy function and the dissipation function. In general,

he two functions cannot be uniquely fitted using the stress–strain

urve alone. To avoid ambiguity, the contributions coming from the

ree energy and dissipation functions have been separated and fit-

ed individually by adequate postprocessing of the results of the

icromechanical model. 

The modification introduced to the free energy function con-

erns the interaction energy term φint ( η), which in the original

acroscopic model ( Stupkiewicz and Petryk, 2013 ) was adopted as

 quadratic function of η, the volume fraction of martensite, with

 constant coefficient playing the role of a hardening or soften-

ng modulus. Actually, the interaction energy influences the stress–

train response only through its derivative φ′ 
int 

(η) . It is thus con-

enient to perform the fitting directly for the derivative φ′ 
int 

(η) ,

ather than for the function φint ( η) itself, and this approach has

een adopted here. 

The rate-independent dissipation function in the macroscopic

odel is assumed as ˆ D ( ̇ η) = f c | ̇ η| , where f c > 0 is the critical

hermodynamic driving force for phase transformation. The mod-

fication introduced here amounts to specifying the critical driv-

ng force separately for the forward and reverse transformation,

nd basically consists in introducing the dependence of the criti-

al driving force on η, thus 

ˆ 
 ( ̇ η, η) = f + c (η) 〈 ̇ η〉 + f −c (η) 〈− ˙ η〉 , (13)

ith the meaning of angular brackets as in Eq. (3) . 

Each of the constitutive functions φ′ 
int 

(η) , f + c (η) and f −c (η) has

een fitted using a Bernstein polynomial of degree 12. The impact

f the individual contributions on the pseudoelastic stress–strain

esponse is illustrated in Fig. 8 a for the case of the grain diam-

ter d gr = 20 μm. The adopted procedure yields a good fitting of

he response predicted by the micromechanical model, as shown

n Fig. 8 b for the three grain diameters examined in Section 4.3 .
Please cite this article as: S. Stupkiewicz, M. Rezaee-Hajidehi and H. 
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s a part of the identification procedure, the transformation strain

n tension has been determined as equal to ε T = 0 . 055 . 

.2. Finite-element model 

The finite-element formulation of the gradient-enhanced model

elies on the micromorphic-type regularization, as proposed by

ezaee-Hajidehi and Stupkiewicz (2018) , see also Mazière and For-

st (2015) . The computer implementation follows exactly that de-

eloped by Rezaee-Hajidehi et al. (2020) , where all the details

an be found. The resulting computational model involves, as the

lobal unknown fields, the displacement field, the micromorphic

ounterpart of the volume fraction of martensite, and temperature.

he thermomechanical coupling is introduced to the model be-

ause it provides an additional, physically-based regularization of

he non-monotonic response. Indeed, the thermomechanical cou-

ling improves the robustness of the computational model, which

s particularly beneficial when the softening is high. The thermo-

echanical coupling renders the response rate-dependent so that

he experimentally observed loading-rate effects can also be stud-

ed (e.g., Rezaee-Hajidehi et al., 2020 ), which, however, is not pur-

ued here. 

In the present computations, isoparametric hexahedral ele-

ents are used with triquadratic shape functions for the displace-

ent and with trilinear shape functions for the remaining un-

nowns. The computer implementation is carried out using AceGen ,

 symbolic code generation system, and the finite-element compu-

ations are performed using AceFEM , a finite-element code inter-

aced with AceGen ( Korelc and Wriggers, 2016 ). 

Finite-element computations have been carried out for a dog-

one specimen loaded in tension. The specimen of the total length

f 60 mm contains the gauge segment of the length L = 24 mm

nd uniform cross-section of 5.2 × 0.15 mm 

2 . The specimen width

radually increases in the transition segments between the gauge

egment and the gripping segments, the latter of the width of

0 mm. The axial displacement is prescribed at the specimen ends

n a way that no bending moment is transmitted to the specimen

y allowing the gripping segments to rotate. The load is applied

ith a low constant nominal loading rate of 10 −5 s −1 in order to

btain a nearly isothermal response. The elongation δ/ L is deter-

ined as the averaged relative axial displacement of the two cross-

ections at the ends of the gauge segment normalized by the gauge

ength L . A small geometrical imperfection is introduced in the

pper-right part of the gauge segment to trigger a non-symmetric

ode of strain localization. 

The finite-element mesh within the gauge length is adopted

uch that the in-plane element size is 0.13 mm, and through-the-

hickness element size is 0.15 mm, so that the gauge segment is

iscretized into 185 × 40 × 1 elements. The in-plane element

ize gradually increases towards the gripping segments. The total

umber of degrees of freedom exceeds 550 0 0 0. For completeness,

he model parameters used in the finite-element computations are

rovided in Appendix C . 

.3. Finite-element simulations of uniaxial tension test 

Fig. 9 shows the normalized force–elongation diagram com-

uted for the grain diameter d gr = 20 μm. Also shown are the

napshots illustrating the evolution of the transformation pattern

t selected instants, as indicated by the markers and labels on the

orce–elongation diagram. Each snapshot represents the specimen

n the deformed configuration with the colour indicating the vol-

me fraction of martensite. 

Initially, the transformation is nearly uniform within the gauge

egment, and this stage corresponds to the initial ‘hardening’
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Fig. 8. Fitting of the macroscopic model to the uniaxial-tension response predicted by the micromechanical model: (a) illustration of the individual contributions for the 

case of d gr = 20 μm; (b) comparison for the three grain sizes (solid and dashed lines correspond to the macroscopic and micromechanical model, respectively). 

Fig. 9. Finite-element simulation of uniaxial tension: nominal stress–elongation diagram predicted for d gr = 20 μm (left), and snapshots of the evolution of the transformation 

pattern at selected instants (right). The colour denotes the volume fraction of martensite varying between 0 (blue) and 1 (red), with the intermediate colours corresponding 

to the diffuse interfaces (hardly visible because the interfaces are relatively thin). (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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branch of the intrinsic stress–strain relationship for the material.

At the elongation of about 1% a sudden load drop is observed

which is associated with the nucleation of a thin inclined band of

martensite (snapshot 1). The band nucleates at the imperfection.

The transformation proceeds then through propagation of macro-

scopic transformation fronts at an approximately constant load.

The obtained nominal stress–elongation curve is visibly smoother

than the experimental one shown in Fig. 1 . The wiggles in the ex-

perimental curve may be related to abrupt events, like nucleation

of new interfaces, changes in orientation of interfaces, and for-

mation of criss-cross patterns, or to material inhomogeneity, e.g.,

due to the grain microstructure. In the present computations, the

abrupt events are not observed during loading, but they are ob-

served during unloading, thus leading to small wiggles at the ini-

tial stage of unloading, as commented below. On the other hand,

material inhomogeneity is not included in the model, except for

that resulting from the finite-element discretization. However, the

finite-element mesh is here sufficiently fine, in particular, with

respect to the thickness of the diffuse macroscopic transforma-
Please cite this article as: S. Stupkiewicz, M. Rezaee-Hajidehi and H. 
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ion fronts, so that the related nominal stress fluctuations are very

mall and thus not visible. 

The macroscopic transformation fronts are diffuse interfaces

hat separate the domains of low and high volume fraction of

artensite equal to 0.037 and 0.94, respectively. Those values are

lose to the limit values of 0 and 1, and their deviation from the

imit values is thus hardly visible. The end of the load plateau cor-

esponds to the instant at which the martensite domain extends

ver the entire gauge length (snapshot 3). With further elongation,

he load increases which is accompanied by a uniform transfor-

ation within the gauge segment until the transformation is com-

leted. 

Upon unloading, the reverse transformation proceeds through

 reverse motion of the macroscopic transformation fronts. At the

nitial stage, small oscillations of the load are observed which

re associated with the development and evolution of a criss-

ross pattern at the macroscopic transformation fronts (snapshot

). Subsequently, two inclined interfaces form and propagate in a

table manner until the martensite band annihilates. The event of
Petryk, Multiscale analysis of the effect of interfacial energy on 

ational Journal of Solids and Structures, https://doi.org/10.1016/j. 

https://doi.org/10.1016/j.ijsolstr.2020.04.006


S. Stupkiewicz, M. Rezaee-Hajidehi and H. Petryk / International Journal of Solids and Structures xxx (xxxx) xxx 11 

ARTICLE IN PRESS 

JID: SAS [m5G; April 28, 2020;20:1 ] 

Fig. 10. Comparison of the stress plateau in the 3D finite-element simulation of the 

tension test with the Maxwell stress for the non-monotonic response of the mate- 

rial for grain size d gr = 20 μm. The specimen and material responses are expressed 

in terms of the nominal stress and elongation. 
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Fig. 11. Finite-element simulations of the nominal stress–elongation response of a 

tensile specimen for the three grain sizes. 
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nnihilation of the macroscopic transformation fronts is accompa-

ied by a small increase of the load. 

It has been checked that the plateau stress, both during the for-

ard and reverse transformation, is in excellent agreement with

he Maxwell stress. This is illustrated for d gr = 20 μm in Fig. 10 in

hich the horizontal dashed line denotes the Maxwell stress, de-

ermined in the standard way by equating the shaded areas above

nd below the Maxwell line. It can be seen from Fig. 10 that the

ctual specimen response can be remarkably well approximated

y the hypothetical specimen response obtained by employing the

axwell construction, cf. Fig. 7 . A minor and expected difference

etween the two is that the stress minimum followed by a sudden

tress increase at the beginning of the reverse transformation is

ot observed in the actual specimen response because the reverse

ransformation proceeds through a reverse motion of already ex-

sting macroscopic transformation fronts. Another small difference

s that the nucleation of the martensite band starts slightly before

he maximum stress point, and the nucleation stress is influenced

y the imperfection. Moreover, the subsequent stress drop is char-

cterized by a finite slope, which has been found to depend mostly

n the specimen length, while an infinite slope is assumed in the

ypothetical response. 

The specimen responses computed for the three grain sizes are

hown in Fig. 11 . The qualitative features are here the same regard-

ess of the grain size. Also, it has been checked that in all cases

he plateau stresses agree very well with the respective Maxwell

tresses. As a result, the width of the pseudoelastic hysteresis loop

hows a significant grain-size dependence which is inherited from

he respective intrinsic material responses. 

. Conclusion 

A multiscale analysis of pseudoelastic behavior of SMAs has

een carried out, starting from crystallographic lattice rearrange-

ents up to the scale of a polycrystalline specimen. The stan-

ard analysis of a rank-two laminate domain has been enhanced

y including a hierarchy of interfacial energies on three scales: of

lanar twin interfaces, of corrugated interfaces between austenite
Please cite this article as: S. Stupkiewicz, M. Rezaee-Hajidehi and H. 
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nd twinned martensite, and of domain boundaries. To determine

he actual microstructure evolution among plenty of possibilities,

he incremental energy minimization technique ( Petryk, 2003 ) has

een applied. Upon subsequent passage to the scale of a polycrys-

alline aggregate, it has been shown, apparently for the first time,

hat the interfacial energy accumulation and release can be pre-

ominant in predicting a non-monotonic uniaxial stress–strain re-

ponse and the accompanying hysteresis. The effects are depen-

ent on the grain size, which has been examined quantitatively

or a NiTi SMA with the conclusion that the smaller the grain size

in the relevant grain-size range) the stronger the calculated ef-

ect. Finally, the finite-element study of a tensile specimen in the

nite-deformation setting has confirmed that the simple Maxwell

onstruction for the non-monotonic material response in tension

ccurately predicts the plateau stress in loading and another one

n unloading. 

The simulated stress–elongation hysteresis loop with two

lateaus for a NiTi specimen subjected to uniaxial tensile loading

nd unloading is both qualitatively and quantitatively close to that

ommonly observed in the quasi-static tension tests performed at

 constant temperature corresponding to the pseudoelastic regime.

f course, the mean stress level depends significantly on the tem-

erature, and can be straightforwardly fitted in the calculations by

djusting the value of chemical free energy. In turn, the calculated

idth of the hysteresis loop is found to depend on the grain size

hrough the interfacial energy effects and also directly on the as-

umed value of the critical driving force f c that specifies the bulk

ontribution to dissipation. Validation of the present model in this

espect is more difficult since experimental studies of grain-size

ependence of the hysteresis loop are scarce. An increase of hys-

eresis with decreasing grain size has been observed experimen-

ally in CuAlBe polycrystal ( Montecinos et al., 2008 ) and in CuAlNi

icrowires ( Chen and Schuh, 2011 ), and this qualitative effect is

orrectly reproduced by our model. On the other hand, the exper-

mental data for the grain sizes within a nanometer range ( Ahadi

nd Sun, 2015; Sun and He, 2008 ) show an opposite effect. Note,

owever, that the present model deals with domains of microme-

er size to allow formation of rank-two austenite-martensite lam-

nates, while different transformation mechanisms may operate in

aterials with nanometer-sized grains ( Waitz et al., 2007 ). At the
Petryk, Multiscale analysis of the effect of interfacial energy on 
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same time, the shape of the non-monotonic stress–strain curve in

loading predicted for the NiTi material of grain size d gr = 20 μm

shows a remarkable similarity to the experimental one quoted in

Fig. 1 after Hallai and Kyriakides (2013) . As mentioned above, that

shape is obtained here solely from the interfacial energy consider-

ations. 

All effort s have been made to leave the number of parame-

ters of unverifiable value in the analysis as small as possible. In

result, practically only one such parameter, f c , has remained. This

has been done at the cost of a number of simplifying assumptions

which have been explained in the text and in the cited references.

These assumptions impose limitations on the applicability of the

present micromechanical approach, for instance, to predominantly

proportional loading paths. Further work in needed to clarify and

possibly overcome such limitations in the future. 
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Appendix A. Size-dependent microstructure evolution within a 

spherical sub-grain 

In this appendix we provide the complete set of the governing

equations of the model of microstructure evolution in a spherical

sub-grain, cf. Fig. 3 . The model is briefly described in Section 3.1 ,

while the detailed derivation can be found in ( Stupkiewicz and

Petryk, 2010b ). 

A1. Interfacial energy at three scales 

The total free energy density (per unit volume of the sub-grain)

comprises the interfacial energy contributions from three scales, 

φ i = 

∑ 

s 

φ i 
s , s = tw, am, gb , (A.1)

with the contribution of twin interfaces , 

φ i 
tw 

= γ a 
tw 

A tw 

= 

2 ηγ a 
tw 

h tw 

, (A.2)

the contribution of austenite–twinned martensite interfaces , 

φ i 
am 

= (γ e 
am 

+ γ a 
am 

) A am 

= 

2(	e 
am 

h tw 

+ γ a 
am 

) 

H 

, (A.3)

and the contribution of the boundary of the laminated spherical sub-

grain , 

φ i 
gb = { 	e 

gb } HA gb = 

3 

4 

πaμb 2 
2 − ν

1 − ν

H 

d 

[
η2 

(
1 − sin 

πη

2 

)2 

+ (1 − η) 2 
(

1 − cos 
πη

2 

)2 
]
, (A.4)

where γ a 
tw 

and γ a 
am 

are the atomic-scale interfacial energy densi-

ties, γ e 
am 

= 	e 
am 

h tw 

is the elastic micro-strain energy density, { 	e 
gb 

}
is the average elastic micro-strain energy factor for the sub-grain

boundary, and A tw 

= 2 η/h tw 

, A am 

= 2 /H and A gb = 6 /d are the

size-dependent densities of the corresponding interfaces per unit

volume of the sub-grain. In Eq. (A.4) , μ, ν are the standard elas-

ticity constants, b is the magnitude of the so-called shape-strain

vector that characterizes the transformation strain of the marten-

site plates, and a = 0 . 197 , cf. ( Petryk et al., 2010 , Eq. (8)). 
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2. Initial stage of transformation 

Energetically optimal microstructural parameters h 0 tw 

and M 

0 

t the initial stage of transformation, i.e. for η ≈ 0, are obtained

y minimization of φ i 
0 = φ i 

0 (η, h tw 

, M) with respect to h tw 

and M ,

hich yields 

 

0 
tw 

= 

√ 


 am 

M 

0 , M 

0 = 

√ 


 gb d , 
 am 

= 

γ a 
tw 

	e 
am 

, 


 gb = 

	e 
am 

h 

0 
tw 

+ 	a 
am 

	e0 
gb 

/ 2 

, (A.5)

here φ i 
0 

is the leading term of the Taylor expansion of φ i with

espect to η at η = 0 , 

i 
0 = 2 η

(
γ a 

tw 

h tw 
+ 

	e 
am 

h tw 

M 

+ 

γ a 
am 

M 

+ 

	e0 
gb 

M 

2 d 

)
, 	e0 

gb = 

3 

4 
πaμb 2 

2 − ν

1 − ν
. 

(A.6)

3. Microstructure evolution 

Microstructure evolution during phase transformation is deter-

ined by the incremental energy minimization. Twin spacing is

ssumed constant, h tw 

= h 0 tw 

, and evolution of martensite plate

hickness M is obtained by minimizing the interfacial part of the

ncremental energy supply along a transformation path parameter-

zed by η, thus M = M(η) determined as follows, 

E i (η, M, h 

0 
tw 

) → min 

M 

, �E i = �φ i + �D 

i , (A.7)

here, as a specification of Eq. (3) , the interfacial contribution to

issipation is equal to 

D 

i = 

∑ 

s 

�D 

i 
s , �D 

i 
s = κs 〈−�φi 

s 〉 , 0 ≤ κs ≤ 1 , 

s = tw, am, gb . (A.8)

ince the interfacial energy release can hardly be expected to be

onverted to the elastic bulk energy and is thus likely to be dissi-

ated, it is reasonable to take values of κ s closer to 1 than to 0. 

ppendix B. Bi-crystal aggregate model 

In this appendix we provide the complete set of the governing

quations of the bi-crystal aggregate model. The model, formulated

n the small-strain setting, is briefly commented in Section 4.2 , and

he details can be found in ( Stupkiewicz and Petryk, 2010a ). 

1. Rank-two laminated sub-grain 

Martensite is assumed to appear in the form of internally-

winned plates (i.e. habit-plane variants, HPVs) that form a rank-

wo austenite–martensite laminate within the corresponding sub-

rain, cf. Figs. 3 and 6 . The overall transformation strains ε t 
k 

of the

artensite plates are compatible with unstressed austenite, thus 

 

t 
k = 

1 

2 

( b k � m k + m k � b k ) , k = 1 , . . . , N, (B.1)

here the habit-plane normal m k and shape-strain vector b k can

e obtained from the classical crystallographic theory of martensite

 Bhattacharya, 2003 ). 

2. Single grain 

The Helmholtz free energy of a grain composed of laminated

ub-grains of uniform elastic properties is assumed in the follow-

ng form, 
Petryk, Multiscale analysis of the effect of interfacial energy on 

ational Journal of Solids and Structures, https://doi.org/10.1016/j. 

https://doi.org/10.13039/501100004281
https://doi.org/10.1016/j.ijsolstr.2020.04.006


S. Stupkiewicz, M. Rezaee-Hajidehi and H. Petryk / International Journal of Solids and Structures xxx (xxxx) xxx 13 

ARTICLE IN PRESS 

JID: SAS [m5G; April 28, 2020;20:1 ] 

Table C.1 

Material parameters of polycrystalline NiTi. 

E ν εT T t �s ∗ ϱ0 c K G χ

[GPa] [ −] [ −] [K] [MPa/K] [kg/m 

3 ] [J/(kg K)] [W/(m K)] [Pa m 

2 ] [MPa] 

70 0.33 0.055 217 0.24 6500 440 18 0.062 471 

Table C.2 

Coefficients βν of the Bernstein polynomials for d gr = 20 μm (in MPa). 

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 

φ′ 
int 

(η) 8.05 15.36 −3 . 53 30.58 −24 . 27 31.66 −17 . 84 20.22 −22 . 90 13.27 −9 . 65 −9 . 20 1.50 

f + c (η) 3.00 3.48 1.45 5.00 2.90 1.14 1.83 6.86 5.13 6.60 12.54 11.98 14.52 

f −c (η) 12.61 14.28 11.05 12.23 6.78 5.30 6.44 8.10 4.87 2.96 5.88 4.84 4.95 
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¯ ( ̄ε , ηk ) = φ̄v ( ̄ε , ηk ) = φ0 + η̄ �am φ0 + 

1 

2 
( ̄ε − ε̄ t ) · L ( ̄ε − ε̄ t ) + φ̄v 

int , 

(B.2) 

long with 

¯
 

t = 

∑ 

k 

ηk ε 

t 
k , ηk ≥ 0 , η̄ = 

∑ 

k 

ηk ≤ 1 , (B.3)

here ηk denotes the volume fraction of martensite variant k , η̄
s the total volume fraction of martensite in the grain, �am φ0 is

he chemical energy of transformation, and L is the elastic stiff-

ess tensor. The interaction energy φ̄v 
int 

is here neglected, φ̄v 
int 

= 0 ,

hich corresponds to a constant-stress averaging scheme within a

ingle grain. As usual, we have σ̄ = ∂ φ̄/ ∂ ̄ε = L ( ̄ε − ε̄ t ) . 
The rate-independent dissipation function for phase transfor-

ation ( f c > 0) and martensite reorientation ( f r > 0) is adopted

n the following form, 

D̄ (�ηk ) = �D̄ 

v (�ηk ) = f c | �η̄| + 

1 

2 

f r 

( ∑ 

k 

| �ηk | − | �η̄| 
) 

, 

�η̄ = 

∑ 

k 

�ηk . (B.4) 

The original model of Stupkiewicz and Petryk (2010a) does not

ccount for the interfacial energy effects, thus the free energy φ̄
nd the dissipation function �D̄ comprise only the bulk contribu-

ions φ̄v and �D̄ 

v , respectively. 

3. Bi-crystal composed of two adjacent grains 

The polycrystalline material is considered as an aggregate of bi-

rystals , where each bi-crystal is composed of a pair of neighbour-

ng grains separated by a planar grain boundary of orientation n .

he following compatibility conditions at the grain boundary are

mposed on the (average) strains and stresses in the grains, 

¯
 (2) − ε̄ (1) = 

1 

2 

(c � n + n � c ) , ( ̄σ(2) − σ̄(1) ) n = 0 , (B.5)

here c is an unknown vector. 

The average strain and stress within the bi-crystal are given by

¯
 b = ζ ε̄ (1) + (1 − ζ ) ̄ε (2) , σ̄b = ζ σ̄(1) + (1 − ζ ) ̄σ(2) , (B.6)

nd the average free energy and dissipation densities read 

¯
b = ζ φ̄(1) + (1 − ζ ) ̄φ(2) , �D̄ b = ζ�D̄ (1) + (1 − ζ )�D̄ (2) , 

(B.7) 

here ζ and 1 − ζ denote the volume fractions of the grains in

he bi-crystal, and ζ = 

1 
2 is assumed in the simulations. An an-

lytical expression for φ̄b has been derived in ( Stupkiewicz and

etryk, 2010a ). 
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4. Polycrystal as an aggregate of differently oriented bi-crystals 

The macroscopic response of a SMA polycrystal is obtained by

veraging the responses of bi-crystals of random grain orientations

nd random grain-boundary orientations, possibly characterized by

 crystallographic texture. The respective averaging operation is de-

oted by { ·} so that the macroscopic strain and stress, and the

acroscopic free energy and dissipation densities are given by 

 = { ̄ε b } , � = { ̄σb } , � = { ̄φb } , �D = { �D̄ b } . (B.8)

o close the model, the Taylor averaging scheme is adopted so that

he average strain in each bi-crystal is constrained to be equal to

he macroscopic strain, 

¯
 b = E . (B.9) 

5. Incremental energy minimization 

For a strain-controlled process, the macroscopic response is ob-

ained by minimizing the incremental energy supply, 

E = �� + �D → min for prescribed �E . (B.10)

n view of the Taylor constraint (B.9) , the minimization problem

an be solved separately for each bi-crystal, 

E b = �φ̄b + �D̄ b → min for prescribed �ε̄ b = �E . 

(B.11) 

he minimization problem (B.11) is a non-smooth minimization

roblem with 2 N unknown increments of the volume fractions of

artensite variants in the bi-crystal. The problem can be trans-

ormed to a quadratic programming problem with 4(N + 1) un-

nowns, which can be efficiently solved using the interior-point

ethod. 

ppendix C. Model parameters used in the finite-element 

omputations 

In Table C.1 we provide the parameters of the model, as used

n the finite-element computations in Section 5.3 , see Rezaee-

ajidehi et al. (2020) for the detailed description of the model and

ts parameters. The material is assumed isotropic with the elas-

ic properties, E and ν , consistent with those employed in the bi-

rystal model. Considering that only uniaxial tension is studied,

he tension–compression asymmetry is neglected, and the trans-

ormation strain in tension εT , equal to that in compression, has

een determined by fitting the response in uniaxial tension, cf.

ection 5.1 . The transformation temperature T t is determined such

hat the chemical energy at the initial temperature T 0 = 296 K is

qual to that assumed in the bi-crystal model, �am φ0 = �s ∗(T 0 −
 t ) = 19 MPa. The entropy of transformation �s ∗, the density ϱ0 ,

he specific heat c , and the thermal conductivity coefficient K are

dopted after Rezaee-Hajidehi et al. (2020) . 
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Parameter G is related to the gradient regularization and con-

trols the thickness of diffuse interfaces (macroscopic transforma-

tion fronts). A target interface thickness has been assumed as

twice the element size, and parameter G has been adjusted ac-

cordingly by referring to the analytical solution for the interface

profile, cf. Rezaee-Hajidehi and Stupkiewicz (2018) . The value of G

in Table C.1 corresponds to the case of d gr = 20 μm with the actual

nonlinear non-monotonic response approximated by a piecewise-

linear one. Parameter χ , which is associated with the micromor-

phic regularization, is determined such that the martensite volume

fraction and its micromorphic counterpart are reasonably close one

to the other, cf. ( Rezaee-Hajidehi and Stupkiewicz, 2018 ). 

As described in Section 5.1 , the constitutive functions φ′ 
int 

(η) ,

f + c (η) and f −c (η) have been fitted using Bernstein polynomials of

degree n = 12 of the form 

B n (x ) = 

n ∑ 

ν=0 

βνb ν,n (x ) , b ν,n (x ) = 

(
n 

ν

)
x ν (1 − x ) n −ν, (C.1)

where b ν ,n ( x ) are the Bernstein basis polynomials and βν are the

corresponding coefficients. The coefficients βν fitted for the three

constitutive functions φ′ 
int 

(η) , f + c (η) and f −c (η) are provided in

Table C.2 for the representative case of d gr = 20 μm. 
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