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Abstract. In the paper there is presented a reliable structural model of the 
rotating mechanical systems as well as mathematical models of the 
stepping, synchronous and asynchronous motors, by means of which 
electromechanical coupling effects can be thoroughly investigated. An 
importance and severity of these phenomena, not sufficiently explored till 
present, have been demonstrated by results obtained for transient and 
steady-state operational conditions in the computational examples 
concerning torsional vibrations of drive trains with various electric motors.  

1 Introduction 
During last few decades electric motors became more and more commonly applied for 

driving of various machines, mechanisms and vehicles. Usually, such sources of power are 
characterized by simpler structures, they are more robust, efficient, precise to control and 
environmental friendly than e.g. piston and flow internal combustion engines or hydraulic 
motors. Nowadays, modern asynchronous, synchronous and stepping motors are 
particularly popular to drive mechanical objects with various geometrical dimensions, 
weights, rotational speeds and levels of power consumption. Because of this reason, 
electromechanical interactions with just these kinds of motors have been studied till present 
by many authors from numerous research centres in the whole world, e.g. in [1-5]. But still 
in majority of works mechanical engineers focus their attention on detailed dynamic 
properties of mechanical systems and they take into consideration an interaction of an 
electric motor in the form of ‘a priori’ assumed electromagnetic driving torque functions. 
Electrical engineers, however, very thoroughly model electric motors and treat the driven 
mechanical objects in very simplified forms of few degrees-of-freedom dynamic oscillators 
or even single rigid bodies. But by the use of such approaches many important 
electromechanical interaction effects occurring in steady-state and transient operational 
conditions cannot be considered. Namely, then it is very difficult to investigate an influence 
of motor rotor rotational speed fluctuations on oscillations of electric currents in the motor 
windings and, consequently, on fluctuations of the electromagnetic driving torque which is 
responsible for excitation of torsional vibrations of a mechanical system.  
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In this paper dynamic interactions between mechanical systems in the form of rotating 
machines with working tools driven by electric motors by means of sets of stepped shafts, 
couplings and gear stages will be studied. As drive sources a steeping motor, permanent 
magnet synchronous motor (PMSM) and asynchronous motor are going to be considered.  

2 Hybrid structural modelling of mechanical systems 

In order to investigate a detailed character of the electromechanical coupling, the possibly 
realistic and reliable mechanical model of the driven system is applied. In this paper, 
similarly as e.g. in [6,7], dynamic investigations of the entire driven system are performed 
by means of the one-dimensional hybrid structural model consisting of finite continuous 
visco-elastic macro-elements and rigid bodies. In this model by the torsionally deformable 
cylindrical macro-elements of continuously distributed inertial-visco-elastic properties there 
are substituted successive cylindrical segments of the stepped shafts and coupling disks. In 
order to obtain a sufficiently accurate representation of the real object, the visco-elastic 
macro-elements in the hybrid model are characterized by the geometric cross-sectional 
polar moments of inertia responsible for their elastic and inertial properties as well as by the 
separate layers responsible for their inertial properties only. The inertias of gear-wheels and 
driven machine working tools are represented by rigid bodies attached to the appropriate 
macro-element cross-sections.  

In the hybrid model torsional motion of cross-sections of each visco-elastic macro-
element is governed by the local hyperbolic partial differential equations of the wave type. 
Mutual connections of the successive macro-elements creating the stepped shaft as well as 
their interactions with the rigid bodies are described by equations of boundary conditions. 
These equations contain geometrical conditions of conformity for rotational displacements 
of the extreme cross sections of the mutually adjacent elastic macro-elements as well as 
linear equations of equilibrium for external torques as well as for inertial, elastic and 
external damping moments.  

The solution for forced vibration analysis has been obtained using the analytical – 
computational approach described e.g. in [6,7]. Solving the differential eigenvalue problem 
and an application of the Fourier solution in the form of series in the orthogonal eigenmode 
functions lead to the set of modal equations for time coordinates m(t):  

   12 2( ) ( ) ( ) ( ) ( ) , 1,2,... (1)2
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where ωm are the successive natural frequencies of the drive system,  denotes the 
coefficient of external damping assumed here as proportional one to the modal masses m

2, 
 is the retardation time, Tel(t) denotes the external torque generated by the electric motor, 
Mr(t) is the driven machine retarding torque and Xm

S, Xm
R are the modal displacements 

scaled by proper maxima and corresponding respectively to the electric motor- and to the 
driven machine working tool-locations in the hybrid model. A fast convergence of the 
applied Fourier solution enables us to reduce the number of the modal equations to solve in 
order to obtain a sufficient accuracy of results in the given range of frequency. Here, it is 
necessary to solve only a few or at most a dozen or so modal equations (1), even in cases of 
very complex mechanical systems, contrary to the classical one-dimensional beam finite 
element formulation leading usually to large numbers of motion equations corresponding 
each to more than one hundred or many hundreds degrees of freedom (if the artificial and 
often error-prone model reduction algorithms are not applied).  
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3 Modelling of the electric motors  
From the viewpoint of electromechanical coupling investigation properly advanced circuit 
models of the electric motors seem to be sufficiently accurate.  

3.1 Modelling of the stepping motor 

According e.g. to [5], the mathematical model of a typical four-cycle, double-phase 
stepping motor with the fundamental step angle 1.8 deg = 0.0314 rad, which means that its 
rotor is characterized by Zr=50 salient poles, is described by two voltage equations: 
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t t
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where i1(t), i2(t) denote the electric currents in both motor phases, L is the phase inductance, 
R denotes the resistance of one phase, KU is the motor voltage constant, (t) denotes the 
instantaneous rotation angle of the rotor including the rigid body motion and the vibratory 
component, U(t) is the slowly varying, controlled supply voltage,  (t) denotes the rotor 
electric angle, which in the case of the stepping motor can be determined as  (t)=Zr(t), 
and f(t) is the voltage supply commutation frequency. Here, a sufficiently good 
commutation realized by means of a proper stepping motor control should result in the 
control voltage supply phase angle (t) (t). The electromagnetic torque generated by the 
double-phase stepping motor is expressed by the following formula:  

   ( ) ( ) sin ( ) ( ) cos ( ) , (3)T 1 2T t K i t t i t tel         
 

where KT denotes the stepping motor torque constant. By substituting expression (3) into 
the modal equations (1) and upon a proper combinations of them with the voltage equations 
(2) one obtains the coupled set the parametric ordinary differential equations:  

     ( ) ( ) ( ) ( ) ( ) , ( ) , (4)t t t t t t t     Mr C r K r F r   

where:    ( ) ( ) ,0 Et t  C C C          ( ) ( ) ,0 Et t  K K K 

( ) col ( ), ( ), ( ), ( ), ( ),...1 2 0 1 2t i t i t t t t     r .
The symbols M, C0 and K0 denote, respectively, the constant diagonal modal mass, 
damping and stiffness matrices, CE( (t)) is the band matrix of the inductive-electro-
magnetic effects and KE( (t)) denotes the band matrix of the resistant-electro-magnetic 
effects, both of harmonically variable coefficients with the frequency following from the 
current electric rotation angle. The symbol ( , ( ))t tF r  denotes the external excitation vector 
due to the control input voltage and the retarding torques. The unknown co-ordinate vector 
r(t) consists of the electric currents in both motor phases and of the unknown time functions 
m(t) in the Fourier solutions, m=0,1,2,…. In order to obtain the system's dynamic response, 
equations (4) are solved by means of a direct integration. The number of equations (4) 
corresponds to the number of eigenmodes taken into consideration in the range of 
frequency of interest. These equations are mutually coupled by the parametric terms 
expressing the electromagnetic interaction with the stepping motor and they are very 
convenient for effective numerical simulations of a dynamic behaviour of the 
electromechanical system.  
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3.2 Modelling of the permanent magnet synchronous motor (PMSM) 

In the case of a permanent magnet symmetrical, 3-phase synchronous motor with a uniform 
air-gap distribution and stator windings star-connected, voltage equations formulated in the 
natural system of electrical exes “a-b-c” have the following form: 
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where ia(t), ib(t) ), ic(t) denote the electric currents in motor phases, M denotes the mutual 
stator coil inductance and ψ is the flux generated by the permanent magnet. The remaining 
symbols have been already defined above. Upon the similar combination as that performed 
in the case of the stepping motor one obtains the analogous to (4) coupled set the 
parametric ordinary differential equations. In order to carry out qualitative analyses, using 
Clark-Park’s transformation for the currents and voltages in Eqs. (5), one obtains: 
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The above equations make the coupling between the electrical and mechanical part 
nonlinear. Upon Clark-Park’s transformation the same property has a circuit model of the 
asynchronous motor. Thus, according to [4], qualitative analyses carried out for both kinds 
of electric motors can lead to a determination of rotor-to-stator electromagnetic rotational 
stiffness- and damping characteristics using the harmonic balance method to solve 
analytically the voltage equations transformed into mutually perpendicular electric axes. 

3.3 Modelling of the asynchronous motor 

In the case of the symmetrical three-phase asynchronous motor electric current oscillations 
in its windings are described by the six circuit voltage equations transformed next into the 
system of four Park’s equations in the so called ‘β-dq’ reference system, [4]: 
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where e is the supply voltage circular frequency, L1, L2’ are the stator coil inductance and 
the equivalent rotor coil inductance, respectively, M denotes the relative rotor-to-stator coil 
inductance, R1, R2’ are the stator coil resistance and the equivalent rotor coil resistance, 
respectively, p is the number of pairs of the motor magnetic poles and is, iβ

s are the electric 
currents in the stator windings reduced to the electric field equivalent axes  and  and id

r, 
iq

r are the electric currents in the rotor windings reduced to the electric field equivalent axes 
d and q, [4]. Then, the total electromagnetic torque and its oscillatory part generated by 
such a motor can be expressed by the following formulae: 

3 var, ( ) ( ) sin( ) ( ) cos( ). (8)
2

s r s rT pM i i i i T t S t T tel eld q     
         
 

 

By projecting the sine- S(ω) and cosine- T(ω) components of the electromagnetic torque 
oscillatory part as well as the analogous components of the rotor rotation angle, 
respectively, on the complex plane real and imaginary axes and using the proper definitions 
given e.g. in [3], the electromagnetic torsional stiffness ke(ω) and the coefficient of 
damping de(ω) generated by the asynchronous motor are determined in the following form:  
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The above expressions derived in the framework of a qualitative analysis of properties of 
the asynchronous motor, that drives a linear model of the rotating machine, enable us to 
carry out thorough dynamic investigations of the coupled electromechanical system. 

4 Computational examples 
In the first computational example there is performed a simulation of the run-up, steady 
state operation and run-down of the precise geared drive system driven by the stepping 
motor. A mechanical model of this object is shown in Fig. 1. It has been uniformly 
accelerated from its standstill to the constant average rotational speed n=210 rpm and 
nominal torque 0.35 Nm within 3 s in order to operate for next 1 s under the constant 
retarding torque generated by the power receiver. Then, within successive 3 s the drive 
system was uniformly stopped back to the standstill. In Fig. 2 in time and frequency domain 
there are presented plots of the considered system dynamic response obtained for two 
simulation modes: for the “coupled mode”, where the results have been determined by 
means of an integration of Eqs. (4) and marked by the black lines, as well as for the 
traditionally applied “uncoupled mode” illustrated here by the grey lines. In the latter case 
the mechanical system was treated as a one rigid body, i.e. only modal co-ordinate 0 in (4) 
has been taken into consideration in order to determine the motor electromagnetic torque 
(5) to be imposed next as an external excitation of the hybrid mechanical model of the drive 
system. It is worth noting that the results obtained for these two modes are significantly 
different from each other both in transient and steady-state operational conditions. During 
the start-up and run-down the rotational speeds as well as the dynamic torques observed in  
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Fig. 1. The hybrid mechanical model of the precise 
drive system. 

the system input and output shaft are 
characterized by severe transient resonances 
with the fundamental eigenmode of the first 
natural frequency equal 103.4 Hz, as shown in 
Figs. 2b-d. The amplitudes of this resonances 
are particularly severe in the case of the 
uncoupled mode, although in these 
operational conditions the coupled mode 
yields much more severe external excitation 
produced by the driving motor, which follows 
from Fig. 2a. However, during the steady-
state operation in the case of uncoupled mode 

Fig. 2. Dynamic response of the electromechanical system: time histories of the electromagnetic 
motor torque (a), rotational speed of the output shaft (b), dynamic torques transmitted by the input (c) 
and output (d) shaft, and the amplitude spectra of the stepping motor torque (e).  

the abovementioned regular and slightly stronger electromagnetic excitation results in 
resonant responses both for the rotational speeds and the dynamic torques. In order to 
explain this fact the FFT analysis of the time-histories of the excitation torque generated by 
the stepping motor has been performed for the coupled and uncoupled mode. The 
amplitude spectra obtained for the coupled and uncoupled mode and depicted in Fig. 2e are 
characterized by almost identical the greatest peaks of frequency 700 Hz corresponding to 
the fundamental excitation component produced by the stepping motor in the steady-state 
operation conditions. This value results from the assumed nominal rotational speed n=210 
rpm and the fundamental step angle 0.0314 rad of the considered motor. In addition to 
these peaks with frequency of 700 Hz, different sub-harmonic components of the 
excitation torque are generated. In the case of uncoupled mode, in Fig. 2e the significant 
excitation peak of frequency ca. 100 Hz is observed, which is very close to the first drive 
system natural frequency equal to 103.4 Hz. This component is responsible for the 
observed resonance effects depicted in Figs. 2b-d for the uncoupled mode, in a 
contradistinction to the coupled mode, where the analogous sub-harmonic excitation 
component is characterized by frequency ∼200 Hz which is far away from the first and the 
second system natural frequency equal to 344.4 Hz. According to the above, one can 
conclude that the taken into consideration vibratory, inertial-visco-elastic properties of the 
mechanical system essentially influence qualitatively and quantitatively the 
electromechanical coupling effects resulting respectively in different dynamic responses.  
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In the second computational example the dynamic investigations will be carried out for 
a rotor machine with a typical structure for blowers, compressors, pumps or high-speed 
beater mills. Namely, their rotor-shaft contains a heavy impeller attached to the drive shaft 
in an overhung form and is driven by the 200 kW, 400 V Y asynchronous motor with the 
nominal rotational speed of 2980 rpm through a flexible coupling with a non-linear 
characteristic. There are also worth noting the characteristic features of such device, i.e. a 
huge polar mass moment of inertia of the whole driven part in comparison with the polar 
mass moment of inertia of the motor rotor as well as a much smaller torsional stiffness of 
the elastic coupling than torsional stiffness values of all rotor-shaft segments. The hybrid 
model of this object is presented in Fig. 3.  

In Fig. 4a there are shown static 
characteristics of the considered 
asynchronous motor determined according 
to [4] for four variants of the starting torque 
values which depend on the rotor resistance: 
namely, the greater the resistance, the 
greater the starting torque. In Fig. 4b 
characteristics of the electromagnetic 
stiffness and coefficients of damping 
generated by the considered asynchronous  

Fig. 3. The hybrid mechanical model of the rotor 
machine drive system. 

a)             rotational speed [rad/s] b) interaction frequency [Hz]
Fig. 4. Static characteristics of the asynchronous motor and of the retarding torque (a) and dynamic 
characteristics of the rotor-to-stator electromagnetic damping and stiffness (b). 

motor within the torsional interaction frequency range of 0-100 Hz are plotted. In this 
figure the thin lines correspond to the stiffness characteristics and the thick lines, 
appropriately, to the damping ones. These characteristics have been determined by means 
of relationships (9). Using respectively the same colours, these plots correspond to the 
mentioned above four variants of rotor resistances and thus to four variants of motor static 
characteristics presented in Fig. 4a. It is to emphasize that all the electromagnetic damping 
characteristics indicate negative value zones. From Figs. 4a and 4b it follows that for the 
considered here four starting motor torque variants the breadths of these negative damping 
zones gradually decrease with the rise of the starting motor torque values.  

In order to demonstrate a danger created by the negative electromagnetic damping 
generated by the asynchronous motor, start-ups of the considered rotor machine to the 
rotational speed of 2400 rpm within 60 s have been performed. Then, for the aim of 
examination of a sensitivity of the considered drive train to operational instabilities, after 
next 12 s of the rotor machine steady state motion a slight step-wise increase of the 
retarding torque was assumed. For such an operation scenario the run-up simulation results 
are depicted in Fig. 5a-b. In the face of commonly observed very weak structural damping  
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a)                                time  [s]   

 
b)                                time  [s]   

Fig. 5. Torsional response due to the start-up using the open-loop scalar control (a) and by means of 
the closed-loop PID vector control (b) of the starting motor torque. 

in torsionally vibrating systems an application of the open-loop scalar control ‘U/f=const’ 
of the asynchronous motor results in instability caused by the negative electromagnetic 
damping, as shown in Fig. 5a. Here, the rotational speed 2400 rpm corresponds to a 
synchronous excitation of 40 Hz which is contained in the negative damping zone of the 
motor starting torque Variant I depicted in Fig. 4b. Then, due to the existing deficiency of 
resultant positive damping in the system, free torsional vibrations with its first natural 
frequency of 34.7 Hz and rapidly increasing amplitudes are induced. If in the considered 
system the negative electromagnetic damping cannot be naturally compensated by the 
mechanical one, a proper closed-loop control of the asynchronous motor is able to prevent 
such instability. In Fig. 5b there are presented time-histories of a dynamic response 
obtained for exactly the same system parameters as before, but for the PID control realized 
by means of vector inverter with gains determined using Ziegler-Nichols’ or Cohen-Coon’s 
methods. The both approaches result in the visible stabilization of the considered object.  

5 Final remarks 
The performed study confirms that dynamic interaction between electric motors and 
mechanical systems can be thoroughly investigated when sufficiently reliable physical and 
mathematical models of these objects are applied. From the computational results it follows 
that torsional vibrations of the driven mechanical system essentially influence qualitatively 
and quantitatively its excitation by the stepping motor. Furthermore, negative damping 
generated by the asynchronous motor is responsible for operational instability of the entire 
drive train and by means of a proper motor control this dangerous effect can be eliminated.  
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