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Abstract  

A modal representation of a room impulse response has been used to formulate expressions for low-frequency 

sound field in rooms of arbitrary shape. Based on theoretical results, a simulation program has been developed 
to predict a sound pressure distribution and a room transfer function for rectangular enclosure having walls 

covered by a material of complex impedance. Calculation results have shown that changes in the wall 

reactance entail a substantial modification of a sound pressure distribution. Furthermore, an influence of wall 
reactance on the room transfer function was investigated and it was discovered that a change in a reactance 

sign causes a shift in frequencies of modal vibrations excited in the room. 
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1. Introduction 

The main objective of theoretical room acoustics is to investigate the steady-state and 

transient acoustic behaviors of enclosed spaces. There are many theoretical methods for 

modeling a sound field inside enclosures and among them are diffusion-equation models, 

geometrical approaches, wave-based methods and modal expansion methods.  

The diffusion-equation models [1] are an extension of the statistical theory to spatially 

varying sound field. Geometrical approaches are suitable for high sound frequencies and 

the ray tracing method [2], the beam tracing algorithm [3] and the mirror source 

technique [4] are the most popular methods for geometric modeling. In contrast to 

geometric approaches, wave-based methods provide a complete description the sound 

field because they solve the wave equation after suitable space discretization. The most 

common among these numerical techniques are the finite element method [5],  

the boundary element method [6] and the finite-difference time-domain method [7]. 

Modal expansion methods yield the acoustic modes of pressure vibrations inside 

enclosures and the sound field is expressed as a linear combination of these modes [8]. 

Modal expansion approaches are more difficult to apply for irregularly shaped  

rooms [9], but they fully describe a wave nature of the sound field like a diffraction  

and a creation of standing waves. They also enable to identify typical modal effects such 

as a modal degeneracy [10] and a localization of modes [11]. 

In the paper, the modal expansion method is used to predict a low-frequency sound 

field in rooms with complex-valued boundary conditions on walls. A theoretical 

modeling is accompanied with a numerical simulation performed for a rectangular 

enclosure with uniform and frequency constant impedance on room walls. Based on 

calculation results, the effect of complex wall impedance on a distribution of a pressure 
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amplitude is investigated and changes in the room transfer function with this impedance 

are analyzed.  

2. Theoretical model 

In a low-frequency range, room dimensions are comparable with a length of sound wave 

and the method, which is most appropriate for determining an interior sound field, is  

a modal analysis. According to this method, the room response can be described as  

a superposition of responses of acoustic modes excited in a room by a sound source, i.e., 
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where r  (x, y, z) is the position coordinate of a receiver, the functions pm determine  

a temporal behavior of the sound pressure and m  are the real-valued eigenfunctions 

which satisfy the orthonormal property in the volume V of the room. In a theoretical 

model it is assumed that room walls are covered by a sound absorbing material with  

a complex impedance, thus, the pressure p fulfills the following boundary condition 
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where  is the nabla vector operator, n is the unit vector normal to the walls, which is 

directed away from the room volume, and c is the sound speed. In Eq. (2) the quantity ζ 

represents the specific impedance of a wall material and ζ  ζr + jζi, where ζr and ζi are  

a wall resistance and a wall reactance, respectively. It is assumed that the magnitude | ζ | 

of the wall impedance is much larger than unity because typical materials covering room 

walls are characterized by a small sound absorption in the low-frequency range [12].  

The procedure for finding the function pm relies on a suitable solution of a wave 

equation and using the method presented in [13], it can be shown that for small sound 

damping in a room the function pm is a solution of the following equation 
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where ωm is the natural eigenfrequency, q is the volume source term in the wave 

equation, d3r  dxdydz is the volume element and the parameter ξm is given by 
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where S is the surface area of room walls and d2r is the surface element. Since the wall 

resistance ζr is non-negative, the parameter rm represents the modal damping factor. 

The impulse room response corresponds to the case of an impulsive temporal 

excitation of a room by a sound source located at a point. Thus, assuming that the 

volume source term in Eq. (3) has the form q(r,t)  δ(r  r0) δ(t  t0) one can obtain 
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where r0  (x0, y0, z0) is the source position and t0 is the time of impulse generation. A 

method for resolving Eq. (5) was described in [14] and the obtained result is as follows 
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where Ωm is the complex eigenfrequency for damped modal vibrations given by 
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where the quantities cm and dm are determined by 
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A substitution of Eq. (6) into Eq. (1) leads to the function of the form 
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describing the room impulse response (RIR) between the sound source at the position r0 

and the receiver located at the point r. Because of the causality condition, the RIR 

function h(r0 ,r,  t) is zero for t < 0. It satisfies also the reciprocity principle because the 

right side of Eq. (10) is a symmetric function of the source and receiver points 

coordinates. 

The room impulse response is very useful in room acoustics because a knowledge of 

the RIR function enables to predict the room response to any sound source. In fact, when 

a volume source in the wave equation is described by the source function q, the pressure 

response to this excitation can be found from the following expressions [15] 
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where the asterisks denotes a convolution operation. The steady-state room response to a 

point source can be found assuming that in Eq. (11) the source function q takes the form 

j
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where ω is the angular source frequency and the amplitude Q of a sound excitation is 

dependent on the source power W according to the formula 8 ,Q cW where ρ is the 

air density. Thus, after performing the volume and time integrations in Eq. (11),  

a formula for the steady-state sound pressure is found to be as follows 
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where P is the steady-state pressure amplitude 
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 is the pressure phase given by 

1

1

( )
( ) arctan

( )

m mm

m mm

 


 








 
 
 
 





r
r

r
 (15) 

and the quantities αm and βm are determined by 
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As it results from Eqs. (14), (16) and (17), the amplitude P is dependent on the source 

position r0 and the source frequency ω and, through the quantities am, bm, rm, and φm  

on the natural eigenfrequency ωm as well as the real and imaginary parts of the specific 

wall impedance ζ. Thus, for constant r0 and given source frequency ω, Eq. (14) enables 

one to predict a spatial distribution the steady-state pressure amplitude for different 

values of ζr and ζi. On the other hand, when the source and observation coordinates r0 

and r are specified, Eq. (14) makes possible to determine the low-frequency room 

transfer function for various values of ζr and ζi at a given point of the room. 

3. Analysis of simulation results and conclusions 

In the first part of a numerical study, an influence of the absorbing material impedance 

on a spatial distribution of the steady-state pressure amplitude will be investigated.  

In general, the developed theoretical model is valid for arbitrary room shapes. However, 

to perform numerical tests for wider frequency range, a rectangular enclosure is 

considered because modal vibrations in such a room are well understood and described. 

The room has the dimensions: lx  7 m, ly  5 m, lz  3 m, and its walls are covered 

uniformly by an absorbing material with frequency constant complex impedance ζ. Since 

a small sound damping on room walls is considered, the eigenfunctions m occurring  

in Eqs. (14)–(17) were approximated by the mode shape functions for rigid room walls 
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where the modal indices nx, ny, nz are non-negative integers and they are not 

simultaneously equal to zero (the trivial solution of the wave equation was excluded)  

and s  1 if ns  0, s  2 if ns > 0. The room was excited by the point source with  

the power W of 1.5·10–2 W located at the position: x0  5 m, y0  3.5 m, z0  1.6 m. 
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Figure 1. Mapped distribution of the steady-state pressure amplitude P on the (x,y) plane 

at a distance z  1.2 m from a room floor for the source frequency of 300 Hz and the wall 

impedance: (a) ζ  10, (b) ζ  10 + j15, (c) ζ  10 – j15 
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In a numerical algorithm, the room volume was discretized by a mesh system that has 

uniform horizontal and vertical mesh sizes Δx  Δy  Δz  0.05 m and to predict the 

steady-state pressure amplitude, Eqs. (14), (16) and (17) were applied. The number of 

modes included in series in Eq. (14) is an important parameter in a numerical procedure 

because it greatly influences the simulation accuracy and calculation time. This number 

depends on room dimensions and it can be approximated from the formula [12] 
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where V  lxlylz is the room volume, S  2(lxly + lxlz + lylz) is the surface of room walls and 

L  4(lx + ly + lz) is the sum of the lengths of the room edges. Equation (19) indicates that 

approximately M modal frequencies are located in the frequency range up to the cutoff 

frequency fc. In a numerical simulation it was assumed that fc  600 Hz, then after 

inserting this value into Eq. (19) one can obtain M  2712. 

Figure 1 shows exemplary simulation results obtained for the source frequency of 

300 Hz. The graphs have a form of colored contour maps which are a two-dimensional 

representation of three-dimensional data. They illustrate a distribution of the steady-state 

pressure amplitude P on the observation plane z  1.2 m for three different wall 

impedances: ζ  10 (Fig. 1(a)), ζ  10 + j15 (Fig. 1(b)) and ζ  10 – j15 (Fig. 1(c)).  

The data in Fig. 1 allow us to conclude that the use of absorbing material with non-zero 

reactance substantially modifies a spatial sound pressure distribution. This is mainly due 

to the influence of the reactance on damping properties of the absorbing material. These 

properties are best characterized by means of the random-incident absorption coefficient, 

which for the complex wall impedance, is expressed by the formula [12] 
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How to check it easily, the coefficient α for the first wall impedance has the value of 

0.489, and for two remaining impedances it amounts to 0.217. This explains why for 

non-zero reactance a maximal value of the amplitude P is larger than in the case of a 

real-valued wall impedance. It is surprising, however, that for the negative reactance this 

maximum is about 1.6 times higher than for the positive reactance. This is due to the fact 

that for the negative reactance the phases φm change the sign, thus affecting values of the 

parameters αm and βm used to calculate the pressure amplitude P (Eqs. (16) and (17)).  

The second part of the numerical study aims to investigate how the wall impedance 

affects the low-frequency room transfer function (RTF). Calculations of RTFs were 

carried out for the receiving point: x  2 m, y  3 m, z  1.2 m, for previously assumed 

wall impedances. The results are depicted in Fig. 2 and they illustrate frequency 

dependence of the level L of the pressure amplitude P in the frequency range 50–500 Hz. 

In Fig. 2(a) the RTFs obtained for ζ  10 and ζ  10 + j15 are presented and they prove 

that a modal structure of the sound field is better reproduced for non-zero reactance 

because in this case the room walls provide a smaller sound damping. In Fig. 2(b) the 

RTFs predicted  for  ζ  10 + j15 and ζ  10  j15 are  compared. The  interesting thing   is 
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Figure 2. Comparison of the room transfer functions predicted at the observation point: 

x  2 m, y  3 m, z  1.2 m, for wall impedances: ζ  10 (black line), ζ  10 + j15  

(red line), ζ  10 – j15 (blue line) 

that the RTFs are shifted about 4 Hz to each other. It results from the fact that  

in Eqs. (16) and (17) the phase φm is always summed with the sound frequency ω, 

therefore the change of phase sign results in the observed frequency shift. 
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