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Abstract. This paper presents the preliminary results of our numerical simulations designed and performed to address the
high Weissenberg number problem that is the major challenge in the simulation of viscoelastic flows. The mathematical model
used to explore this problem is based on Oldroyd type model. A new simple computational test case is proposed and solved
to demonstrate the nature of the high Weissenberg number problem. Various finite-volume as well as finite-element methods
are introduced to be tested for this test case. Some of our very first results are presented and discussed at the end.
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INTRODUCTION
The simulations of viscoelastic fluid flows using Oldroyd-B model present a challenging problem. The major difficul-
ties appear at high Weissenberg numbers, where most of the simulations fail to converge. This issue has been (and still
is) addressed by many scientists working in non-Newtonian CFD. Some of the recent contributions in this area can
be found e.g. in [1] and [2]. The nature of the high Weissenberg number problem is not easy to formulate. It should
be seen from at least three different points of view. Physically, the increase of Weissenberg number corresponds to
growth of relaxation time and thus the ability of the fluid to “remember” and accumulate stress. Thus the flow is more
affected by the stress history. From the mathematical point of view, it seems that the underlying governing PDEs are
changing their type and therefore it is more difficult to analyse the solution behaviour and guarantee its convergence
at certain regimes. And last, but not least, from the numerical point of view the problem becomes also hard to solve
especially due to presence of large solution gradients and presence of some specific solution instabilities.

MATHEMATICAL MODEL
The model is based on basic conservation laws of mass and momentum for incompressible fluid flows. These are
represented by the continuity equation (divergence free constraint) (1) and the momentum equations (2).

divuuu = 0 (1)

ρ u̇uu = divT−∇p (2)

Here uuu stands for the velocity vector, ρ is density, p is pressure. The stress tensor is denoted by T. In the case of a
Newtonian fluid the stress tensor T is proportional to symmetric part of the velocity gradient D= (∇∇∇uuu+∇∇∇uuuT )/2, i.e.
T = 2μD. The dynamic viscosity μ is usually assumed to be constant. For the study presented here the rheological
model is based on the Oldroyd-type model often referred to as the Johnson-Segalmann model. The well known upper-,
lower- and co-rotational Maxwell models as well as the Oldroyd-A and Oldroyd-B models are just special sub-cases
of the Johnson-Segalmann class of models.

Stress tensor T= Ts +Te consists of the Newtonian (solvent) part Ts and the viscoelastic part Te. These two stress
components Ts and Te are defined as follows.

Ts = 2μsD (3)

Te +λ
δTe

δ t
= 2μeD (4)
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The symbol D denotes the symmetric part of the velocity gradient. The physical parameters in this model are the
solvent and elastic viscosities μs, resp. μe and the relaxation time λ .

The convected derivative δTe
δ t in the equation (4) can be chosen from the one-parametric family of Gordon-

Schowalter derivatives given by :
(

δTe

δ t

)
a
= Ṫe−WTe +TeW+a(DTe +TeD) a ∈ 〈−1;1〉 (5)

For a = −1, this leads to upper convected derivative, a = 0 gives co-rotational (or Jaumann) derivative and for a = 1
we get the lower convected derivative. The most commonly used Oldroyd-B (upper convected Maxwell) model is
obtained for a =−1.

∂Te

∂ t
+(uuu ·∇∇∇) Te =

2μe

λ
D− 1

λ
Te +(WTe−TeW)−a(DTe +TeD) a ∈ 〈−1;1〉 (6)

Besides of the geometrical parameters, the flow is defined by the following physical parameters to be prescribed:

U, ρ , μs, μe, λ

Using the characteristic velocity U , tube diameter D and total viscosity μ = μs + μe, the Reynolds number and
Weissenberg number can be determined as

Re =
ρUD

μ
and We =

λU
D

The last dimensionless parameter is the elastic viscosity ratio α = μe/(μs +μe). For the study of high Weissenberg
number problem the Reynolds number as well as the viscosity ratio will be kept fixed. The physical parameters
are prescribed in the following way: D = 0.01 m, U = 0.1 m · s−1, ρ = 1000 kg ·m−3, μs = 0.009 kg ·m−1 · s−1,
μe = 0.001 kg ·m−1 · s−1.

This setup leads to fixed Reynolds number Re = 100 and elastic viscosity ratio α = 0.9. The Weissenberg number
will vary proportionally to the relaxation time λ as We = 10λ .

NUMERICAL METHODS
The problem was solved numerically by two independent groups. The solution approaches have been chosen different
by each group.

Finite-Volume Methods. Three different finite-volume methodologies have been used. The two in-house built
solvers are based on central in space finite-volume discretisations. The 2D solver used Mac-Cormack predictor-
corrector method. For the 3D code the system of governing PDEs is first discretised in space by central finite-volume
method and consequently the arising system of ODEs is integrated in time using Runge-Kutta multistage scheme. The
details can be found in [3, 4]. For comparison, an open source code OpenFOAM was used.

Finite-Element Methods. All models are computed using finite element method based on the weak formulation of
the governing equations. The computational domain is discretised by regular quadrilaterals. Pressure p/velocity�v/part
of the stress A are approximated by P1disc/Q2/Q2 elements for the Galerkin method. A fully coupled monolithic finite
element approach that treats all the numerical variables simultaneously. Both steady and unsteady cases can be solved.
The Euler method is used for the unsteady case. No stabilisation is used for the Galerkin method. The stabilising
Galerkin/Least-Squares method based on the minimisation of L2 norm of equation (see [5]) is actually tested as well.
The Oldroyd-B model can be also written in the form of conformation tensor which is positive definite. The positive
definiteness preserving transformation (see [6]) is used for both Galerkin and GLS method.

COMPUTATIONAL DOMAIN
The computational geometry consists of a three-dimensional tube with circular crossection. The crossectional area
diameter varies depending on the axial coordinate. The straight inlet and outlet parts have a constant diameter D. In
between these straight parts, several (Nseg) identical segments with variable diameter are placed. These segments have
cosine-shaped walls with diameter changing from Dmin to Dmax. The length Lseg of the segment and the number of
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FIGURE 1. Problem geometry configuration
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FIGURE 2. Axial velocity contours for the Newtonian fluid flow (i.e at We = 0).

segments Nseg changes from case to case. The variable diameter segments are smoothly attached to the inlet/outlet
tubes by cosine shaped contraction/expansion parts. The sketch of a typical computational geometry is shown in the
Figure 1. This general computational geometry setup represents a class of problems where the axial and radial length
scales can independently be defined. Moreover the periodicity of the geometry allows for easy change of the frequency
(by varying Lseg) and range of loading/unloading of the fluid (by changing the rate Dmax/Dmin). Thus this test case is
extremely well suited for the tests of viscoelastic models and numerical methods for their solution.

Specific test case configuration. The general geometrical setup defined above contains 9 independent geometrical
parameters. These parameters are D, Dmax, Dmin, Lin, Lout , Lseg, Lcon, Lexp, Nseg. We will further focus our work on
tubes with nominal diameter D = 1cm and we will only keep two independent parameters Lseg and Nseg to control the
geometry. The other parameters will be linked to our free parameters by the following constraints:

Dmax = D, Lcon = Lsec/2, Lin = 3D, Dmin = D/
√

2, Lexp = Lsec/2, Lout = 5D

NUMERICAL RESULTS
Only few of the whole set of the numerical results that we have obtained are presented in this short abstract. The
numerical method used here is the central finite-volume scheme with explicit Runge-Kutta time-integration that has
previously been used in [7], [8]. The test case presented here was chosen to be as simple as possible but allowing
to demonstrate the differences between low and moderate Weissenberg number results. The computational geometry
has two expanding segments of the length 2D (i.e. Nseg = 2, Lseg = 2D). The contours of velocity components for the
reference Newtonian flow (with We = 0) are shown in the Figure 2 and 3. The moderate Weissenberg number case
with We = 3 is shown in the Figure 4 and 5. Obviously the differences between the two solutions are still rather
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FIGURE 3. Radial velocity contours for the Newtonian fluid flow (i.e at We = 0).
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FIGURE 4. Axial velocity contours for the Oldroyd-B fluid flow at We = 3.
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FIGURE 5. Radial velocity contours for the Oldroyd-B fluid flow at We = 3.

subtle, but already at this stage the ability of the fluid to store and transport the stress starts to play an important role.
The viscoelastic fluid needs some time to “relax” the stress. In the case it is repeatedly loaded without having enough
time to relax, the stress accumulates. This is manifested in the presented results by the increase of the axial velocity
in the last contraction for viscoelastic fluid. Further increase of the Weissenberg number (relaxation time λ ) leads to
considerable problems in the numerical solution of this case.

CONCLUSIONS AND FINAL REMARKS
In this presentation we have established a new test case suitable for testing of viscoelastic fluid flow solvers at moderate
and high Weissenberg numbers. The geometry is smooth and axisymmetric. The axial periodicity in the domain shape
allows to simulate the situations when the fluid particles are repeatedly loaded and unloaded with predefined frequency
and load/unload ratio. The whole test case is steady, but it allows to study the stress accumulation and relaxation along
the fluid particle path, that is typical feature of viscoelastic flows that is especially pronounced at high Weissenberg
numbers. The numerical results presented here were selected only as a demonstration of expected results for one of
the possible test configurations and one of the numerical methods. The results have clearly shown the change of the
structure of the solution for growing Weissenberg number. Further work will focus on the comparative study of the
presented numerical methods in order to establish a method that will be sufficiently robust and efficient over a large
range of Weissenberg numbers.
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