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Abstract

In photonic applications of optical beams, their transverse cross-section should be often narrow, with a
diameter in their waist of the order of one wavelength or even less. Within this range, the paraxial
approximation of beam fields is not valid and standard corrections by field expansions with respect to
a small parameter are not efficient as well. Thus, still there is a need for more accurate beam field
description. In this report, an exact vector solution for free-space propagation is given in terms of
elegant Laguerre—Gaussian beams. The analysis starts from the known paraxial field approximation
and next, through bidirectional field transformation and application of a Hertz potential leads to an
exact vector solution. The role of the paraxial solution in construction of the exact solution is
elucidated. The method works well not only in cases of free-space propagation but also in description
of beam interactions with planar interfaces and multilayers.

Keywords: elegant Laguerre—Gaussian beams, paraxial and nonparaxial solutions, bidirectional
transformation, Hertz potentials

(Some figures may appear in colour only in the online journal)

1. Introduction

Although the notion of elegant or complex-valued Gaussian
beams was introduced by Siegman a long time ago [1, 2], they
are still considered mostly as the scalar paraxial approximation of
the Helmholtz equation solution. Their nonparaxial counterparts
were mainly obtained in terms infinite series in powers of a small
parameter yielding only successive corrections to the paraxial
solutions [3, 4]. On the other hand, the set of the elegant
Laguerre-Gaussian (eLG) beams of arbitrary order constitute a
complete and biorthogonal base for electromagnetic fields, carry
finite energy per unit length along their propagation direction and
are expressed entirely by elementary functions. Their attractive
properties, closely related to orbital angular momentum of light
[5, 6], were demonstrated in the context of optical focusing,
trapping and manipulations of nanoelements [7, §].
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Several nonparaxial attempts to treat exactly the beam
propagation problem, based on the grounds of a scalar wave
equation or on a full set of Maxwell’s equations, were already
reported, for example in [9—-14] to name a few. Moreover, other
different techniques, those based on Bessel functions or on
nondiffractive beams, were reported as well [15-19]. In addition,
an independent technique, which is based on a bidirectional
transformation, was also presented in the past in constructions
exact solutions to the propagation problem of localized
electromagnetic pulses or focus wave modes [20-25]. After
introducing some modifications and extensions to basics [20, 21]
of this bidirectional technique, it is applied here in derivation of
a new exact solution to the problem of beam propagation. It is
stipulated that the beams are not accelerating. Note that the most
reports mentioned above are of theoretical nature. Still, they
show certain potential in considerations on recent progress in
photonic technology [26-30].

In this paper, an exact bidirectional vortex beam solution is
derived in an analytic closed form. Hertz potentials are created
by direct use of eLG beams of arbitrary order. Starting points of
this analysis are reports [31, 32] on paraxial beams and [33, 34]
on nonparaxial beams. Beam propagation in free-space was

© 2018 IOP Publishing Ltd  Printed in the UK
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considered in [31-34], meanwhile both cases of normal and
oblique incidence upon planar interfaces or multi-layered
structures were accounted for in [31-33]. The beams are scaled
in the transverse and longitudinal dimensions. Scalar, three-
dimensional paraxial eLG beams are defined by applying
complex derivatives [35] to the fundamental Gaussian. Their
exact versions are obtained by creating separable beam solutions
in the frame of bidirectional coordinates [36]. Next, from many
available possibilities of using Hertz potentials [37], two of
them, equal each other and oriented along the same direction of
beam propagation, are chosen in construction exact vector
components of the eLG beam.

Finally, the electromagnetic field of the exact vector eLG
solution is obtained in a square-integrated form of finite
power flow. The solution is complete and expressed only by
standard elementary functions, without the need of referring
to any approximation or infinite field expansion. Each one
from its transverse magnetic (TM) or transverse electric (TE)
solutions comprises two transverse and one longitudinal
mutually orthogonal eLG beam ingredients. Their amplitudes
are distinguished uniquely by the ratio of the transverse and
longitudinal field scales. The solution is exact but still in
phase front planes of the exact eLG beams they replicate the
standard paraxial eLG beams. In the case of incidence on
planar layered structures, the transverse field components
satisfy a transmission matrix equation specified by Fresnel
coefficients of the scattering structure. Thus, the solutions
obtained are valid not only for the description of beam pro-
pagation in free-space, but also for the analysis of beam
interactions with planar interfaces or multilayers, including
both cases of normal and oblique beam incidence. To the best
of the author’s knowledge, the solution presented here is new.

The paper is organized as follows. After a short intro-
duction given in section 1, coordinate scaled notations are
specified in section 2. Scalar eLG paraxial beams are
described in real and complex variables in sections 3 and 4,
respectively. Scalar and vector exact eLG beams are defined
by the bidirectional transformation in section 5 and by use of
the Hertz potential in section 6, respectively. In section 7, the
analysis of beam-interface interactions is presented and illu-
strated by results of numerical simulations. Finally, the main
characteristics of the eLG beam solutions obtained are sum-
marized in section 8.

2. Notation and scaling

In this analysis, the spatial variables x, y and their momentum
counterparts k,, k, transverse to the z-axis of beam propaga-
tion direction are scaled by a transverse scaling parameter—a
cross-section radius or half-width w,, of a cylindrically sym-
metric beam placed at its waist plane z = 0:

(a)
(1b)

X/Ww — X, kxww - kx’
y/Ww - Y, kwa - ky-

Similarly, using a diffraction length z, = kw?, the spatial

variables z, ¢t and their longitudinal counterparts—wave
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number k and frequency w = kc are scaled by zp:
z/zp — 2, kzp — k, (2a)
ct/7zp — ct, wip — W, (2b)

where  is time, c is speed of light and z3 /w2 — k on the
grounds of (2a). The scales w,, and zp specify a paraxial
parameter:

f=2"12w,/zp = 271 2(kw,) ' — (2k)" /2, (20)

small for wide (paraxial) beams and large for narrow (non-
paraxial) beams. As was shown in [33, 34], this parameter
distinguishes between two beam field ingredients which
appear in the exact vector beam field solution.

Optical beams will be considered monochromatic oce ¢t
and propagating, unless otherwise stated, in a linear, trans-
parent, isotropic and homogeneous medium specified by its
characteristic admittance Y and impedance Z. However, after
normalization of electromagnetic field:

EJY - E, HVZ — H (3)

the beams will be understood as propagating in free-space.
Note that the scaling changes a form of wave equations. For
example, an amplitude U of a scalar beam field V = Ue= !
will be governed by the scaled Helmholtz equation:

[0y /2D (K2 + 0 + 07 + 031 U(x, y,2) = 0. (4)

In the following, the Cartesian (é,, é,, &), cylindrical
(é,, é,, &;) and circular (é, €, &) polarization frames will be
interchangeably used.

3. Scalar paraxial eLG beams in real coordinates

Let us start with the eLG beam G, ., as solution to the
paraxial (Fock) equation:

[i(‘)z + 502 + a@]c;,,,ﬂ(x, y,2) = 0. (5)

The beam is labeled by radial p and azimuthal £/ indices,
where p and [ are non-negative integers. The ‘upper’ and
‘lower’ signs in %/ indicate the right-handed and left-handed
orbital angular momentum of beam vortices, respectively.
This solution is expressed by the product:

Gp,il(-xv Y, Z) = Qp,l(-x’ Y, Z) ei”@ (60)

of a vortex phase factor ¢*? and a beam field envelope
Qpa(x. v, 2) = (=P 0wl L) g (x, y, 2).

In spite of the presence in (6b) the beam complex radius
scaled v(z) = (1+iz)!/? the beam envelope depends only on
the complex argument

ux, y,z) =2"2r (x, yv (2, @)

r. = (x% + y»)/2, present in Q,; through its powers u/, the
fundamental Gaussian beam

(6b)

g(x’ Vs Z) = V_2(Z)exp [_uz(-x» Vs Z)] (8)
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and the associated Laguerre polynomials with biorthogonal 2p + [ + 1:

roperty:
propetty 0e.Gp 1 = Gpi1,21-1 0.Gp+1= Gyprar1) (15)

Li(u?) = u e (d/du?)Pe > +D, (9a)

o0
f e WL WP L) du? = pl(p + 1)!6,, (9b)
0

where Li(u?) = 1, L{(u®) = —u®> + [ + 1 and so on. The
beam complex radius v(z) is the only quantity in the beam
field solution (6)—(9) which depends on z. It defines, through
the relation

vi =w?(@) - iR =0 -1 +zH) (10

changes of the beam radius w and the phase front curvature R
appearing in the course of beam propagation along the z-axis.
Contrary to the vortex factor e*!%, the beam envelope Op.1
does not depend on signs of the azimuthal index &/ or of the
azimuthal angle +¢. The amplitude normalization of all the
eLG functions is introduced by the condition g = 1 imposed
on the Gaussian beam field amplitude at the centre of its waist
plane.

4. Scalar paraxial eLG beams in complex
coordinates

On the other hand, there exists another, although completely
equivalent, definition of the eLG paraxial beams [31]. This
definition seems to be more suitable in further analysis of the
problem. Let us introduce new complex coordinates with
single vortex factors e and ¢*'¥ explicitly present in their
definitions in the configuration and momentum domains,
respectively:

¢r =2712(x £ iy) = ¢ e,
Ky = 271/2(/@( + iky) = K eT®,

(11
where ¢, = 271/2}1, R = 271/2]@, Vf = x2 + yz, kf = kxz +
kf, tan ¢ = y/x and tan ¢ = k, /k,. In these new coordinates
Helmbholtz and Fock equations read:

(W /20)* (k2 + 82) + 20,0, ] Gy 2151, 5, )€™ = 0,
12)

(i0; + 0¢,0)Gpxi(ss, 6, 2) = 0. 13)

Note that the same notation is used for functions dependent on ¢,
and ¢_ instead of x and y. The Gaussian beam g = v2e " is
still defined in (8) by the substitution u2 = ¢ v=2.

The eLG beams of higher orders 2p + [ = 0 are defined
by 2p + [ derivatives of g = Gy :

Gpsi(sys 55 2) = 0207 g(sy, 5, 2), (14a)
0pi(S4s -y 2) = 0P Mg (6, 6, 2). (14b)

These definitions of the eLG beam G, ;; and its envelope
0,1 = G, 17" are equivalent to those given in (5) and (6).
The derivatives d., = ¢¥99, applied to G, 1; of the order
2p + [ create new eLG beams with their order increased to

Further, 0., 0; Gy, +; = G,41,4/ creates new eLG beam of the
order 2p 4 [ 4+ 2 and so on. Moreover, through the Fourier
transform:

Gy +1(St, S, 24)

S f drvodii_Gyii(ky, K, 7)€t s +550 (164)

Gp,il(’%ﬁ*’ KR—, Z+)

= o [dsids Gpai(sus sy e 0, (16b)

the solution Gp,il in the momentum or spatially spectral
domain is given by:

Gpi(kirs kioy 2) = PR (e, ko 7). (17a)
Opi(kiy, iy 7) = (iK)PHG(k 4, K, 2), (17b)

with the Fourier transformed beam envelope 0,,; = G, ;e ™"
and Gaussian beam § = ¢~"1V’. Note that the definitions a7
are valid not only for positive but also for fractional or even
negative values of the radial index p.

In addition to the creation new eLG beams of higher
orders shown in (15), the multiplication them by vortex fac-
tors e*™® and e*2¥ also creates new eLG beams but this time
of the same order [31]. The definition (14) implies in the
configuration domain:

Gp11 = Gpi1,40-2€2%, Gy i1 = Gp_1 tq12e72,  (18a)

Gp 1= Gpi1p00-1€, Gp1 = Gy_1 /2, 1q11€7 .
(18b)

In the momentum domain, identities equivalent to (18) are
obtained for the Fourier transformed eL.G beams defined in (17).
That implies substitution in (18) the terms G, 1, and ¢ for (N},,,ﬂ
and ¢, respectively. The interesting case in (18) seems this
where the radial index changes its sign. For example, for p = 0
and [ = 1 the identities of (18a) read:

_ 2i _ —2i¢
Go+1= G115, Go 1= G_y 43¢ 29,

Go—1= G 11e %, Go_1=G_1 3t

(19a)
(19b)

These cases will be discussed more deeply in section 7. Note
that identities (18) and (19) are equally valid for paraxial and
nonparaxial eLG beams.

The identities (18) and (19) describe the effects of
interactions between eLG beam fields and additional vortices
nested in them. They are particularly suitable in considera-
tions on solutions of beam propagation in free-space as well
as on beam interactions with interfaces or multilayers. Note
that the identities (18) follow exactly the original relations
(10) and (11) given in [34] in the momentum domain. Con-
trary to what I previously suggested in the Erratum to [34], all
the relations, (10) and (11) given in [34] and (18a) and (18b)
presented here, are valid and sufficient in derivations of the
solutions considered in this paper for positive as well as for
negative values of the beam field topological charges 1.
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5. Scalar exact eLG beams

The scalar eLG solution presented in section 4 is valid only
for paraxial beams. But still, an exact version of this solution
can be obtained as well by bidirectional modification of this
solution. To this end, let us start, per analogy to the problem
discussed in [36], with the transform of the coordinates z and
ct into the new bidirectional coordinates z_ and z,:

z-=z—ct, 2 =27 + ct. (20)

The first definition in (20) just rewrites the common propa-
gation factor e*s- = ¢*=¢" in the new coordinate z_ and
indicates, as usual, that the beam phase front at z_ = 0 pro-
pagates along the beam axis with speed of light. However, the
replacement of z by the second new coordinate z, in the beam
envelope Q) results in the propagation of this envelope in the
backward direction of the beam axis, also with speed of light.
These presumptions result in the new beam field solutions
expressed by z, and z_, instead of z and cr:

2
(22)

V(S 6o 240 22) = Gy 6oy 21) €,
Gps1(Sis 6 21) = Opi(Sty 5y 74) €T,
together with a new definition of the complex radius squared
of the beam field envelope:

v(zs) = (1 +izs /)2 (23)

The new field solution is governed exactly, without any
(paraxial) approximation, by the scalar wave and Fock
equations:

2wy /2p)?0:,0; + 0,0, 1V (s, 6, 24,2.) =0,
(2i0;, + 0¢,0.)Gp 11(5+, 5—, z4) = 0.

All of that results in the bidirectional exact extension of the
previously paraxial approximation of the wave equation. The
monochromatic field V expressed by (21) and the eLG beam
field G, 1, expressed by (22) are now exact solutions to both
wave equation (24) and Fock equation (25), respectively.
Note that the ansatz z, ct — z_, z, applied in equations (21)—
(25) is in the order opposite to that of z, ¢t — z,, z_ applied
in the derivation of focus wave modes [20-23].

Let us look closer into the main features of this exact
solution. A boundary value problem is assumed here at the
moment ct = 0 and at the waist plane z, =z =z = 0:

V(S 6, 0, 0) = Gp (S, <, 0). (26)

This condition is exactly the same in its form as that for the
approximate paraxial solution. Moreover, for ct = 0,
although the beam phase front plane is placed, as it was in the
paraxial case, at z_ = z — ¢t = 0, the position of the beam
waist plane now is not constant, but is moving backward to its
new position at z, = z 4 ¢t = 0. Therefore, these two planes
are moving in the opposite directions along the z-axis and the
distance between them is always 2z. At the phase front plane
defined by z_ = 0 and z, = 2z the beam radius (24) of the
exact solution is given by

v(zy) = (1 + iz /Y2 = (1 + i)'? = v(2),

(24)
(25)

27)

what exactly is the radius of the paraxial beam. Thus,
at the waist or phase front planes, the exact solution
G, +1(S4+, s, 2z) to exact Fock equation (22) duplicates
the paraxial solution G, 1;(s4, s—, z) to approximate Fock
equation (13). In other words, at phase front planes of the
beams, the exact scalar eLG solution reduces to the well
known paraxial scalar eLG solution.

6. Vector exact eLG beams

In section 5, the derivation route from the paraxial scalar eLG
beam solution to its exact scalar version was presented.
However, the exact vector beam solution should satisfy a full
set of Maxwell’s equations:

actH = _(ZD/WW)v x E, actE = (ZD/WW)V x H,
(28a)

V-H=0, V-E=0, (28b)

with V =e.0; + €,0, + (w,,/zp)é;0;, where 0, = 0,, +
0, and 0, = 0;, — 0, Itis well known that such solution can
be constructed from two vector Hertz potentials, say M and N
[37]. Among many other possibilities, both of them are assumed
here as directed along their beam axes, equal each other
M = N = (0, 0, M) and expressed by one longitudinal eLG
component:

M(S4s 5 24y 22) = WGy 1y(S4s 5o, 21) €, (29)
That specifies the following beam field compositions:
E = E(m 4 E(e)
=V XV x M, — Wy, /2p) 0V X &M, (30a)
H=H" + H™
=V XV x eM, + W, /z2p)0uV X &M, (30b)

In the circular frame (é, €., €;), these compositions read [34]:

E(m = Wy /ZD)(éR8<+ + éLag,)azMz - Zézawas,Mza
3la)

E(’e) = —i(WW /ZD)(éR8€'+ - éLag*)asz (31b)

with the magnetic field given from the duality principle.
Application of the beam definitions presented in section 4 and
the relations between transverse (polar) parts of the cylindrical
and circular polarization frames:

er =272, + iey) et?, e =271/2(e, — ie;) e, (32)
p = 1y, leads, after some straightforward algebra, to the TM and
TE vector solutions expressed by the eLG beams G, 14 1),
Gyi1,+4+1)> Gpi1,41, vortex factors eFil and the paraxial
parameter f defined in (2¢). In the polarization frame
(é,, &, &), p = ry, this solution reads:

E,(,t,"f/ = i8,(f 'Gprast) + [T Gpirrar) €T 0™

— 28.Gpy1,41 €5, (33a)

ies(f'Gprarty — [T Gpyr cqery)e™0e™,

(33b)

(te) _
Ep,eil -
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with its transverse Ef";,) i Efe]g ., and longitudinal E;’Z‘)ﬂ field
components. Meanwhile, both transverse and longitudinal field
components possess the same topological charge equal +/, the
charges attributed only to the eLG beams in the transverse TM
or TE fields equal +(/ + 1) and are larger or smaller by one
than that of the longitudinal beam component. As expected,
divergence of all these field solutions is null. In spite of the
opposite sign in amplitudes in the TE solution, the difference
between the eL.G beams in the paraxial and nonparaxial parts of
the solution reduces only to the increment of the radial index
by one.

In solution (33), three mutually orthogonal exact scalar eLG
beams of different mode orders contribute separately to the
transverse and longitudinal components of the vector eLG beam.
Positions of their phase front and waist planes are specified by
zeroes of the bidirectional longitudinal coordinates z_ and z,,
respectively. The impact of beam propagation on the beam
spatial shape is specified completely by values of the beam
complex radius v dependent only on z, as shown in (27). The
longitudinal TM field component —2G,, 1 ; +; does not depend on
the paraxial parameter f. On the contrary, each transverse field
component of TM or TE polarization consists of two mutually
independent—paraxial  f~'G, +41)ieT and nonparaxial
FGyi1, a4 1yieT*—ingredients, with their amplitudes speci-
fied by the paraxial parameter f and phase shifted by ie ™. All
field components possess their topological charge £/ attributed to
the same vortex factor e™?. For small or large values of f, the
transverse parts of the exact beam field solution correspond to the
paraxial or nonparaxial parts of this solution, respectively.

Equivalent solution in the circular polarization frame is
given by use of (32) in the field expressions (33). For the right-
handed vortex eti¢ nested in the beam field, the solution reads,
for the TM field:

E(tm) _ (éRGl(?t;’Z,)I +ér Gi?;,)l + éz Gz(l;?;) eike-

p,+l

= (E") + &.Gl) e, (34a)
GYm, = i VA Gyt H Gpraa), (34D)
Gl = 27V 2 (f 7 Gt + ' Gy 1 0), (34¢)
Gl = =2 Gpi1a (34d)

and for the TE field:
Egﬁl = (éRGz(et;?,l + éLGg;;)J) el = Ei’f},le"kzv (35a)
Gy = =272(f Gyt = f G2 ), (35D)
Gl = +272(f Gt — 1 Gparas). (350)

The solutions E,(;',ni)z and El()’e_) , for the left-handed vortex e~#/¢ can
be derived per analogy or obtained by the direct substitutions in
BGYHand B35l — L I+1——-1—-1,1—-1——-1+1
and with ég, ¢, — e, ég for TM polarization (34) and
ér, ¢, — —e;, —eg for TE polarization (35) [33].

Expressions (33)—(35) of the exact solution to the eLG
beam propagation problem discussed here represent the main
result of the paper. It is evident that in any polarization frame
the three eLLG beams Gp,i(l+l9 Gp+],i(l+]) and Gp+l,il3 toge-
ther with additional vortex factors e¥®, or the other eLG

beams of the same order obtained from them by identities
(18), are building blocks of paraxial, nonparaxial and long-
itudinal parts of the exact vector eLG beam solution,
respectively. Note that, in spite of their names, these parts of
the total exact solution are also exact. Owing to completeness
and biorthogonal features of these beams, their compositions
span the whole space of physically accessible modes of finite
power flux for free-space propagation. Moreover, it appears
that the same set of the eLG beams defines also normal modes
of planar interfaces or multilayers of the hosting medium
[31, 32]. This will be shown in the next section.

7. ELG beams at planar interfaces

Let us consider now the canonical problem of beam interac-
tion with a planar interface between two semi-infinite iso-
tropic and homogeneous media. The interface is assumed
transverse to the incident beam propagation direction along
the beam axis and is specified in the momentum domain by
Fresnel transmission f, and f; coefficients for TM and TE
polarization, respectively. The parameters 7, and f, are dis-
persive as they depend on the ratio = cosf,/cosf; of
cosines of refraction and incidence angles 6, and 6;, respec-
tively. Meanwhile the longitudinal field component é, G;Z"f is
always continuous at the interface, the transverse field com-
ponents are eigenfunctions of a transmission matrix T sepa-
rately for paraxial and nonparaxial parts of the eLG beam
fields defined in (33)—(35). In the transverse circular polar-
ization frame (g, é€;), the transmission matrix T = Tig 1, is
composed of diagonal and antidiagonal parts with amplitude
factors equal to %(ntp + ¢;) and %(ntp — 1), respectively [31]:

0 1 0 %%
1] + Sty — 1) [e“"“g 0 ]
(36)

The second term of this matrix implies excitation of the eLG
beam with polarization orthogonal to that of the incident eLG
beam, with the beam amplitude multiplied by the factor
%(ntp — t,) and with the radial p and azimuthal [ indices
changed by 1 and £2, respectively. This effect of the cross-
polarization coupling between orthogonal transverse beam
components disappears for normal incidence in the momen-
tum domain, that is where 7, — t, = 0.

Let us turn for a while to the eLG beams defined by (14)
in the configuration domain. For brevity of presentation, we
consider here the incident beam field as only one ingredient of
the transverse field Ei”;) ., defined in (34) and (35). Consider
the beam €, Gy ; of left-handed circular polarization incident
normally on the interface. The beam waist plane coincides
with the interface. Then, according to the transfer matrix T(g 1,
form, two beams are excited below the interface, the first one
of the left-handed and the second one of the right-handed
polarizations, respectively:

1
TZR,L) = %({m‘p + 1) [0

1 1,2, 1 2 1,2
Go+1=—rie 2O Gy = TR =D et

(37
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Figure 1. Intensities (a), (b) and phases (c), (d) of beam fields excited at the interface: é, G in (a), (c) and éxG; _; in (b), (d). Normal
incidence of the beam é; G of left-handed circular polarization, fields shown in the configuration domain in the frame (x, y).

In addition, modifications of the beam field distributions (37)
come from the amplitude factors %(ntp + ¢,) present in Tig 1.
The case of external reflection is considered here with the
contrast of refraction indices equal to 1.5. The radius w,, of
the incident beam waist is equal to one wavelength. In this
case, the field intensity modifications due to the dispersion of
the coefficients #, and ¢, still are not strongly significant. For
comparison with theoretical predictions and by analogy to the
analysis presented in [31], a few examples of eLG beam field
distribution are presented below.

Results of numerical simulation of transmitted fields excited
at the interface by incidence of the beam ¢; G ; are presented in
figure 1 in the configuration domain. This incidence deserves
attention because it shows reverse of the sense of phase rotation
under the beam interaction with the interface.

The field intensity distributions of G ; and G, _; beams
shown in figures 1(a) and (b), follow closely their definitions
given in (37), respectively. Moreover, the beam phase dis-
tributions shown in figures 1(c) and (d) are exactly specified
by these definitions. The topological charges or azimuthal
indices of beams are equal to +1 in figure 1(c) for the

transmitted beam €, Go; and to —1 in figure 1(d) for the
transmitted beam éx G, _;. Their radial indices are equal to 0
in figure 1(c) for the beam é, Gy ; and to 1 in figure 1(d) for
the beam ég G . The direction of the phase winding rotation
is reversed and the global phase change by 7 is present
between the beams Gy ; and G; _;. Moreover, the phase
changes by 7 are also present for the beam G, _; at points of
the circle of r, equal close to 2, as shown in figure 1(d).

The analogical case of incidence ég Gy ; is presented in
figure 2. Similarly to what was presented in figure 1, the field
intensity distributions shown in figures 2(a) and (b) follow
also the definitions (37) of Go; and G_;3, respectively.
However, the sense of the phase rotation presented in
figure 2(d) for the beam &, G_; 3 is the opposite to that what
was presented in figure 1(d) for the beam éz G, _;. That means
that the phase rotation of the transmitted beam is of the same
direction as for the incident beam €, Gy ;. No phase changes
by 7 are visible. Instead, there is the increase of the topolo-
gical charge value / from one to three, that is the change from
éLGO,l to éRG_l’g,.

In the numerical simulations presented above, only one
beam Gy ; of circular polarization—left-handed or right-handed
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Figure 2. Intensities (a), (b) and phases (c), (d) of beam fields excited at the interface: é, G in (a), (c) and é,G_ 3 in (b), (d). Normal
incidence of the beam éz G ; of right-handed circular polarization, fields shown in the configuration domain in the frame (x, y).

—is incident upon the interface and excites two transmitted
field components of the circular polarization. However, on the
grounds of the transmission matrix form (36) and the identities
(18a), all of these beam field components belong to the same
transverse TM beam field mode E("Z)i, defined in (34) by the
same values of p and %/ Therefore, this beam field vector is
the eigenvector of the transmission matrix Tig ) with the
eigenvalue 7t,. Similarly, for incidence of the transverse TE
beam field Efizﬂ defined in (35), the same relations are valid
with the common eigenvalue #; :

~(tm) ~(tm) (te)
TriyE )y = MpEL ), 4 TR, L)E p wu=tE", . (38)

The beam fields fulfilled the equation (38) with eigenvalues 7z,
or t, are called normal modes of the interface [31, 32].

On the other hand, in the transverse polar frame (&, é,,),
p =k the transmission matrix T = T, is diagonal

and reads:
t, O
T@,@:["O” t]- (39)

The transverse TM beam field Ef’;)i, E;tzl)i, defined in
(33a) represents the eigenvector of the matrix 7j, .y with the

common eigenvalue 7, Similarly, for incidence of the

transverse TE beam field Efe; = :f;) 4, defined in (33D),

the same equation is valid with the eigenvalue f:

(tm) f(m (te) (te)
T, E oip.kl = ntpEpp <10 L) E oipkl = tsz +- (40)
Therefore, it can be stated that the beam fields E,E';,")ﬂ and

E("” ’,, are also normal modes of the interface. Moreover, the
beam field given in the transverse polar coordinates (é,, €,),
p = KL or (&, &), p = r__ in the momentum or configuration
domain, respectively, can be obtained on the grounds of
(33)—(35) as summation or subtraction of the beam fields
given in the transverse circular coordinates (éz, €;) in the
momentum domain:

~y(te) _ L oy(te) . ~y(te) —ip
E,,i1=2 1/21(ER;p,:tle+up —E;., € S“) (41b)
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Figure 3. Intensities (a), (b) and phases (c), (d) of beam fields excited at the interface of radial polarization in (a), (c) and of azimuthal polarization
in (b), (d). Normal incidence of the beam é,Gy,; of radial polarization, fields shown in the momentum domain in the frame (k,, k,).

and in the configuration domain:

B =2 (B T B ©). @)
E(9,, =272 (E) et — ) e7%).  (42b)

In other words, the beam fields of polar polarization fulfilled
equation (40) are composed of the beam fields of the circular
polarization fulfilled equation (38). One example of such com-
position is presented in figures 3 and 4. The beam fields are
shown in the momentum domain for the incident beams é, Go.1
and é, G, of radial and azimuthal polarization, respectively.
Note that in figure 3(b) the amplitude of the eLG beam
¢,Go 1 is less than 5 x 10>, Thus, it approximates zero field in
the momentum domain in a quite high precision. This numerical
approximation of zero corresponds to the exact zero field
component indicated by the upper non-diagonal corner of the
transmission matrix 77, ) defined in (39). Moreover, the speckle
pattern vivid in figure 3(d) corresponds to the same zero field
component. It seems that this purely numerical effect is remi-
niscent of speckle patterns formed during light propagation
through disordered multiply scattering media [30]. Figure 3
shows that, for incidence of the beam ¢, G~0,1 of radial

polarization, no beam é,¢ Go,1 of the orthogonal, azimuthal
polarization is excited at the interface. Similarly, as is seen in
figure 4, for incidence of the beam é, Go,l of azimuthal polar-
ization, no beam épGO, | of orthogonal, radial polarization is
excited at the interface. Its absence is indicated by zero placed in
the lower non-diagonal corner of T¢, .. Results of the numerical
simulations of the beam fields shown in figures 3 and 4 uniquely
confirm the diagonal form of the transmission matrix Tf,, ., (39)
with its eigenvectors &,Gy ; and &,Gy ;.

The discussion presented in this section indicates that the
numerical simulations eL.G beam interactions with the dielectric
interface confirm closely theoretical predictions based on the
equations (14)—(19) and (36)—(42). These predictions are valid
not only for normal incidence of the eLG beams, but also for
their oblique incidence including the cases of Brewster, critical
and grazing incidences. Under oblique incidence many interest-
ing phenomena triggered by the cross-polarization coupling [31],
like beam spatial reshaping, shifting, splitting and switching,
appear [32, 38]. Theoretical predictions of this coupling were
subsequently followed by additional numerical simulations of
beam propagation and refraction phenomena [39, 40]. Analogical
results can be also obtained for the exact eLG beams interacting
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Figure 4. Intensities (a), (b) and phases (c), (d) of beam fields excited at the interface of radial polarization in (a), (¢) and of azimuthal polarization
in (b), (d). Normal incidence of the beam é,G ; of azimuthal polarization, fields shown in the momentum domain in the frame (k,, k,).

with any planar layered dielectric structure, provided that the
transmission coefficients specific for such the structure are used
in the equations (36), (38)—(40).

8. Conclusions

Scalar and vector representations of exact eLG solutions are
presented. The solutions of both types are given in a form of
normal modes for free-space beam propagation as well as for
beam propagation in stratified media. Transverse TM and TE
field components of the vector solution are composed of two
still exact parts—paraxial and nonparaxial—distinguished in
their amplitudes by the factors f~' and f'', respectively,
where the paraxial parameter fis the ratio between transverse
and longitudinal scale parameters of the beams. Total field of
the exact solution is defined, in spite of the additional vortex
factor, by three independent scalar eLG beams being exact
solutions of Helmholtz and Fock equations. At phase front
planes of the vector solution, the paraxial and nonparaxial
parts of the eLG beams replicate in their form the beam
solutions known from conventional approximate analysis. It
seems that the presented solution could be useful in analyses

of narrow beam interactions with horizontally patterned
photonic structures, especially with metasurfaces, metalenses
and other components of flat optics [41-46].
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