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We report a kinetic equation for an auxiliary distribution function
f(k,v1, t) which yields the intermediate scattering function Is(k, t). To
this end, the projection operator proposed by Stecki was applied. The scat-
tering operator was given in explicit form in the limit of low density gas.
The general kinetic equation was next specialized for the case of Lorentz
gas.
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1. Introduction

Marian Smoluchowski has described and discussed a diffusion process
evolving in an external field of forces [1–3]. The problem belongs to the
non-equilibrium statistical mechanics and can be studied by two different
methods: numerical calculations and theory of kinetic equations.

The first method was substantially developed by Rahman, who applied
numerical integration of Newtonian equations of motion to simulate the
classical dynamics of a liquid system with arbitrary continuous interatomic
potentials [4]. Rahman calculated the diffusion coefficient in a system of
argon atoms interacting through a Lennard–Jones potential. This was a
groundbreaking paper as it showed that the diffusion and structural evolu-
tion of small molecules takes place by a series of small, highly coordinated
motions of neighbouring molecules, cf. also [5]. A discussion of Rahman’s
motivations, the depth of his investigation, and the legacy that both the
methodology and the style of investigation is given in [6].
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This paper deals with the second method. A general kinetic equation
for the time evolution of a marked particle in a fluid has been derived in
several ways. The derivations lead to equations which are non-local in time
according to the discussion developed by Kubo [7–11]. It is generally ac-
cepted that the Fourier transform of the one particle distribution function
f(r1,v1, t) denoted by f̃(k,v1, t) satisfies the following linear kinetic equa-
tion: (

∂

∂t
+ ikv1

)
f(k,v1, t) =

t∫
0

dτ G(k1, τ) f(k,v1, t− τ) , (1)

where

FN (t) = e−tKNFN (0) and FN (0) = eikr1ϕM(v1) . . . ϕM(vN )
e−βU

Q
, (2)

and ϕM(vi) is the Maxwell distribution function for the velocity vi.

ϕM(vi) =

(
β mi

2π

)3/2

e−βmi v
2
i /2 , (3)

β−1 = kBT , with kB ≈ 1.3806 × 10−23 J/K, T being the equilibrium
absolute temperature, while

U =

N∑
j=i+1

N−1∑
i=1

u(|ri − rj |) ≡
∑
i<j

uij , (4)

where uij is the interaction potential between particles No. i and No. j.
Moreover, Q is the configurational sum of states

Q =

∫
e−βU drN . (5)

The vectors ri and vi, i = 1, 2, . . . , N denote the position and velocity of the
particle No. i. The integration is performed over the whole configurational
space, we write drN = dr1 dr2 . . . drN .

For the brevity sake, in Eq. (1) and further, the tilde sign above the
letter f is omitted. The function f(k,v1, t) satisfies the initial condition

f(k,v1, 0) = ϕM(v1) (6)

and has been so constructed as to yield the intermediate self-scattering func-
tion Is(k, t), cf. [12].
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The scattering operator G(k1, t) is expressed by the N -particle Liouville
operator

KN ≡
N∑
i=1

(
vi

∂

∂ri
−
∂U
(
rN
)

∂ri

1

mi

∂

∂vi

)
. (7)

A kinetic equation of the form of (1) was derived by Stecki using a projec-
tion operator method [13]. A binary collision operator has also been derived
by Altenberger [14, 15]. It was shown by Narbutowicz that this equation
reduces to the Fokker–Planck-type equation as a particular case [16]. The
projection operator method was applied also by Chong et al. to derive an
equation for the time-dependent pair distribution function [17]. These all
calculations were performed under assumption of the linear response theory
of Kubo.

The projection operator method was initiated by Zwanzig to derive a
master equation, [18, 19], and has found a wide applications. The Zwanzig
projection operates in the linear space of phase-space functions and projects
onto the linear subspace of slow phase-space functions.

One can add that the terminology Liouville’s operator or Liouville’s equa-
tion is a customary only. Although the equation is usually referred to as the
“Liouville’s equation”, it was Gibbs who was the first to recognize the impor-
tance of this equation as the fundamental equation of statistical mechanics
[20, 21]. It is referred to as the Liouville equation because its derivation for
non-canonical systems uses an identity first derived by Liouville in 1838 [22].

Liouville’s operator was introduced in reality by Koopman in 1931 [23].
In mathematics, and in particular functional analysis, the shift operator also
known as translation operator is an operator that takes a function f(x) to
its translation f(x + a). In time series analysis, the shift operator is called
the lag operator.

The integro-differential equation (1) can be simplified in two limit cases:
the Lorentz gas, in which only one particle has finite mass m and all re-
maining in number N − 1 particles are immobile, and the gas of Brownian
movement, in which the mass of a Brownian particle is much greater than
the masses of remaining N − 1 particles. The first case is treated in this
contribution, in which the influence of the exterior potential U ext on the gas
behaviour is investigated.

2. The system and Liouville’s operator

The system

Consider a fluid of N particles, numbered by i = 1, 2, . . . N , and closed
in the volume Ω with the boundary ∂Ω. The mass of the particle i is mi,



908 R. Wojnar

the velocity vi, the momentum pi = mivi. The quantities ri and pi, i =
1, 2, . . . , N denote the position and momentum of the ith particle

ri = (ri1, ri2, ri3) ≡ (riα) and pi = (pi1, pi2, pi3) ≡ (piα), α = 1, 2, 3 .

The particles are interacting by the radially symmetric potential uij(rij),
with rij ≡ |ri−ri|, subdued to the external potential U ext. The Hamiltonian
of the system

H = H0 + U with U ≡ Ufl + U ext ,

H0 =
N∑
i=1

1

2
miv

2
i , Ufl =

N−1∑
i=2

N∑
j=i+1

uij(rij) and U ext =
N∑
n=1

Ui(ri) , (8)

where H0 is the kinetic energy, Ufl is the potential of binary interactions
of the fluid particles, and U ext represents an external potential, the term
absent in potential (4). For simplicity of boundary conditions, we assume
that Ufl = 0 on the boundary ∂Ω of the volume Ω. Then, by Gauss’ theorem

∫
Ω

e−βU
∂U

∂r1
dr1 = − 1

β

∫
Ω

∂

∂r1

(
e−βU

)
dr1 = − 1

β

∫
∂Ω

e−βU
ext

ndS (9)

or, by the same theorem∫
Ω

e−βU
∂U

∂r1
dr1 =

∫
Ω

e−βU
ext ∂U ext

∂r1
dr1 (10)

what means that the average force acting on the particle No. 1 comes from
the external potential only.

The function f0
N is the full equilibrium (canonical) distribution function

f0
N = f0

N

(
vN , rN

)
≡

N∏
i=1

ϕM(vi)
e−βU

Q
, (11)

where vN = (v1, v2, . . . , vN ), rN = (r1, r2, . . . , rN ).
We admit that the function f0

N describes the distribution of N particles
in the phase space at the time instant t = 0.

Liouville’s operator

We introduce Liouville’s operator

KN ≡
N∑
i=1

(
vi

∂

∂ri
−
∂U
(
rN
)

∂ri

1

mi

∂

∂vi

)
(12)
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and specify the potential U according to Hamiltonian (8)

KN ≡ K0
N −

∑
i<j

θij −
∑
i

∂Ui(ri)

∂ri

1

mi

∂

∂vi
(13)

with

K0
N ≡

N∑
i=1

vi
∂

∂ri
and θij ≡

∂uij
∂ri

(
1

mi

∂

∂vi
− 1

mj

∂

∂vj

)
. (14)

We easily verify that KN f
0
N = 0 and

KN f
0
N (. . . ) = f0

N KN (. . . ) (15)

what means that the operator KN is commuting with the equilibrium dis-
tribution f0

N .

3. Stecki’s projection operator

The evolution of N -particle system is described by Liouville’s equation
for the probability density function fN (r1, r2, . . . , rN ,p1,p2, . . . ,pN , t) in
6N -dimensional phase space. Namely, Liouville’s equation describes the
time evolution of the phase-space distribution function

∂fN
∂t

= −KN fN .

Applying Koopman’s shift operator, after [13], the function

FN (t) = e− tKN FN (0) (16)

is defined, where
FN (0) = eik1r1 f0

N . (17)

Then Fourier’s transform of the one-particle distribution function is

f(k,v1, t) =

∫
Ω

dr1 e
−ikr1

∫
ΩN−1×R3(N−1)

dvN−1 drN−1 FN (t) . (18)

In relation (18) and below, integrating dr1, also dri, i = 2, . . . , N, is per-
formed over the volume Ω, while integrating dv1, also dvi, i = 2, . . . , N, is
performed over the whole space R3.

The function f(k,v1, t) satisfies the initial condition

f(k1,v1, 0) = ϕM(v1) . (19)
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In definition (16), the potential U is given by the sum of Ufl and U ext, cf.
relation (6). Now, Stecki’s projection operator reads, cf. [13],

P ≡ eikr1
f0
N

(
vN , rN

)
ϕM(v1)

∫
dvN−1 drN e− ikr1 , (20)

where vN ≡ (v1, v2, . . . , vN ), and rN ≡ (r1, r2, . . . , rN ). Moreover,
dvN−1 ≡ dv2 dv3 . . . dvN and drN ≡ dr1 dr1 . . . drN . We observe that

PFN (t) = eikr1
f0
N

(
vN , rN

)
ϕM(v1)

∫
dvN−1 drN e− ikr1 FN (t)

= eikr1
f0
N

(
vN , rN

)
ϕM(v1)

f(k,v1, t) , (21)

where definition (18) was exploited. In particular, for t = 0,

P FN (0) = eikr1
f0
N

(
vN , rN

)
ϕM(v1)

f(k,v1, 0) = FN (0) (22)

by condition (19) and definition (17). Hence, (1 − P)FN (0) = 0. Moreover,∫
dvN−1 drN e− ikr1 P FN (t) =

∫
dvN−1 drNe− ikr1

× eikr1
f0
N

(
vN , rN

)
ϕM(v1)

f(k,v1, t) = f(k, v1, t) (23)

because ∫
dvN−1 drN

f0
N

(
vN , rN

)
ϕM(v1)

= 1 . (24)

We write Liouville’s equation for the function FN (t)

∂FN (t)

∂t
= −KN FN (t)

in the form of
∂

∂t
[PFN (t)] = −PKN P FN (t) − PKN (1− P)FN (t) ,

∂

∂t
[(1− P)FN (t)] = − (1− P)KNPFN (t) − (1− P)KN (1− P)FN (t) .

Hence,
∂

∂t
PFN (t) = −PKN P FN (t)

+PKN

t∫
0

dτ e− τ (1−P)KN (1− P)KN P FN (t− τ) . (25)
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Substitute PFN (t) by Eq. (21), multiply both sides by exp(−kr1) and inte-
grate over the whole phase space, with except of velocity v1. We have∫

dvN−1 drN e− ikr1
∂

∂t
P FN (t) =

∂

∂t
f(k,v1, t)

as the P does neither depend on the time t nor on the velocity v1, and∫
dvN−1 drN e− ikr1 PKN PFN (t)

= ikv1 f(k,v1, t) + F ext
1

(
βv1 +

1

m1

∂

∂v1

)
f(k1,v1, t) ,

where, cf. Eq. (10),

F ext
1 = − 1

Q

∫
drN

∂U ext

∂r1
e−βU

ext
(26)

represents an external force, which as an averaged quantity is independent
of the position. As a result, Eq. (25) takes the form of(

∂

∂t
+ ikv1

)
f(k,v1, t) + F ext

1

(
βv1 +

1

m1

∂

∂v1

)
f(k1,v1, t)

=

∫
dvN−1 drN e− ikr1 PKN

×
t∫

0

dτ e− τ (1−P)KN eikr1
f0
N

(
vN , rN

)
ϕM(v1)

f(k,v1, t− τ) . (27)

Notice also that∫
dvN−1 drN e− ikr1 PKN (. . . ) =

∫
dvN−1 drN e− ikr1 KN (. . . ) .

Thus, the kinetic equation (27) for the one-particle function f(k,v1, t) reads(
∂

∂t
+ ikv1

)
f(k,v1, t) + F ext

1

(
βv1 +

1

m1

∂

∂v1

)
f(k,v1, t)

=

t∫
0

dτ G(k, τ) f(k,v1, t− τ) (28)

with

G(k, τ) ≡
∫

dvN−1 drN e− ikr1 KN e
− τ (1−P)KN eikr1

f0
N

(
vN , rN

)
ϕM(v1)

(29)

which is the scattering operator for the problem.
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After expanding exp[− τ (1−P)KN ] in the scattering operator, the right-
hand side of Eq. (28) takes the form of

t∫
0

dτ G(k, τ)f(k,v, t− τ) ≡
t∫

0

dτ

∫
dvN−1drNe−ikr1f0

N

(
vN , rN

)
KN

×
∞∑
n=1

(−τ)n

n!
(KN − PKN )

n (KN − PKN ) e
ikr1

f(k,v, t− τ)
ϕM(v)

, (30)

where the commutation rule (15) was applied to translate the f0
N (v

N , rN )
to the left.

4. Low density kinetic equation

We write the scattering operator in expression (30) in the form of

G(k, τ) =
∞∑
n=1

(−τ)n

n!
G(n)(k, 0) (31)

and extract the term proportional to the density

ρ =
N

Ω
(32)

from the function

G(n)(k, 0) f(v1) =

∫
dvN−1drNe−ikr1 KN

×(KN − PKN )
n eikr1 KN

f0
N

(
vN , rN

)
ϕM(v)

f(v1) , (33)

where f(v1) is an arbitrary function of v1. We calculate

(KN − PKN )
n eikr1 f0

N (. . . )

= (KN − PKN )
n−1(KN − PKN ) e

ikr1 f0
N (. . . )

= (KN − PKN )
n−1 f0

N e
ikr1

×
(
ikv1 +KN −

1

ϕM(v1)

∫
dv′N−1dr′N (ikv1 +K ′N )

)
(. . . ) . (34)

After introducing the operator

P0 (. . . ) =

∫
dvN−1drN

f0
N

(
vN , rN

)
ϕM(v)

(. . . ) , (35)
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we write expression (33) in the form of

G(n)(k, 0) f(v1) =

∫
dvN−1drNf0

N (ikv1 +KN )

×[(ikv1 +KN − P0(ikv1 +KN )]
n χ
(
rN ,v1

)
, (36)

where
χ
(
rN ,v1

)
≡ ∂U

∂r1

(−1)
m1

∂

∂v1

f(v1)

ϕM(v)
. (37)

We observe that the operator P0 rises the order of the density ρ by 1. After
rejecting the components of the evidently higher order than 1, we keep only

G(n)(k, 0) f(v1)=

∫
dvN−1drN f0

N

(
vN , rN

)
KN (ikv1 +KN )

n χ
(
rN ,v1

)
.

(38)
However,

(ikv1 +KN )
n χ
(
rN ,v1

)
=

N∑
j=2

[ikv1 +K2(1, j)]
n χ
(
rN ,v1

)
, (39)

where
K2(1, j) ≡ v1

∂

∂r1
+ F 1j

∂

∂v1
+ F ext

1

∂

∂v1
(40)

with

F 1j ≡ −
∂u1j

∂ri
and F ext

1 ≡ −∂U
ext

∂ri
. (41)

We remind that, cf. for example [1],

N∑
j=2

∫
dr1 . . . drj . . . drNF2(r1, rj)

1

Q
e−βU

= (N − 1)

∫
dr1dr2F2(r1, r2)

1

Q
e−βUdr3 . . . drN

=
N

Ω2

∫
dr1dr2F2(r1, r2) g(r1, r2) , (42)

where F2(r1, r2) is an arbitrary function of given arguments and g(r1, r2)
is the second order correlation function

g(r1, r2) ≡
1

Ω

∫
dr3 . . . drN e

−βU∫
drN e−βU

≈ e−β[u12(r1,r2)+Uext(r1)+Uext(r2)] . (43)
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Therefore, we write

G(n)(k, 0) f(k1,v1, t) =
N∑
j=2

∫
dvN−1drN f0

N

(
vN , rN

)
K1j

×(ikv1 +K1j)
n
(
F1j + F ext

1

) ∂

∂v1

f(k1,v1, t)

ϕM(v1)
. (44)

Again, after extracting the lowest terms in the density ρ = N/Ω, we obtain

G(n)(k, 0) f(k1,v1, t) =
N

Ω

∫
dv2

dr1dr2

Ω
g(r1, r2)ϕM(v1)ϕM(v2)

×K12(ikv1 +K12)
n ∂

∂v1

f(k1,v1, t)

ϕM(v1)
. (45)

As a result,

G12(k, τ) =
N∑
j=2

(−τ)n

n!
G(n)

12 (k, 0)

=
N

Ω

∫
dv2

dr1dr2

Ω
g(r1, r2)ϕM(v1)ϕM(v2)K12

×e−ikr1 e−τK12eikr1K12
1

ϕM(v1)
. (46)

Let us perform the Laplace transform of the G12(k, τ)

G12(k, z) ≡
∞∫

0

dt eizt G12(k, τ) with =z > 0 .

We have

G12(k, z) =
N

Ω

∫
dv2

dr1dr2

Ω
g(r1, r2)ϕM(v1)ϕM(v2)K12

×e−ikr1
1

−iz +K12
eikr1K12

1

ϕM(v1)
(47)

or

G12(k, z) =
N

Ω

∫
dv2

dr1dr2

Ω
g(r1, r2)ϕM(v1)ϕM(v2) e

−ikr1

×(K12−ikv1)
1

−iz +K12
(K12−ikv1) e

ikr1K12
1

ϕM(v1)
. (48)
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Since

(iz −K12 +K12 − ikv1)

(
1

−iz +K12
(K12 − ikv1)− 1 + 1

)
= (−iz + ikv1)

(
1

−iz +K12
(−iz + ikv1)−

1

−iz + ikv1
(−iz + ikv1)

)
and

1

−iz + ikv1
eikr1f(v1) =

1

−iz +K0
12

eikr1f(v1)

therefore,

G12(k, z) =
N

Ω

∫
dv2

dr1dr2

Ω
g(r1, r2)ϕM(v1)ϕM(v2) e

−ikr1

×
(

1

−iz+K12
− 1

−iz+K0
12

)
eikr1 (−iz+ikv1)

1

ϕM(v1)
(49)

or, equivalently,

G12(k, z) =
N

Ω

∫
dv2

dr1dr2

Ω
g(r1, r2)ϕM(v1)ϕM(v2) e

−ikr1

×
∞∫

0

dτeizτ
(
e−τK12−e−τK0

12

)
eikr1(−iz+ikv1)

1

ϕM(v1)
. (50)

This form is similar to the difference form of Boltzmann’s equation.

Moments of scattering law

Moment of nth order of the intermediate scattering function Is(k, t) is
given by

(−i)n I(n)
s =

∞∫
−∞

f (n)(k,v1, 0) dv1 .

Kinetic equation (28) describes the behaviour of the function f(k,v1, t) for
all times, in particular for very short. It can be applied to find from it the
moments of scattering law. To this end, we write Eq. (28) in the form of(

∂

∂t
+ ikv1

)
f(k,v1, t) + F ext

1

(
βv1 +

1

m1

∂

∂v1

)
f(k,v1, t) = J (t) ,

where

J (t) ≡
t∫

0

dτ G(k, τ) f(k,v1, t− τ) .
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Differentiating with respect to time both sides of this equation, at the instant
t = 0, we get

f ′(0) = −
{
ikv1 + F ext

1

(
βv1 +

1

m1

∂

∂v1

)}
f(0) ,

f ′′(0) = −
{
ikv1 + F ext

1

(
βv1 +

1

m1

∂

∂v1

)}
f ′(0) + J ′(0) ,

and so on. We have omitted arguments k and v1 and write simply f(0) in-
stead of f(k,v1, 0); similarly abbreviate the arguments of derivatives. Here,

J (0) = 0 , J ′(0) = G(0)f(0) ,
J ′′(0) = G(0)f ′(0) + G′(0)f(0) ,

an so on.
5. Lorentz’ gas

The kinetic theory of the Lorentz gas has been studied in the past ex-
tensively, cf. [27, 28]. This system consists of N − 1 fixed scatterers and one
particle moving between them. Such a system is known also as Ehrenfest’s
wind-tree model or Sinai’s billiard, cf. [29, 30] and [31–33], respectively. The
model was exploited by Lebowitz and Spohn to investigate the stationary
equilibrium and to derive Fourier’s law of heat conduction [34]. Piasecki ap-
plied the Lorentz gas to study the flow of charged particles in a constant and
uniform electric field through the medium of immobile, randomly distributed
scatterers [36, 37], while in the paper with Wajnryb to model propagation
of neutrinos in a medium composed of nuclei [38].

Therefore, in the Lorentzian gas, a classical particle moves in an infinite
random array of stationary spherical scatterers, what means that the mass of
a selected particle No. 1 is small in comparison with the masses of remaining
particles, cf. [35, 39]

m1 ≡ m and m2 = m3 = · · · = mN ≡M →∞ .

Thus, m�M and vi → 0, i ≥ 2. Hence,∫
dvi ϕM(vi) = 1 for i = 2, 3, . . . , N .

We have only one moving particle now, and we omit the index 1 at the
velocity of the particle No. 1

v1 ≡ v .
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This means also that the kinetic energy of the light particle is a constant of
motion. Liouville’s operator (12) is now written in the form of

KN = v
∂

∂r1
−

N∑
j=2

∂u1j

∂r1

1

m

∂

∂v
− ∂U1(r1)

∂r1

1

m

∂

∂v
(51)

and Stecki’s operator (20) takes the form

P ≡ eikr1
e−βU

Q

∫
drN e− ikr1 . (52)

With these definitions of the KN and P, we expand the exp[− τ (1−P)KN ]
in the right-hand side of Eq. (28) and get

t∫
0

dτ G((k, τ) f(k,v, t− τ) ≡
t∫

0

dτ

∫
drN e− ikr1 KN

×
∞∑
`=1

(− τ)`

`!
[(1− P)KN ]

` eikr1
f0
N

(
vN , rN

)
ϕM(v)

f(k,v, t− τ) . (53)

Then the kinetic equation (28) reads{
∂

∂t
+ ikv + F ext

1

(
βv +

1

m

∂

∂v

)}
f(k,v, t)

=

t∫
0

dτ
∞∑
`=1

(−τ)`

`!
G(`)(k) f(k,v, t− τ) , (54)

where

G(`)(k) ≡
∫

drN e− ikr1KN [(1− P)KN ]
` eikr1

e−βU

Q
. (55)

We find

KN e
ikr1

e−βU

Q
f(k, v, t)

= ϕM(v)
e−βU

Q
eikr1

(
ikv − ∂U1(r1)

∂r1

1

m

∂

∂v

)
f(k,v, t)

ϕM(v)
(56)

and, cf. definition (26) of the force vector F ext
1 ,

PKN e
ikr1

e−βU

Q
f(k,v, t)

= ϕM(v)
e−βU

Q
eikr1

(
ikv + F ext

1

1

m

∂

∂v

)
f(k,v, t)

ϕM(v)
. (57)
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Hence,

(1− P)KN e
ikr1

e−βU

Q
f(k,v, t)

=
e−βU

Q
eikr1

(
−F ext

1

) (
βv1 +

1

m

∂

∂v

)
f(k,v, t) . (58)

In the absence of the exterior field, the last expression vanishes.

Low density kinetic equation for the Lorentz gas

Recalling definition (51) of KN , we see that it contains a summation
over all scattering centers. The only term giving rise to a single factor N
after averaging is the one in which none of these summations is allowed to
introduce additional N factors. Hence, operator (55) reads

G
(`)
2 (k)f ≡

∫
drN

e−βU

Q
ϕM(v1) e

− ikr1K2 (ikv +K2)
`K2

f

ϕM(v1)
, (59)

where
K2 = v

∂

∂r1
− ∂[u12 + U1(r1)]

∂r1

1

m

∂

∂v

and the arguments of the function f(k,v1, t) were omitted. Hence, after
resummation, we can write the kinetic equation (28) in the form of{

∂

∂t
+ ikv + F ext

1

(
βv +

1

m

∂

∂v

)}
f(k,v, t)

=

t∫
0

dτ

∫
drN

e−βU

Q
ϕM(v1) e

− ikr1K2 e
−τ(ikv+K2) f(k,v, t− τ)

ϕM(v1)
. (60)

Comparing with Eq. (3.30), derived in [40] for the dilute Lorentz gas in
the absence of the external potential, we find that at the left-hand side a
new term appears containing the force F ext

1 , while the right-hand side is
similar to that in Eq. (3.30) from [40], but with the different operator K2,
comprising the external field.

6. Conclusions

We have found a general kinetic equation for the classical gas of particles
with short-range attraction valid within the framework of classical statistical
mechanics and its alternative Fourier transform for a system of binary inter-
acting particles in the external potential. We have applied to this problem
the technique of projection operators. The kinetic equation for the dilute
Lorentz gas of interacting particles in an external potential was derived.



Kinetic Equation for the Dilute Boltzmann Gas in an External Field 919

REFERENCES

[1] M. Smoluchowski, Drei Vortrage über Diffusion, Brownsche Bewegung und
Koagulation von Kolloidteilchen, Phys. Zeitschr. 17, 557 (1916).

[2] M. Smoluchowski, Zur kinetischen Theorie der Brownschen
Molekulärbewegung und der Suspensionen, Ann. Phys. 21, 756 (1906).

[3] S. Chandrasekhar, M. Kac, R. Smoluchowski, Marian Smoluchowski — His
Life and Scientific Work, (ed.) R.S. Ingarden, Seria: Polish Men of Science,
PWN — Polish Scientific Publishers, Warszawa 1999.

[4] A. Rahman, Phys. Rev. 136, A405 (1964).
[5] S.W. Lovesey, J. Phys. C 4, 3057 (1971).
[6] P.J. Rossky, Perspective on Correlations in the Motion of Atoms in Liquid

Argon, in: C.J. Cramer, D.G. Truhlar (eds), Theoretical Chemistry Accounts:
New Century Issue, Springer, Berlin–Heidelberg 2000, pp. 263–264; special
reprint edition of Theoretical Chemistry Accounts 103 (3–4), February 2000.

[7] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[8] M.S. Green, J. Chem. Phys. 22, 398 (1954).
[9] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[10] J. Stecki, Termodynamika statystyczna, PWN, Warszawa 1971, in Polish.
[11] D.J. Evans, Phys. Rev. A 32, 2923 (1985).
[12] L. van Hove, Phys. Rev. 95, 249 (1954).
[13] J. Stecki, J. Comput. Phys. 7, 547 (1971).
[14] A.R. Altenberger, J. Stecki, J. Stat. Phys. 5, 83 (1972).
[15] A.R. Altenberger, Physica A 80, 46 (1975).
[16] M.A. Narbutowicz, Rep. Math. Phys. 8, 1 (1975).
[17] S.-H. Chong, Ch.-Y. Son, S. Lee, Phys. Rev. E 83, 041201 (2011).
[18] R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
[19] R. Zwanzig, Phys. Rev. 124, 983 (1961).
[20] J.W. Gibbs, On the Fundamental Formula of Statistical Mechanics, with

Applications to Astronomy and Thermodynamics, Proceedings of the
American Association for the Advancement of Science, 33, 57–58 (1884);
reproduced in The Scientific Papers of Josiah Willard Gibbs, Vol. II (1906),
p. 16.

[21] J.W. Gibbs, Elementary Principles in Statistical Mechanics, Charles
Scribner’s Sons, New York 1902.

[22] J. Liouville, Note sur la théorie de la variation des constantes arbitraires,
Journal de mathématiques pures et appliquées 1re série, 3, 342–349 (1838).

[23] B.O. Koopman, Hamiltonian Systems and Transformations in Hilbert Space,
Proceedings of the National Academy of Sciences of the USA 17 (5) 315–318
(1931). PMCID: PMC1076052.

http://dx.doi.org/10.1103/PhysRev.136.A405
http://dx.doi.org/10.1088/0022-3719/4/18/011
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1063/1.1740082
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1103/PhysRevA.32.2923
http://dx.doi.org/10.1103/PhysRev.95.249
http://dx.doi.org/10.1016/0021-9991(71)90110-0
http://dx.doi.org/10.1007/BF01008372
http://dx.doi.org/10.1016/0378-4371(75)90145-4
http://dx.doi.org/10.1016/0034-4877(75)90013-0
http://dx.doi.org/10.1103/PhysRevE.83.041201
http://dx.doi.org/10.1063/1.1731409
http://dx.doi.org/10.1103/PhysRev.124.983


920 R. Wojnar

[24] J.L. Lebowitz, E. Rubin, Phys. Rev. 131, 2381 (1963).
[25] P. Resibois, H.T. Davis, Physica 30, 1077 (1964).
[26] J.L. Lebowitz, P. Résibois, Phys. Rev. 139, 1101 (1965).
[27] H.A. Lorentz, Le mouvement des électrons dans les meétaux, Arch. Néerl. 10

336 (1905), also in: Collected papers, Vol. III.
[28] W.E. Alley, Studies in Molecular Dynamics of the Friction Coefficient and

the Lorentz Gas, Department of Energy, Lawrence Livermore Laboratory,
University of California, Davis 1979.

[29] P. Ehrenfest, T. Ehrenfest, Begriffe Grundlagen der statistischen Auffasuung
in der Mechanik, $I.5, reprinted in P. Ehrenfest, Collected Scientific Papers,
North-Holland, Amsterdam 1959.

[30] E.H. Hauge, What Can We Learn from Lorentz Models? in: Transport
Phenomena, Sithges International Summer School of Statistical Mechanics,
G. Kirzenow, J. Marro (eds.), Lect. Notes Phys. Vol. 31, Springer, 1974.

[31] Ya.G. Sinai, Russian Math. Survey 25, 132 (1970).
[32] Ya.G. Sinai, Uspekhi Mat. Nauk 33, 229 (1978).
[33] Ya.G. Sinai, Funktsional. Anal. Prilozhen. 13, 46 (1979).
[34] J.L. Lebowitz, H. Spohn, J. Stat. Phys. 19, 633 (1978).
[35] H.A. Lorentz, The Motion of Electrons in Metallic Bodies, in KNAW,

Proceedings, Amsterdam 7, pp. 438–453 (1905).
[36] J. Piasecki, J. Stat. Phys. 24, 45 (1981).
[37] J. Piasecki, Am. J. Phys. 61, 718 (1993).
[38] J. Piasecki, E. Wajnryb, Physica A 133, 291 (1985).
[39] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform

Gases — An Account of the Kinetic Theory of Viscosity, Thermal
Conduction, and Diffusion in Gases, Cambridge 1970.

[40] R. Wojnar, J. Stecki, Physica A 84, 316 (1976).

http://dx.doi.org/10.1103/PhysRev.131.2381
http://dx.doi.org/10.1016/0031-8914(64)90099-0
http://dx.doi.org/10.1103/PhysRev.139.A1101
http://dx.doi.org/10.1007/BF01011774
http://dx.doi.org/10.1007/BF01007634
http://dx.doi.org/10.1119/1.17147
http://dx.doi.org/10.1016/0378-4371(85)90068-8
http://dx.doi.org/10.1016/0378-4371(76)90004-2

	1 Introduction
	2 The system and Liouville's operator
	3 Stecki's projection operator
	4 Low density kinetic equation
	5 Lorentz' gas
	6 Conclusions 

