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Information processing in the 
NF-κB pathway
Karolina Tudelska1, Joanna Markiewicz1, Marek Kochańczyk  1, Maciej Czerkies1, Wiktor 
Prus1, Zbigniew Korwek1, Ali Abdi2, Sławomir Błoński1, Bogdan Kaźmierczak1 &  
Tomasz Lipniacki1

The NF-κB pathway is known to transmit merely 1 bit of information about stimulus level. We combined 
experimentation with mathematical modeling to elucidate how information about TNF concentration 
is turned into a binary decision. Using Kolmogorov-Smirnov distance, we quantified the cell’s ability 
to discern 8 TNF concentrations at each step of the NF-κB pathway, to find that input discernibility 
decreases as signal propagates along the pathway. Discernibility of low TNF concentrations is restricted 
by noise at the TNF receptor level, whereas discernibility of high TNF concentrations it is restricted 
by saturation/depletion of downstream signaling components. Consequently, signal discernibility 
is highest between 0.03 and 1 ng/ml TNF. Simultaneous exposure to TNF or LPS and a translation 
inhibitor, cycloheximide, leads to prolonged NF-κB activation and a marked increase of transcript levels 
of NF-κB inhibitors, IκBα and A20. The impact of cycloheximide becomes apparent after the first peak 
of nuclear NF-κB translocation, meaning that the NF-κB network not only relays 1 bit of information to 
coordinate the all-or-nothing expression of early genes, but also over a longer time course integrates 
information about other stimuli. The NF-κB system should be thus perceived as a feedback-controlled 
decision-making module rather than a simple information transmission channel.

Cell signaling is performed by pathways and networks. The pathways, conceptualized as linear compositions 
of biochemical signal transduction elements, can be perceived as communication channels that transmit infor-
mation from stimuli to respective outputs1. Information relayed by a pathway is degraded due to stochastic-
ity inherent in biochemical reactions (intrinsic noise), whereas the variability in cellular states (extrinsic noise) 
reduces information available to an observer who has no knowledge about the parameters governing information 
transmission through the channel2. Cell signaling networks, conceptualized as systems of densely interconnected 
components that employ nonlinear functional elements such as feedbacks and delays, are perceived as functional 
modules capable of not only information transmission but also processing.

The aim of information processing is to convert incoming signals into one of predefined cellular responses. 
These responses can either be graded or have a form of digitized decisions (or physiological “programs”), such as 
proliferation, apoptosis, senescence, differentiation, epithelial–mesenchymal transition, autophagy, entosis, and 
others3. Whether to survive or commit to apoptosis is an example of a binary cell fate decision that is consequent 
upon the collection of a wide range of information4. Reaching such a binary decision results from integration and 
processing of information rather than its trivial degradation to ultimately 1 bit just by noise.

The capacity of an information channel is the number of bits that can be transmitted per unit of time. Shannon 
formally defined channel capacity as an upper bound on mutual information that can be transmitted over a 
sufficiently long time, T, divided by T5,6. If input has the form of pulses, information capacity of the channel can 
be estimated as the number of bits transmitted in a single pulse multiplied by the maximal number of pulses 
per time unit. Werner et al.7,8 showed in mouse embryonic fibroblasts (MEFs) that NF-κB can translocate to the 
nucleus in response to TNF pulses as short as 1 min, and a consequent pulse of nuclear NF-κB peaks between 15 
and 30 min and lasts for about 1 hour after TNF stimulation. Later, Ashall et al.9 showed in SK-N-AS cells that 
NF-κB exhibits translocation in response to 5-min pulses repeated every 200, 100, 60 min; however, only for the 
lowest frequency are the amplitudes of the first and the subsequent pulses equal. The information capacity of the 
NF-κB channel is thus determined by the refractory time, i.e., the minimal time after which the system is capable 
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of responding to a subsequent pulse. Refractory time of the NF-κB channel appears to be cytokine-dependent10. 
Recently, using an experiment-calibrated model, we found that NF-κB has the ability to respond to sequences of 
TNF pulses of amplitude 10 ng/ml (“true” pulses) or 0 ng/ml (“false” pulses) with a frequency lower than 1/hr, 
exhibiting nuclear translocation after “true” pulses and ignoring “false” pulses11. This model prediction awaits 
experimental verification.

For the pulsatile TNF stimulation protocols, the NF-κB channel capacity is thus determined by the number of 
bits that can be transmitted in a single pulse and pulse frequency. As the first NF-κB pulse is very similar for both 
tonic and pulsed TNF stimulation, the value obtained by Cheong et al.1 for tonic stimulation can be considered as 
an appropriate estimate of the number of bits transmitted in a single pulse: they found that the NF-κB response 
can yield at most 0.92 ± 0.01 bit of information. This is equivalent to resolving 20.92 ≈ 2 concentrations of the TNF 
signal, which is equivalent to reporting only whether TNF is present or not. Together with the predicted refrac-
tory time, this imposes an upper bound on the NF-κB channel information transmission at 1 bit/hr.

Here, we analyze how information transmitted through subsequent steps of the signaling cascade from TNF 
receptor (TNFR) to NF-κB is reduced or turned into a binary decision. We employ our recently calibrated11 
mathematical model of the NF-κB network12–14 and focus on the first pulse of NF-κB translocation. In addition to 
estimating upper bound of mutual information, we quantify the ability of the system to discern the neighboring 
concentrations of a stimulus at each step of the core pathway by means of the Kolmogorov–Smirnov distance, a 
measure of distance between two probability distributions15.

Results
Interpretation of confocal image data and computational model assumptions. Extrinsic noise, 
which influences information transmission in signaling networks, is associated with heterogeneity in concentra-
tions of network components and variability of cellular states across a population of cells. Here, we examine the 
NF-κB network (a simplified network scheme is shown in Fig. 1a) and, following our earlier study13, we take into 
account only the variability in the levels of TNFR and NF-κB. As the TNFR distribution is unknown, it is consid-
ered as a free parameter of the model. Finding the distribution of NF-κB in a cell population based on confocal 
images is difficult since cell boundaries are not clearly visible. In the context of modeling, an important variable 
is however not the total but the “translocatable” NF-κB, i.e., the NF-κB that can translocate to the nucleus after 
being released from IκB isoforms degraded in response to TNF. In our model, IκBα stands for all IκB isoforms. 
Experimental data suggest that even after almost all IκBα is degraded, a noticeable fraction of NF-κB remains 
cytoplasmic (Fig. 1b), possibly because it is sequestered by other inhibitors that are not degraded in response to 
TNF or because some post-translational modifications preclude its nuclear translocation.

We estimate the distribution of translocatable NF-κB in the cell population by determining the distribu-
tion of nuclear NF-κB after 30 min of 10 ng/ml TNF stimulation in cells pretreated with cycloheximide (CHX; 
Fig. 1c, green bars). By inhibiting translation, CHX blocks the synthesis of NF-κB inhibitors, IκBα and A20. In 
CHX-pretreated cells, IκBα (Nfkbia) and A20 (Tnfaip3) mRNA accumulate over 3–4 hours after TNF or LPS 
stimulation (Fig. 1d), indicating transcriptional activity, however, no IκBα proteins are visible in immunostain-
ing images at the end of that period, and most of NF-κB reside in the nucleus (Fig. 1b), as also observed by Sung 
et al.16. Notwithstanding, in cells stimulated with TNF or LPS without CHX pretreatment, IκBα mRNA profile 
peaks at about 1 hour, and IκBα protein accumulates over 3 hours and directs NF-κB out of the nucleus. Thus, 
we expect that in conditions of inhibited translation virtually all translocatable NF-κB is localized to the nucleus.

Quantification of immunofluorescence data indicates that the average fraction of nuclear NF-κB in untreated 
cells is 0.24 (Fig. 1c, gray bars). However, according to Western blotting data, the level of nuclear NF-κB in 
untreated cells is about 0.03 of the maximal nuclear NF-κB in TNF-stimulated cells, which implies that the 
nuclear fraction in unstimulated cells is below 0.03 (Fig. 1e). We propose that this discrepancy between micros-
copy and blotting data arises from the fact that about 0.24 of cytoplasmic immunofluorescence, resulting from 
the presence of NF-κB below and above the nucleus, registers as nuclear. We further refer to this microscopy 
technique error as the cytoplasmic interference (CI). In order to juxtapose numerical simulations and experi-
mental data, the former are modified to account for CI, whereas experimental data are presented without any 
modification. The magnitude of CI is very likely cell-dependent, however measuring it in single cells would be 
very difficult as it would require estimation of nuclear NF-κB (at the single-cell level) by a method different than 
immunostaining.

Having applied the CI correction to the average nuclear NF-κB fraction observed in response to TNF and 
CHX costimulation and equal xobs = 0.74 (Fig. 1c), we deduce the actual nuclear NF-κB fraction xmax using the 
formula xobs = xmax + 0.24(1 − xmax), which gives xmax = (0.74 − 0.24)/(1 − 0.24) ≈ 2/3. Based on it, we estimate 
the ratio of the translocatable NF-κB pool to the inert NF-κB pool as 2:1, and assume that both NF-κB types are 
distributed independently according to the experimental NF-κB distribution obtained for CHX and TNF costim-
ulation. In the computational model we assume that on average there are 105 NF-κB molecules in the translo-
catable pool and 0.5 × 105 NF-κB molecules in the inert pool. The latter is only used to normalize the amount of 
nuclear NF-κB in each cell by dividing it by an average cellular NF-κB in the population of cells (see Methods). 
Such normalization is needed to reproduce experimental results showing that no more than 2/3 of NF-κB trans-
locate to the nucleus.

Mutual information. Mutual information, MI, of two discrete random variables X and Y can be defined as
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where p(x,y) is the joint distribution of outputs X and inputs Y. Inputs Y will be identified with 8 TNF stimula-
tion doses, while outputs X with the levels of selected components of the NF-κB pathway, at a given time point. 
Throughout the article, the default output is the level of nuclear NF-κB; in the subsection “Mutual information 
and dose discernibility at each level of the NF-κB pathway” we consider additionally five other pathway com-
ponents shown in the scheme in Fig. 1a. Formally, outputs are discrete since we quantify each protein level as 
the number of molecules per cell. MI is estimated according to the method proposed by Kraskov et al.17 (see 
Supplementary Dataset S2 for a python implementation). The upper bound for transmitted information is esti-
mated by maximizing MI with respect to 8 input (or “a priori”) probabilities p(y) using a steepest-ascent method. 
More specifically, Eq. (1) can be re-written as
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where | =p x y p x y p y( ) ( , )/ ( ) represents the distribution of the output x conditioned on the input y. Let 
= =p p y( TNF )i i  be the probability for input dose TNFi, i = 1, …, 8. This simplifies Eq. (2) to

Figure 1. Experimental characterization of NF-κB response to TNF and LPS under conditions of normal or 
inhibited translation. MEFs were stimulated with 10 ng/ml TNF or 1 μg/ml LPS in the absence or presence 
of 5 μg/ml cycloheximide (CHX). In the CHX + TNF and CHX + LPS costimulation experiments, cells were 
incubated with 5 μg/ml CHX for 30 min prior to TNF or LPS stimulation. (a) Schematic diagram of the NF-κB 
pathway. A detailed diagram can be found in Korwek et al.11. (b) Temporal coevolution of nuclear NF-κB and 
total IκBα. Following stimulation, cells were fixed and stained with antibodies for RelA (a subunit of NF-κB) 
and for IκBα. Representative excerpts from confocal images show cells at 0 (‘untreated’), 15, 30 and 180 min 
after TNF stimulation. See Supplementary Data S1 for corresponding uncropped immunostaining images. (c) 
Histograms (n = 466 for untreated cells and n = 1434 for CHX + TNF costimulated cells) show NF-κB nuclear 
translocation, defined as nuclear fluorescence normalized to the average whole-cell fluorescence, based on 
confocal images (see Methods for details). The CHX + TNF histogram is derived from confocal images for the 
30-min time point of the CHX + TNF costimulation experiment, which corresponds to the observed peak of 
NF-κB nuclear translocation. µ denotes the mean values of the distributions. (d) Gene expression profiles of 
NF-κB inhibitors, IκBα and A20. Time profiles of relative mRNA levels of IκBα and A20 were obtained using 
digital PCR measurements. (e) Western blot of nuclear RelA (a subunit of NF-κB) in response to TNF and its 
densitometric quantification with HDAC1 as reference. Average ratio of NF-κBnuc(t = 0)/NF-κBnuc(t = 30 min) 
calculated based on 3 such independent experiments is 0.03, which allows to estimate the nuclear NF-κB 
fraction at t = 0, NF-κBnuc(t = 0)/NF-κBtotal, to be below 0.03. See Supplementary Data S2 for full-length 
Western blots.
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where ∑ == p 1i i1
8 . When we consider pairs of TNF input concentrations TNF1 and TNF2 with probabilities 

p1 + p2 = 1 (Supplementary Data S4), the index of the outer sum runs over i = 1, 2.
We should notice that since our analysis is based on sampled one-dimensional probability distributions, we 

quantify how much information on average is transmitted by a single cell in which NF-κB response is measured at 
a single time point. Similarly using Kolmogorov–Smirnov statistics (introduced below) we will quantify “average 
single cell” ability to discern two stimulation doses.

Dose discernibility. To quantify the dose discernibility at different levels of the pathway we will use the 
Kolmogorov–Smirnov distance (KS). KS can be used to quantify the distance between two empirical distribution 
functions, P1 and P2, of two samples, S1 and S2, as

= −P P F x F xKS( , ) sup ( ) ( ) ,
(4)x

1 2 1 2

where F1 and F2 are cumulative distributions of P1 and P2 and sup is the supremum of the set of distances (Fig. 2a). 
In our cases, samples are cell populations stimulated with different TNF concentrations. In the cases analogous 
to this shown in Fig. 2a, KS distance between P1 and P2 has a simple graphical representation: 1 − KS is the 
shared area below both probability density functions. KS distance has two properties that make it a useful metric 
to quantify how well a given pair of doses can be discerned by measuring corresponding outputs: (i) KS can be 
interpreted in terms of miss and false alarm probabilities, (ii) KS satisfies the triangle inequality which permits its 
use as a metric for measuring discernibility of consecutive stimulation doses.

(i) Let us notice that the shared area below the distribution functions P1 and P2 can be divided into two subar-
eas by the line perpendicular to the x-axis, passing through point x such that P1(x) = P2(x) (see Fig. 2a). When the 
prior probabilities of two doses are equal, x is an optimal decision threshold18. When both samples are sufficiently 
large (precisely, infinitely large), these two subareas correspond to the miss and false alarm probabilities, pm and 
pf. In our case, miss probability is the probability that a cell from sample S2 is misinterpreted as a cell originating 
from S1, and, conversely, the false alarm probability is the probability that a cell from sample S1 is misinterpreted 
as a cell originating from S2. When both miss and false alarm probabilities are 0, then KS = 1 − pm − pf = 1, and 
one can deduce with certainty which one of two stimulation concentrations was applied to an observed cell. 
Generally, when prior probabilities are equal, the error probability, i.e., probability of inappropriate dose assign-
ment for a randomly selected cell, is

=
+

=
−
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p p

2
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Of note, pm and pf were recently used to quantify decision making errors in the NF-κB system18.
(ii) KS satisfies the triangle inequality, i.e., KS(a, c) ≤ KS(a, b) + KS(b, c). Let us consider two Gaussian distri-

butions: N1 = N(x; µ1, σ2) and N2 = N(x; µ2, σ2) with the same variance σ2 and means satisfying |µ1 − µ2| = Δµ. To 

Figure 2. Concept of dose discernibility. (a) Correspondence between the Kolmogorov–Smirnov distance (KS) 
and the miss and false alarm probabilities. Absolute difference between cumulative distribution functions |F1(x) 
− F2(x)| reaches its supremum, called KS distance, in point x for which probability densities of distributions P1 
and P2 are equal, P1(x) = P2(x). When the prior probabilities corresponding to these distributions are equal, then 
point x is the optimal decision threshold, defining miss and false alarm probabilities, pm, pf. (b) Sum of KS 
distances between Gaussian distributions in between two Gaussians with Δµ0 = 2σ. (c) Comparison of MI  and 
KS, see text for details.
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analyze how KS can be used to discern close distributions we calculate 
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where we make use of the facts, that the maximal distance between the cumulative distributions (KS) is attained 
in the point in which corresponding distributions are equal (in this case at x = 0) and that the derivative of erf 
function at x = 0 is equal to 2 × N(0; 0, σ2). Correspondingly, the sum of KS distances between distributions with 
equidistant means located in-between two limiting distributions separated by Δµ0 (as shown in Fig. 2b) converges 
to π Δμ σ(1/ 2 ) /0  as the number of intermediary distributions tends to infinity. Thus, incremental KS distances 
can be used to measure length of a “path” between two distributions in an analogous way as segments can be used 
to measure the length of a curve between two points. Based on the above example, one can define adjacent inputs 
discernibility C(d) as

=
−→

C d P P
d d

( ) lim KS( , ) ,
(7)d d

1

11

where P and P1 are probability functions corresponding to the consecutive doses d and d1. The doses can be in the 
logarithmic scale. The example from Fig. 2b also suggests that, since convergence in Eq. (6) is fast, the local dose 
discernibility, Eq. (7), is well approximated by the difference quotient
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when roughly KS(P1, P) < 0.4. Local system sensitivity can be defined as
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Eq. (9) allows to interpret C(d) as a measure proportional to S(d)/σ(d) and implies that for Gaussian distribu-
tions the proportionality coefficient is π1/ 2 .

Finally, let us notice that Δμ σ ≈ Δμ σMI( / ) KS( / ), where ∆μ σMI( / ) denotes the mutual information 
between two inputs of probabilities p1 = p = 1/2 and corresponding Gaussian outputs, N1(µ1, σ2) and N(µ, σ2), 
with the same variance σ2 and means satisfying |µ1 – µ| = Δµ, while Δμ σ = N NKS( / ): KS( , )1 , see Fig. 2c. Let us 
also notice that when outputs are Gaussians with same variance σ2, then the maximal value of MI is reached when 
p1 = p = 1/2, which is however not true for distributions of different variances. Although this approximate relation 
is not universal, proportionality between maximized MI  and KS is surprisingly well held (with the Pearson 
correlation coefficient greater than 0.99) for both experimental and model-simulated distributions (see 
Supplementary Data S4). Because for close doses MI ≪ KS, the latter can be calculated with a smaller relative 
error.

Analysis of nuclear NF-κB response to eight TNF concentrations. NF-κB translocation in response 
to eight TNF concentrations (0, 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 ng/ml) was measured using immunofluorescence 
15 min and 30 min after stimulation and juxtaposed with model simulations (Fig. 3). The experimental histo-
grams of normalized nuclear NF-κB show that the maximal change of the distributions occurs between 0.03 and 
0.3 ng/ml TNF. Nuclear translocation of NF-κB is lower at 15 min than at 30 min for TNF concentrations below 
1 ng/ml. For both time points, saturation is reached at 1 ng/ml TNF, and the responses at these two time points 
become nearly indistinguishable. Weaker responses at 15 min are in agreement with the delayed NF-κB activation 
in response to low-concentration stimulation, as reported previously for both TNF and LPS19.

When comparing model simulations with experiment, we account for the cytoplasmic interference. 
Qualitatively, experimental and simulation-based histograms are similar, but the latter show the maximal change 
of the distributions for somewhat higher TNF doses. Correspondingly, the simulated and experimental KS dis-
tances between all TNF dose pairs follow the same pattern with higher experimental KS values for low TNF 
stimulation (Supplementary Data S4). The MI values at the level of NF-κB, maximized with respect to eight input 
probabilities, are very close for the experiment and the model: 0.74 versus 0.79 for 15 min; 0.79 versus 0.76 for 
30 min (Fig. 3). For both the model and the experiment, all KS distances are smaller than 1, which means that 
even unstimulated cells and cells stimulated with the highest TNF dose (10 ng/ml) may not be distinguished 
with absolute certainty. In this case, KS distance reaches about 0.9 (for both the experiment and the model, see 
Supplementary Data S4) which is consistent with the miss and false alarm probabilities reported by Habibi et al.18, 
who estimated pm = 0.1 and pf = 0.04, which implies KS = 0.86.

In the following sections, based on the computational model, we analyze:

•	 how the dose discernibility and MI are obscured by cytoplasmic interference,
•	 how the dose discernibility and MI depend on the magnitude of extrinsic noise,
•	 how information is reduced when passing through consecutive steps of the signal transduction pathway.
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Interference from cytoplasmic fluorescence obscures transmitted information. Cytoplasmic 
interference introduces an inherent bias in measurements of nuclear fluorescence, increasing its value. Thus, to 
compare model predictions with experiment, we accounted for cytoplasmic interference as described in Methods. 
Here, based on the model, we analyze how much information is lost from the observer’s perspective due to this 
bias of the experimental technique. The overall MI calculated for the model without cytoplasmic interference 
is about 1.0 bit (for σ = 0, 0.3, 1; see Fig. 4b) which is higher than for the model with cytoplasmic interference 
and higher than the value for experimental measurements, about 0.8 bit (Fig. 3). Also the KS distances between 
neighboring TNF concentrations without cytoplasmic interference are higher than with cytoplasmic interference 
(Supplementary Data S5). This difference is markedly pronounced at low stimulation concentrations, for which 

Figure 3. Nuclear NF-κB response to eight TNF concentrations: experiment and model. MEFs were stimulated 
with 0, 0.01, 0.03, 0.1, 0.3, 1, 3 or 10 ng/ml TNF, fixed and stained with antibodies for RelA (a subunit of NF-κB) 
and IκBα. Representative regions from confocal images show cells at 15 min (left) and 30 min (right) of TNF 
stimulation. See Supplementary Data S3 for corresponding uncropped immunostaining images. Histograms 
show NF-κB nuclear translocation calculated based on confocal images (green) and on numerical simulations 
(pink) for each combination of TNF stimulation time and concentration (the number of cells, n, quantified in 
each experiment, is shown next to each histogram, the number of stochastic simulations for each TNF dose is 
10,000). NF-κB nuclear translocation is defined as the nuclear fluorescence normalized to the average whole-cell 
fluorescence (see Methods for quantification details). Simulations take into account cytoplasmic interference 
(CI) in order to enable comparison with experimental results.
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the level of nuclear NF-κB is low, and cytoplasmic interference contributes largely to nuclear fluorescence. As a 
result, small changes of nuclear NF-κB levels between small stimulus concentrations cannot be detected, which 
markedly reduces KS values between 0 and 0.01 ng/ml TNF. For higher concentrations, the effect of cytoplas-
mic interference is much less pronounced. This analysis suggests that the amount of information available from 
immunofluorescent images underestimates the actual amount of information available to cells. In further con-
siderations we will thus analyze model simulations in which cytoplasmic interference is not taken into account.

Transmission of information and dose discernibility are reduced by extrinsic noise. We consider 
two sources of extrinsic noise in the model, one associated with heterogeneity in the level of TNFR and the other 
associated with heterogeneity in the translocatable and nontranslocatable pools of NF-κB. We assume that TNFR 
is distributed according to the log-normal distribution LnN(µ, σ2) with constant µ (equivalently, constant median 
equal eµ) and varied σ, i.e., varied variance, = − ×σ σ μe e eVar ( 1) 22 2

. The distribution of translocatable and non-
translocatable NF-κB is estimated based on Fig. 1c, as described before. In Fig. 4a we provide KS distances 
between consecutive TNF concentrations, and overall MI for four values of σ: 0, 0.3, 1, 3, as well as in the hypo-
thetical case when there is no extrinsic noise, i.e., when σ = 0 and the pools of translocatable and nontranslocata-
ble NF-κB are invariant in all simulations (105 and 5 × 104, respectively). We call this case ‘hypothetical’ as we 
know from experimental data that the level of NF-κB varies across the cell population. Almost all KS distances 
decrease with σ. Interestingly, distances between highest concentrations are increased for σ = 3. This is because 
for σ = 3 some cells have a very low abundance of TNFR, so they respond differently to TNF concentrations of 1, 
3, and 10 ng/ml, while for smaller σ almost all cells reach the saturation of the response. Although the increased 
width of the TNFR distribution introduces some uncertainty about the signal, it widens the dynamical range of 
the NF-κB pathway. This may explain relatively low sensitivity of MI to σ; MI remains close to 1 bit for σ = 0, 0.3, 
1 and still exceeds 0.8 bit for σ = 3 (Fig. 4b). One cannot thus determine the width of TNFR distribution by meas-
uring MI at the NF-κB level. Unsurprisingly, the highest MI, nearly 1.3 bit, is reached when no extrinsic noise is 
present.

We demonstrated that extrinsic noise may significantly reduce dose discernibility. The number of activated 
TNF receptors in a given cell is roughly proportional to the product of TNF concentration and the total number 
of TNFR on the cell membrane. From the perspective of an experimentalist who observes a single responding cell, 
it cannot be recognized whether it is the TNF concentration that is high or whether it is the number of receptors 
on that cell that is particularly large so the cell can respond strongly even to a low concentration. Similarly, the 
observer focused solely on the cell nucleus cannot tell whether nuclear NF-κB level is high because of the strong 
TNF signal or because the total NF-κB level is higher than its average in cell population. In the case of small 
extrinsic noise, σ ≤ 1, the highest adjacent doses discernibility C(d) is reached between 0.1 and 0.3 ng/ml TNF. In 
the case with no extrinsic noise, KS value between 0.1 and 0.3 ng/ml TNF is about 0.50, which allows to estimate 
maximal C(d) ≥ 0.5/log(3) ≈ 0.455; in the presence of extrinsic noise smaller values of C(d) are obtained.

Mutual information and dose discernibility at each level of the NF-κB pathway. In Fig. 5 we 
analyze how dose discernibility (Fig. 5b) and mutual information (Fig. 5c) are reduced when passing through the 
NF-κB pathway (Fig. 1a). Since the signal is relayed through subsequent steps of the pathway at different times, 
we calculated KS distances based on the peak values of active TNFR (TNFRa), active IKKK (IKKKa), active IKK 
(IKKa), degraded IκBα (IκBαdeg), NF-κBnuc, and A20 – all within first 30 min after TNF stimulation. Example 
simulated trajectories of these components are provided for two TNF doses, 0.03 and 3 ng/ml in Fig. 5a. For the 
low dose, cell responses are highly heterogeneous due to molecular noise at the TNFRa level. KS distances between 
1 and 3, and 3 and 10 ng/ml, at the TNFRa and IKKKa levels are close to 1 (Fig. 5b), suggesting that information 
is accurately transmitted through the first two steps of the pathway for large TNF concentrations. However, for 
smaller TNF concentrations, KS distances are much lower, suggesting information loss. The overall MI at the 

Figure 4. TNF dose discernibility and mutual information with respect to the extrinsic noise. (a) Plots show 
Kolmogorov–Smirnov (KS) distances between simulated distributions of nuclear NF-κB in 30-min time point 
of stimulation with consecutive TNF concentrations. The results are shown for standard deviation of TNFR, σ, 
equal 0, 0.3, 1 or 3. ‘Intrinsic noise only’ denotes simulations in which σ = 0, and additionally the same amount 
of total translocatable and nontraslocatable NF-κB is assumed for each cell. KS distances were calculated based 
on simulations without cytoplasmic interference (CI). CI reduces KS distances as shown in Supplementary 
Data S5. (b) The effect of extrinsic noise on mutual information at the NF-κB level in 30-min time point of TNF 
stimulation.
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level of TNFRa or IKKKa reaches about 2.3 bit (Fig. 5c), which may be compared to 3 bits, or 8 stimulation levels at 
input. Molecular noise (visible in trajectories shown in Fig. 5a for TNF dose of 0.03 ng/ml) is responsible for the 
system’s inability to accurately discern low TNF concentrations. As long as TNFRa ≪ TNFR, the distribution of 
TNFRa is close to Poisson distribution with its mean proportional to TNF concentration. Because the coefficient 
of variation of Poisson distribution is inversely proportional to the square root of the mean, TNFRa distributions 
corresponding to low concentrations overlap (Supplementary Data S6) and corresponding KS distances are much 
smaller than 1 (Fig. 5b).

At the level of IKKa, the response saturation at high TNF concentrations becomes important, and KS values 
are substantially decreased with respect to these for IKKKa, which is not the case for low TNF concentrations 
(Fig. 5b). Compared to IKKa, a further substantial decrease in mutual information occurs at the level of IκBαdeg 
(Fig. 5c). A bit surprisingly, MI (as well as KS distances) measured at the NF-κBnuc level are somewhat higher 
than at the level of IκBαdeg. One should keep in mind that MI measured at the single time point in which IκBαdeg 
reaches its maximum does not quantify total transmitted information; downstream responses are influenced 
by the whole time profile of IκBα. Additionally, NF-κBnuc depends rather on the degraded IκBα that was previ-
ously complexed with NF-κB, and not on the whole pool of degraded IκBα, which includes free IκBα and varies 
across cell population. Also, at high TNF concentrations, KS values at the level of A20 are higher than these for 
NF-κBnuc, because at high TNF concentrations NF-κB activation starts faster granting A20 more time to accumu-
late. The overall MI is however lower for A20 than for NF-κBnuc.

In Supplementary Data S7 we repeat the analysis shown in Fig. 5b,c for different values of σ, and for the case 
without extrinsic noise. Increasing σ reduces MI and dose discernibility mainly at the upper levels of the pathway; 
the effect is especially pronounced for TNFRa and IKKKa for which the MI is gradually reduced from about 2.3 
bit to 0.9 bit as σ changes from 0 to 3. As indicated by the KS values between adjacent TNF doses, heterogeneity 
of total TNFR level dramatically reduces discernibility of high doses at the level of TNFRa and IKKKa, which 
explains why information is reduced at the very beginning of the pathway. For σ = 0, the difference between the 
case in which distribution or single value of translocatable NF-κB is assumed is observed mainly at the at NF-κB 
level, and (as expected) is not observed above IκBα in the pathway (Supplementary Data S7, panel e).

Figure 5. Information at each level of the NF-κB pathway. (a) Temporal profiles of key pathway components 
obtained in numerical simulations with σ = 0 for two TNF doses: 0.03 ng/ml and 3 ng/ml. In each subpanel, 
shown are normalized trajectories from 5 stochastic simulations (with the assumed translocatable pools of 
NF-κB equal {0.5, 0.7, 0.9, 1.3, 1.6} × 105 – probing the experimental distribution from Fig. 1c with the average 
of 105 molecules). Trajectories with larger pools of translocatable NF-κB are drawn with thicker lines. (b) 
Kolmogorov–Smirnov (KS) distances between simulated distributions of pathway components calculated for 
each pair of consecutive TNF concentrations. (c) Mutual information at each pathway level. The results shown 
in (b) and (c) are based on maximal levels of the pathway components over 0–30 min after TNF stimulation, for 
n = 10,000 simulations with σ = 0, without CI. IκBαdeg denotes the maximal value of IκBα(t = 0) − IκBα(t) for t 
∈ [0,30 min]. The analogous results for σ = 0.3, σ = 1 and σ = 3 and in the case with the intrinsic noise only, are 
shown in Supplementary Data S7.
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In summary, information transmission at low TNF concentrations is mostly limited by molecular noise at the 
TNFR level, whereas at high TNF concentrations it is mostly limited by saturation of active IKK. As a result, the 
highest discernibility of adjacent TNF doses is observed at intermediate TNF doses: between 0.03 and 0.3 ng/ml.

NF-κB network can integrate signals from different sources over time. In Fig. 6a we show that 
the capacity of the NF-κB system for distinguishing between the presence and absence of LPS is similar to that 
of TNF. Altogether, it confirms the earlier observation that within the first half hour the NF-κB system merely 
distinguishes between the presence and absence of a stimulus1,2. However, this is not true for longer times, during 
which the NF-κB network can integrate information from several sources. In Fig. 6 we show that when two time 
points are considered, 30 min and 120 min, cell responses are different for four types of treatment: absence of 
stimulation, stimulation with LPS, stimulation with CHX, and costimulation with CHX and LPS. Full frames of 
immunofluorescent confocal images showing MEFs stimulated with LPS, stimulated with CHX, or costimulated 
with CHX and LPS are provided in Supplementary Data S8. When comparing responses to LPS in the absence or 
presence of CHX costimulation (Fig. 6a versus Fig. 6b) we may notice that CHX costimulation somewhat reduces 
MI information at 30 min, but substantially increases information at 120 min. CHX blocks the synthesis of NF-κB 
inhibitors, IκBα and A20, allowing NF-κB to remain in the nucleus for at least two hours (Fig. 6c). As shown ear-
lier in Fig. 1d, costimulation with CHX in addition to TNF or LPS resulted in markedly increased levels of IκBα 
and A20 mRNA at 3 hr/4 hr after TNF/LPS stimulation. Responses to the combined LPS + CHX stimulation, 
although almost indistinguishable from responses to pure LPS at 30 min, are clearly distinct at 120 min (Fig. 6d). 
This shows that LPS-stimulated cells are able to integrate signal from CHX over a longer time course.

Figure 6. NF-κB system integrates information about inhibition of translation. MEFs were either stimulated 
with 1 μg/ml LPS for 30 or 120 min with or without 30-min pre-incubation with 5 μg/ml cycloheximide (CHX), 
or incubated with only CHX. Histograms (a–d) show NF-κB nuclear translocation based on confocal images of 
cells subjected to each type of stimulation. Between 500 and 700 cells were analysed for each histogram. NF-κB 
nuclear translocation is defined as the nuclear fluorescence normalized to the average whole-cell fluorescence 
(see Methods for details). Each plot contains overlying histograms for two stimulation types specified on 
the right, at the time point given at the top. Kolmogorov–Smirnov (KS) distances between the two samples 
(associated with two stimulation types as specified) and mutual information (MI) are given in each plot. See 
Supplementary Data S8 for corresponding uncropped immunostaining images.
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Discussion
In this study we analyzed how information about the strength of a stimulus is reduced when it propagates through 
subsequent steps of the NF-κB pathway. We quantified the NF-κB system’s ability to resolve consecutive TNF con-
centrations by KS distances between corresponding distributions of nuclear NF-κB. Using data-calibrated model 
we demonstrated that the ability to resolve small TNF concentrations is lost at the level of TNFR due to molecular 
noise associated with a very small number of activated receptors (Fig. 5). In contrast, high TNF concentrations, 
for which the molecular noise is negligible, are accurately resolved both at the level of TNFR and IKKK. However, 
ability to resolve high TNF concentrations is lost at the level of IKK and downstream components due to satu-
ration of the response. As a result, at the level of NF-κB, the system’s ability to resolve stimulus levels is highest 
for intermediate concentrations, 0.03–1 ng/ml TNF. Based on the computational model we found that mutual 
information decreases with the strength of extrinsic noise. Importantly, noise at the TNF receptor level reduces 
information mainly upstream of NF-κB and not as much at the NF-κB level, at which information is controlled 
by the variability in total NF-κB levels. Considering NF-κB output only, one can see that increasing noise at the 
TNF receptor level reduces discernibility of intermediate TNF concentrations, but slightly increases discernibility 
of the highest concentrations. Therefore, extrinsic noise (here: variability in cellular sensitivity and variability in 
total NF-κB levels) reduces information available to the observer but can also widen the dynamic range allowing 
for better recognition of large stimulus concentrations.

Mutual information at the NF-κB level calculated from experimental data is about 0.8 bit. The model analysis 
indicates, however, that the transmitted information is somewhat higher. Discrepancy results from cytoplasmic 
interference, which causes that even unstimulated cells exhibit significant nuclear fluorescence. Based on the 
model we estimated the magnitude of this effect and found that the mutual information is close to 1 bit. This is in 
agreement with earlier findings by Cheong et al.1 and Selimkhanov et al.2, and indicates that by generating or not 
the first nuclear NF-κB pulse the cell recognizes, respectively, the presence or absence of stimulus, rather than 
senses strength of the stimulus. Information transmitted to a transcription factor can be further processed by 
activating target genes20,21. After TNF stimulation, the expression of early NF-κB-responsive genes, calculated per 
responding cell, is independent of TNF concentration13, which indicates all-or-nothing early gene activation in 
single cells responding to TNF. Recently we demonstrated that for LPS stimulation even the amplitude of NF-κB 
translocation is only weakly dependent on the concentration: rather, for smaller concentrations the response 
probability is lower and the response is delayed19. These findings suggest that in early responses cells exhibit sto-
chastic robustness, which on one hand allows a single cell to either respond or ignore the stimuli, but on the other 
hand leads to synchronized early-gene activation when a cell decides to respond22.

The reduction of input information to a single bit may suggest that the NF-κB system has not evolved to 
accurately transmit information, but rather constitutes a decision-making module, which based on input chooses 
whether or not to activate transcription of the specific early genes. Multiple nonlinear transmission elements 
that are present in the NF-κB pathway (out of which only few are included in the model) facilitate digitization of 
the response. These elements include trimerization of TNFR23, double phosphorylation of IKK subunit IKKβ24, 
double phosphorylation of IκBα at Ser32 and Ser36 by active IKK25, which is required for IκBα ubiquitina-
tion and proteasomal degradation, and multiple NF-κB binding sites on early gene promoters26. These elements 
are capable of increasing the response to signals exceeding a certain threshold. Additionally, negative feedbacks 
mediated by NF-κB inhibitors limit NF-κB activation temporally. TNF stimulation leads to a peak of NF-κB 
activity, which may be followed by subsequent pulses when the signal persists27. The subsequent NF-κB activity 
pulses are well pronounced when TNF also appears in the form of pulses with a sufficiently long period (exceed-
ing 60 min)9,28,29. Nonlinear transmission elements combined with negative feedbacks result in a response that 
is digitized into pulses of NF-κB activity and transcription bursts of early genes29. The same mechanism was 
observed for other pathways. In the MAPK pathway, positive feedback nested within the negative feedback loop 
results in recurrent pulses of ERK activity30,31. In the context of the p53 pathway, recurrent waves of AKT phos-
phorylation32 are transcoded into pulses of p53 and Mdm2 levels observed over days in MCF7 cells upon DNA 
damage33. Information loss can be beneficial when it allows for cellular decision making. Intuitively this is the 
case in bistable systems, when the signal strength and noise dictate probabilities of predefined responses. Because 
the decision making has a stochastic component, for given stimuli cell population can split into two (or more) 
distinct subpopulations34. In such a case the response is analog at the population level (with fraction of cells in a 
given subpopulation governed by the strength of stimuli) and digital at single-cell level.

In oscillatory systems, disruption of the negative feedback qualitatively changes the character of the response. 
In the context of p53, we and others proposed that the disruption of the p53–Mdm2 negative feedback that 
follows PTEN accumulation terminates p53 oscillations, leading to an abrupt increase of p53 level and apopto-
sis3,35. Here, we show that disruption of A20- and IκBα-mediated feedbacks by incubation with CHX leads to 
prolonged NF-κB activation in responses to TNF or LPS. At 15 or 30 min, responses of cells stimulated by a high 
concentration of TNF and TNF + CHX are similar, but at 3 hr cells incubated with CHX prior to administration 
of TNF exhibit much higher NF-κB activity and highly increased levels of IκBα and A20 transcripts. Similarly 
LPS and LPS + CHX stimulated cells exhibit similar responses at 30 min (KS = 0.22), but clearly distinct responses 
at 120 min (KS = 0.88) which is also visible at the level of gene expression. This shows that the NF-κB system not 
only transmits signals from receptors, but also is able to integrate other signals over time, producing qualitatively 
different responses. As inhibition of IκBα and A20 protein synthesis highly increases levels of the IκBα and A20 
transcripts, one could expect that it exerts even stronger effect on the late NF-κB-responsive genes, which require 
prolonged presence of NF-κB in the nucleus36. The examples of CHX + TNF and LPS + CHX costimulation, 
although somewhat contrived cases of mixed physiological and non-physiological stimulation, are important 
because inhibition of protein synthesis can result from activation of the PKR–eIF2α pathway in response to 
poly(I:C) or viral stimulation37, and both of them lead to NF-κB activation38. The discussed mechanism would 
thus allow to distinguish between LPS (or bacterial) and poly(I:C) (or viral) stimulation. As suggested in Fig. 6, 
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the former leads to the pulse-like NF-κB activation, whereas the latter would lead to switch-like prolonged acti-
vation, as observed by Rand et al.39 in response to viral stimulation.

Intrinsic, molecular noise and response saturation limit the information transmission to NF-κB for low and 
high stimulation, respectively, thus creating a window of system sensitivity between 0.03 and 1 ng/ml, and limit-
ing information transmitted within first 30 min to 1 bit. Having analyzed how information is reduced as the signal 
is propagated through subsequent steps of the NF-κB signaling pathway, we conclude that the system constitutes 
a decision-making module that digitizes the signal into pulses of NF-κB activity, rather than an accurate infor-
mation transmitting channel. Over longer periods of time, the system is capable of integrating signals that block 
the synthesis of NF-κB inhibitors and produces qualitatively different, switch-like responses to CHX + TNF, or 
CHX + LPS costimulation, in contrast to pulse-like responses to stimulation with sole TNF or LPS. Based on 
these results we hypothesize the NF-κB system has several predefined responses, associated with activation of 
particular groups of genes, and the aim of the transduction pathway is to convert incoming signals into these 
responses. Molecular noise underlies the probabilistic character of this conversion, whereas the presence of non-
linear regulatory elements reduces the chance that the system will exhibit responses from beyond the predefined 
repertoire.

Methods
Cell culture and compounds. Experiments were performed on wild-type MEFs derived in the Brasier 
Laboratory40. Line derivation was conducted under vertebrate animal protocols approved by the UTMB Animal 
Care and Utilization Committee. The cell line was routinely tested against mycoplasma contamination by DAPI 
staining and PCR. Cells were cultured in adherent conditions on tissue culture-treated dishes (Falcon) in com-
plete Dulbecco’s modified medium (DMEM) with 4.5 g/l of D-glucose and 0.1 mM L-glutamine (ThermoFisher 
Scientific), with addition of 10% fetal bovine serum (ThermoFisher Scientific) and 100 mg/ml penicillin/strep-
tomycin mix (Sigma-Aldrich). The culture was maintained in a conditioned incubator at 37 °C and 5% CO2. For 
stimulation, cells were seeded on multi-well plates or coverslips and allowed to adhere overnight at 37 °C. Mouse 
recombinant TNF, LPS from Escherichia coli 0111:B4 (purified by ion-exchange chromatography) and CHX 
were purchased from Sigma-Aldrich. LPS was solubilized in a bath sonicator for 15 min and vortexed vigorously 
for additional 1 min prior to adding to the cells. CHX was added to the cells at a final concentration of 5 μg/ml 
30 minutes prior to the addition of TNF or LPS.

Immunostaining. After stimulation, cells were subjected to the following consecutive steps: fixation with 
4% formaldehyde for 20 min, neutralization of formaldehyde groups with 50 mM NH4Cl for 10 min, membrane 
permeabilization with 0.1% Trition X-100 for 5 min and blocking with 5% BSA in PBS for 1 h. Primary antibod-
ies were added to the cells in 1:1000 dilution in 5% BSA for 90 min, and the same was repeated for secondary 
antibodies. Nuclei were then stained with 200 ng/ml DAPI in PBS for 10 min. The coverslips were mounted onto 
microscope slides with Mowiol (Sigma-Aldrich) and observed using Leica TCS SP5 X confocal microscope with 
Leica Application Suite AF software.

Microscopic image analysis. Image analysis. Confocal images obtained from immunostaining were ana-
lyzed using our in-house software. Based on DAPI nuclear staining, nuclear contours were automatically detected. 
Contours that marked nuclear regions inaccurately during automatic detection were then drawn manually, and 
contours of nuclei that were partially out of frame, overlapping, mitotic or otherwise misshapen were manually 
excluded. For background noise correction, in each frame at least 3 background intensity-defining regions, which 
did not contain any cells, were indicated manually. Background intensity (in each channel) was quantified as the 
average fluorescence in these regions. The resulting quantifications were analyzed with auxiliary Matlab scripts, 
which provided estimates of the magnitude of nuclear translocation. The applied image analysis method is moti-
vated by the relative ease of detection of nuclear contours (based on DAPI staining) and inability to accurately 
determine cytoplasmic contours in an automated way.

Quantification of NF-κB nuclear fraction. Nuclear NF-κB fraction in ith cell was calculated as:
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Analogically, background-corrected fluorescent intensity of the image, ⁎I , in a given channel is defined as the 
difference between the fluorescent intensity of the image, ⁎I  and the average background pixel intensity 〈 〉pbg  in 
that channel multiplied by the whole image area, ⁎S :
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Gene expression analysis. RNA extraction and reverse transcription. Cells were seeded on 12-well plates 
one day before the experiment at a density of around 100,000 per well. After stimulation, cells were washed 
once with PBS and total RNA was isolated using PureLink RNA Mini Kit (ThermoFisher Scientific) according 
to the manufacturer’s instructions. Concentration of isolated RNA was determined by measuring UV absorb-
ance of samples at 1:100 dilution at 260 nm and 280 nm with a Multiskan GO Microplate Spectrophotometer 
(ThermoFisher Scientific). Reverse transcription with random primers was performed using High Capacity 
cDNA Reverse Transcription Kit (ThermoFisher Scientific). The process was conducted in a Mastercycler 
Gradient thermal cycler (Eppendorf) with the following settings: 10 min/25 °C, 120 min/37 °C, and 5 min/85 °C.

Digital PCR. Digital PCR was performed for the IκBα and A20 genes using QuantStudio 3D system (Life 
Technologies). Prepared samples were loaded into QuantStudio 3D Digital PCR Chip and thermocycled using 
the ProFlex PCR System (ThermoFisher Scientific) according to the manufacturer’s guidelines. Chip analysis was 
performed using QuantStudio 3D Digital PCR Instrument and Analysis Suite cloud software. Measurements 
of the amount of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA were used as a normalization 
reference for input sample quantity.

Western blotting. Cell-fractionation. Cells were seeded on a 100-mm tissue culture-treated dishes, at 
a density of 1,000,000/dish, and incubated overnight. After stimulation, cells were placed on ice, washed with 
ice-cold PBS, scraped from the dish in PBS and centrifuged (4 °C, 100 × g, 5 min). Cell pellet was then suspended 
in 1.5 ml of hypotonic cytoplasmic fraction buffer (20 mM HEPES pH 8.0, 0.2% IGEPAL CA-630, 1 mM EDTA, 
1 mM DTT, protease and phosphatase inhibitor cocktail, as above) and incubated on ice for 10 min with occa-
sional shaking. After centrifugation (4 °C, 1700 × g, 5 min), supernatant was set aside and treated as the cytoplas-
mic fraction; pellet was washed in the same buffer and recentrifuged, and supernatant was discarded. Remaining 
pellet was suspended in 150 μl of nuclear fraction buffer (20 mM HEPES pH 8, 420 mM NaCl, 20% glycerol, 1 mM 
EDTA, 1 mM DTT, protein and phosphatase inhibitors, as above), incubated on ice for 30 min with occasional 
mixing and then centrifuged at 4 °C, 10,000 × g, 10 min. Supernatant containing nuclear fraction was transferred 
to a fresh tube and left for further processing.

SDS-PAGE and Western blot. Protein concentrations in cell lysates were determined using the Bradford method 
against a BSA standard. After precipitation and washing, proteins were resuspended in standard Laemmli sample 
buffer containing 10 mM DTT and boiled at 95 °C for 10 min. Equal amounts of each protein sample was loaded 
onto 10% polyacrylamide gel and SDS-PAGE was performed with Mini-PROTEAN Tetra System (Bio-Rad). 
Proteins were transferred to nitrocellulose membrane using wet electrotransfer in the Mini-PROTEAN apparatus 
and blocked for 60 min with 5% non-fat dry milk. Membranes were incubated at 4 °C overnight with anti-p65 
D14E12 (CST) or anti-HDAC-1 (Santa Cruz Biotechnology) primary antibody. After washing with TBST, mem-
branes were incubated with secondary antibodies conjugated with horseradish peroxidase (goat anti-rabbit and 
anti-mouse immunoglobulins/HRP, Dako) for 60 min at room temperature. Specific proteins were detected in the 
dark room on a medical X-ray film using Clarity Western ECL system (Bio-Rad). Densitometric quantification of 
protein bands was performed with ImageJ software, using normalization against HDAC1.

Computational model and numerical simulations. Stochastic numerical simulations according to the 
Gillespie algorithm41 were performed in BioNetGen42,43 using the NF-κB computational model described by 
Korwek et al.,11 with two modifications introduced to obtain better fit to the experimental data:

 1. We assumed that on average there are 105 NF-κB molecules in the translocatable pool and 0.5 × 105 NF-κB 
molecules in the inert pool.

 2. We assumed that the median number of TNFR per cell is equal 2 × 103.

We provide the BioNetGen language-encoded model code in Supplementary Dataset S1. Before running 
each stochastic simulation, the number of NF-κB molecules in the translocatable and inert pools is drawn at 
random from the experimental distribution shown in Fig. 1c (with assumed average 105 molecules for the translo-
catable pool and 0.5 × 105 for the inert pool) and inserted into the BNGL file using in-house scripts. The number 
of receptors is drawn at random using log-normal distribution LnN(µ, σ2) with constant median eµ = 2 × 103 and 
one of four values of σ: 0, 0.3, 1, 3. Simulations without extrinsic noise are performed by setting σ = 0, and by 
setting number of NF-κB molecules in the translocatable pool and 0.5 × 105 NF-κB molecules in the inert pool. 
In each case we perform 10,000 stochastic simulations mimicking samples of 10,000 cells.
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To compare numerical simulations with experimental data we calculate normalized distribution of nuclear 
NF-κB, (NFkB )nuc norm

CI , taking into account: 1) inert NF-κB pool, 2) cytoplasmic interference (as estimated in 
Results, 0.24 of the cytoplasmic fluorescence registers as the nuclear):

= + . + × . × −N N N(NFkB ) [ 0 24( )] (1 5 10 ) , (15)nuc norm
CI

nuc cyt inert
5 1

where Nnuc and Ncyt denote nuclear and cytoplasmic NF-κB obtained from stochastic simulations, whereas Ninert 
is the amount of inert NF-κB. Whenever we refer to simulations “with cytoplasmic interference”, we refer to the 
above normalization.

To analyze the “unmasked” signal transmission, we calculate normalized distribution of nuclear NF-κB, 
(NFkB )nuc norm, without accounting for cytoplasmic interference:

= × . × .−N(NFkB ) (1 5 10 ) (16)nuc norm nuc
5 1

Estimation of the upper bound of mutual information. The mutual information (MI) was calculated 
according to the method of Kraskov et al.17. The maximization of MI with respect to the set of eight a priori prob-
abilities was performed using a steepest-ascent method. The accuracy of MI estimation and its maximization was 
performed by drawing random samples from eight overlapping Gaussian distributions. MI and its upper bound 
were calculated based on the drawn samples and compared with MI calculated directly from the Gaussian dis-
tributions using an auxiliary Mathematica code. The chosen Gaussian distributions have increasing means and 
increasing variances and resemble experimental distributions of nuclear NF-κB from experiments with consecu-
tive TNF doses. Sample sizes were equal to the numbers of cells analyzed in experiment (30-min time point) for 
each TNF dose. In this way, the inaccuracy of the estimation of the upper bound of MI based on experimental 
data was found to be about 2–3%. For each TNF dose, 10,000 stochastic simulations were performed and thus 
the reported estimates of MI are expected to have a smaller error. Python and Mathematica codes are provided in 
Supplementary Dataset S2.
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