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Experimental and theoretical investigation of large-

t>

amplitude oscillations of liquid droplets

By E.BECKER, W.J.HILLER łNo T. A. KowALEwsKI
Max-Planck-Inst'itut fiir Strómungsforschung, Bunsenstrasse 10, 3400 Gótt,ingen, Germany

(Received 21 June 1990)

Finite-amplitude, axially symmetric oscillations of small (0.2 mm) liquid droplets in
a gaseous environment are studied, both experimentally and theoretically. When the
amplitude of natural oscillations of the fundamental mode exceeds approximately
I0oń of the droplet radius, typical nonlinear effects like the dependence of the
oscillation frequency on the amplitude, the asymmet'ry of the oscillation amplitude,
and the interaction between modes are observed. As the amplitude decreases due to
viscous damping, the oscillation frequency and the amplitude decay factor reach
their asymptotical values predicted by linear theory. The initial behaviour of the
droplet is described quite satisfactorily by a proposed nonlinear inviscid theoretical
model.

1. Introduction
The problem of oscillating droplets has been an object of intense study for more

than a century, both to gain a theoretical understanding (Kelvin 1890; Chan-
drasekhar 1959, 1961;Reid 1960;Prosperetti Ig77,I980a, Ó) and also in view of
various technological applications (Valentine, Sather & Heideger 1965; Strani &
Sabetta 1988). The first mathematical model of linear droplet oscillations in vacuum
in the case of an inviscid fluid is due to Rayleigh (1879). The generalized linear
solution of the problem which includes the influence of a surrounding medium is
given by Lamb (1932). The solution describes the instantaneous deformation of the
droplet shape by an infinite series of the surface spherical harmonics, where each
term of this function corresponds to one independent natural oscillation mode. The
axially symmetric form of t'his solution is

where Ę(cos 0) arc the Legendre polynomials, rBo is the unperturbed radius of the
droplet, cł, is the instantaneous amplitude of the /th mode of oscillat'ion, and d is the
polar angle of the spherical coordina,te system with its origin at the centre of the
spherical drop. The frequency O, of the lth oscillation mode of a liquid drop in
vacuum or in air is given by

o?:--L
cl(t - I) (l + 2)

where o is the surface tension of the droplet medium and p is its density. Subsequent
linear analyses have included the viscosity of the droplet (Chandrasekhar 1959; Reid
1960)and,later, viscous effects of an outer fluid (Miller & Scriven 1968). The derived
general dispersion equation describes small-amplitude oscillations of the viscous
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droplet, in the viscous medium. However for low-viscosity liquids (e.g. water,
ethanol) and relatively Iarge droplets (fi. ) 50 pm) in dynamically inactive
surroundings the general description simplifies and the so-called irrotational
approximation, previously obtained by Lamb (1932), applies. Then, the decay time
and the oscillation frequency are given by

,,:,ęffi1 (3)

and Or: a/I_(Q,r,)_27ź. (4)

The viscosity, lr, of the fluid reduces the natural oscillation frequency. This effect is
of second order so that the frequency shift for low-viscosity liquids is negligibly
small. Equation (3) shows that damping increases very quickly for higher oscillation
modes. Therefore, in most cases the description of the droplet oscillation given by (1)

is limited to the first few modes.
In their normal mode analysis of the initial motion of the viscous droplet in

vacuum Chandrasekhar (1959), Prosperetti (1980rł' ó) and Brosa (1988) found that
for each surface mode an infinite discrete frequency spectrum exists. This is
apparently due to the viscosity, which is responsible for the vorticity generation by
a free moving surface. Hence, the initial behaviour of a viscous droplet may
apparently deviate from the least-damped normal modes (Prosperetti 1977) which
are described by a damped harmonic oscillation. Ilowever, asymptotically with time
only these modes remain' Prosperetti (1980Ó) shows that'these viscous effects
become negligibly small if the dimensionless viscosity4 l@,rR,)ź < 0.1..Ihis condition
is fulfilled in the experiments presented here, therefore it is assumed that for small
oscillation amplitudes the irrotat'ional approximation given by (3) and (4) still
applies.

Nonlinear oscillations of a droplet were analysed by Tsamopoulos & Brown (1983),
but only for the case of inviscid liquids. Looking for strictly periodic oscillations they
have found that the oscillation frequency of the fundamental mode decreases with
increasing amplitude. The effect of small viscosity was incorporated into a nonlinear
numerical study by Lundgren & Mansour (1988). They found that viscosity may
have a relatively large effect on t'he behaviour of t'he higher oscillation modes,
changing their near-harmonic resonance coupling with the fundamental mode I : 2.

Experimental measurements performed by Trinh, Marston & Robey (1987), Hiller
& Kowalewski (1989rł) for small osciłlation amplitudes confirm the values of o,
predicted by the linear theory for the fundamental mode. The only experimental
work dealing with large-amplitude oscillations of droplets that we could find is that
of Trinh & Wang (1982). Their experiment was performed on drops suspended in a
neutrally buoyant and immiscible liquid. The results confirm qualitatively the
predictions of the above nonlinear theories, i.e. the decrease of the oscillation
frequency with increasing amplitude.

The lack of available experimental data concerning the nonlinear behaviour o1'

droplets oscillating in air encouraged us to undertake the present investigation. The
present study of nonlinear droplet dynamics is an inherent part of the method of
measuring dynamic values of surface tension developed in Hiller & Kowalewski
(1989rł). Unfortunately, both of the above-mentioned theoretical analyses have very
limited applicability to our experimental studies of the droplet oscillations. The first
one (Tsamopoulos & Brown), with its accuracy limited to second-order effects, does
not provide a method of checking the accuracy of the results obtained. The second
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analysis (Lundgren & Mansour) seems to be rather difficult to be implemented
practically for the measurements of dynamic surface tension as it is a pure-numerical
m9lhod and comparison of its results with our experimental data would requi"eadditional surface parameterization. Hence, in the 

-following, 
we will describe theexperimental method and results obtained for free oscillating droplets, followed by

a new nonlinear model of inviscid droplet oscillations, which ullorv. us to analyse theexperimental data.

2. Experimental
2.L The apparatus and, methocl

The overall experimental arrangement is shown schematicaily in figure 1. Thedroplets were generated by the controlled breakup of a laminar jlt disch"arging froma convergent nozzle into a gaseous environment' The p'"...,.ó inside thi pienum
chamber of the nclzzle is modu]ateri by a piezocerńnic transducer, describedpreviously (Hiller & Kowalewski 1989o). Tńe resulting jet perturbations areproportional to the voltage Ć/ V-no applied to the transducer] Iiy p.op". choice of themodulation, practicalĘ lrro''odi.p"'.ed droplets oscillating in^axially symmetric
modes are generated during the breakup process of the Jei. rne ,"q,,i.ń a.opt"tradius, within the range 100 to 300 pm, is óntainea by varying the jet raclius *ńi.ł,
is about half that of the droplets. once a droplet is a"ta"ńa "t,o- 

it," liquid jet, it
becomes an isolated mass of fluid suspended iń space. Any subsequent motion of.thisisolated mass depends- primarily on the .o'ń" funsión forces and the velocitydistribution in the fluid at the instant of breakoff from the jet. The initial velocitydistribution and subsequent accelerations created by the surface tension forceproduce, owing to the viscosity, damped oscillatory ńotion of the droplet unti1 it
reaches its equilibrium spherical shape.

Initial deformations of the droplet observed after its detachment from the jet areillustrated in figure 2. As the droplet velocity is relatively small (a few m/s) theinfluence of aerodynamic forces on its shape is assumed to be negligibly small. Thedroplet is observed through a- microscope ln rrlght field illuminatńn] A pulsed light-emitting-diode (LED)-is used as a light source (stasicki, Hiller & Meier 1g90;. iheexposure times are below 0.2 ps. The images of the droplet are registerect by ccDcamela (Sony xC77CĄ 
-Data 

acquisitioń and storage are performed with a 386Personal computer (rBM compatibte; equipped wilh an s-rrit aigitizing boardVS100f68 (Imaging Technology Inc.) and 140 Mbyte hard disk. All furtherprocessing of the images (image analysis and shape fitting) takes place on 7łVAX IIand IBM3090 computers respectively.
Two methods of imaging are applied. First is a multi-exposure method, shown in

figure 2. This method. described in detail previously (Hillór & Kowalew*ti tosoa;,p-rovides high temporal and spatial r".ol.rtior. for about one oscillation period.
However, to extend the observation time, a rather tedious matching procedure to
combine phases of separate observations clone at different distances from the nozzle
is required. Therefore, to facilitate observation ofthe droplets during longer perioJs
a second recording method, based on a beat-frequency stioboscopic tech-niqie, was
feve.lgred, For this purpose a digital phase-scanning device (Hiller, Kowalewski &Stasicki 1989) is used to change óontinuously the ph"ase of the pulses triggering theLED drive' relative to the phase of the jet ńodulating deque,'"y."iho*- th"stroboscopically observed phenomena slowĘ change theń phase u.'d th"i, d"-velopment in time can be easilv recorded. By changńg synchronously the position
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Freunn 2. llultiexposure of an oscillating droplet observed a short time after its generation. The
equilibrium radius of the droplet Ro:2I0 pm, the time interval between exposures is 7.8 ps. The
solid line is function (5) rvith l-u": 10 fitted to the droplet boundaries.

of the camera, the development of the droplet shape is followed along its trajectory
from the point of separation till it reaches the spherical form. This is possible as the
rcproducibility of the droplets generated by the controlled jet breakup is extremely
high. Using this technique, the images of the droplet were recorded periodically by
an image processor and stored on a hard disk of the computer. Usually sequences of
200-300 images are taken. The recording time of one image is 3.6 s (time needed to
save one image on the disk). The'real time'resolution, controlled by the beat
frequency, is kept in the range of 10 30 prs. It allows the registration of several
periods of droplet oscillations in one sequence of images.

2.2. Analys'is o;f the droplet'images

As we can observe onl;. the projection of a droplet, we must assume that its shape
is convex and axially symmetric with respect to the nozzle axis, and that the axis of
svmmetrv is parallel to the plane of observation (i.e. the sensor area of the camera).
The three-dimensional form of a droplet is then completely defined by its contour
R(0,t). We assume also that a limited number of modes (l-u") suffrces to describe the
deformation of the droplet and that its volume remains constant (incompressible
fluid). To fulfll the last condition we have to modify (1), replacing unity by a volume
correction term d(ć). This term is a function of time l only. The momentarY
description of the droplet surface by Legendre polynomials remains unaffected and
is given by r r \

R(0,t): n.{łttl + f a,(t)P.(cosa)}' (5)

The first expansion term is l:2 as / : 0 and I : 1 describe respectively the
volumetric pulsation and the translatory motion of the droplet. The value of ó(l) is
calculated from the following equation:

#RŻ-zn |, 
R,(0:t) 

sin Odd : 0' (6)
Jo 3

The value ofó, in practice, is very close to unity and therefore introduces only a slight
modification into (1). However, this correction is needed for a precise determination
of the volume of the droplets, which is not known a priori in the experiments. X'or
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the practical evaluation of the coefficients of (5) the images of the droplet t'aken at'

corr-esponding moments of exposure ale first traced using computer-aided image

unalysiis to draw out points of droplet boundaries. Up to 900 points are usually

ideniified during this'procedure. TL speed up further calculation the number of

foints is reduceld. Firsi, smoothing the data with a FFT low-pass filter the stray

points are eliminated. Then, atińt 100 .representative'' uniformly distributed

ioints are selected. These points are used to match the shape given by the funct'ion

(5)' 
The analysis of the oscillations is in most cases limited to l-u" : 5. As the first'

mode of interest is l: 2, the fit depends on eight paramet'ers: four surface

deformation amplitudes (ar ttu),the unknown equilibrium radius.Bo of a dtoplet, two

coordinates u,'d th" .otaiión angle of a coordinate system connected with an image

of the droplet,. The least-sqoar" fittitrg of (5) to the previously foundpoints of,the

droplet bo.undary is based ó,. u qou.i-Ńewton optimization. method. The vect,orized

cońputer 
"od" 

ń,' on an IBM 
'090-300E 

allows fitting of one droplet image with

typiżaily 1O0 points in about 0.5 s of CPU time' For some cases, especia1ly at higher

a"io,"rnutio,., ńnplitudes, the number of analysed modes was increased to l-u" : 10,

extending calculation time to about 2 s'

In order to compare the experimental results for droplet oscillations with

theoretical predictiois quantitatively, the correct value of the droplet radius -Bo must

be known. The accuracy of m"usured droplet coordinates is directly proportion'al to

the resolution of the opiicul system, whicL amounts to one pixel in the image plane'

In our experiment's thó droplet images have mean d.iamet,ers of about 250 pixels (t,he

format, of the sensor being 7t6 x 53isquare pixels). Owing to the short exposure time

(200 ns) the blur due tolhe droplet motion is smaller than one pixel and can be

neglected. Thus a single point oflhe image is defined with.an accuracy better than

O.5o^. The mean fittńg J,ro. is typically 0.3 pixels for oscillation amplitudes up to

az:0.5. Hence, *" ln"uy estimaie the error of the measured droplet, radius to be

smaller than 0.2oń.
The other source of possible errors is t'he presence of non-axially symmetric m^odes

of oscillation. These *iil appeu, as fluctuations of the droplet radius 'Eo obtained from

the fitting procedure and such data are not the subject of further analysis' owing to

the high ipatial resolution of the imaging system_even-small changes of the droplet

radius due to its evaporation can be observed and measured. In t'he present'

experiment with ethan'ol droplets of about 200 pm radius moving in t'he air, the

móasured rate of radius con1raction was below 2 x I}_a m/s. It corresponds t,o

approximately a 1.5o/o vańation of the oscillation frequency o, during 10ms

oL-.errration time. This effect was taken into account when analysing the observed

oscillations of the droplets (see Appendix A). The instant of image exposure is

determined with an u"i.r"u"y of O.l'/, of the oscillation period of the droplet'

2.3. ErPerimental results

The experiments were performed with ethanol (95%) (denatured with methyl-

ethyl-ketone) as a aroptet medium. The physical properties of the liquid used

m"i,so.ed by st,andard ńethods at 295 K are : density P : 803 + 1 kg/m3, viscosity

F: I.2t0.i mPa s ancł surface tension a :22.9ł0.3 mN/m' The droplet,s are

d"ispersed in air at normal atmospheric pressure and room temperature 295t1K'
fhe droplets generated during breakup of the jet are usually interspersed with

smaller satellite droplets. Depóncling on the nat'ure of the applied initial jet

disturbance a satellite- droplet *itt -"tg" with the following or the leading droplet at
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some distance from the nozzle. This changes the droplet mass and generates an
additional perturbation of its surface. Chaudhary & Maxworthy (1g80) have
demonstrated that varying the jet perturbation frequency and amplitude, and
adding the third harmonic to the fundamental enables one to control the behaviour
of the satellite drops and in some cases effects their elimination. The complete
elimination of satellites requires large amplitudes of the jet perturbation whicL
initiate stronglv nonlinear oscillations of the generated droplets.

In the fcrllowing we present results obtained for an oscillating droplet generated at
relatively small perturbation amplitude in the presence of a satellite droplet, and a
droplet created without a satellite using large perturbation amplitudes with the
fundamental frequency accompanied by its third harmonic.

Figures 3(a) 3(d) display a short (ł 4ms) time sequence of the instantaneous
dimensionless oscillation amplitudes a, of a droplet for the modes l:2,8,4 and 5
respectively. The values of -Bo and a, are obtained from a series of 179 images of the
droplet with the help of the fitting procedure described in $2.2. The mean
undisturbed radiusło of the droplet. calculated as an arithmetic mean of the values
ło, is equal to I77 pm' The droplet is generated at' a relatively small perturbation
amplitude of the jet. The input voltage of the jet modulator [/ is equal 1 Vnn. The
registration of the droplet oscillations begins shortly after it merges with a satellit"
droplet. The initial amplitude of the second mode (figure 3rł) is about 0.3, whereas
the amplitude of the third mode (figure 3ó) is about 3 times smaller. In accordance
with (3) the viscous damping becomes stronger with increasing mode number, as can
be also seen from figure 3(c,d,), where the higher modes l:4,8 are displayed.

At first glance, the waveform of the oscillations for / : 2, 3 seems to be that of a
damped harmonic oscillator. A more careful analysis, however, reveals small
variations of the oscillation period and an asymmetry between the positive (prolate)
and negative (oblate) displacements. This type of oscillation may be simulated by
introducing into the equation of motion of a damped harmonic oscillator a restoring
force with a symmetric term (i.e. depending on even powers of the displacement).
Using an asymptotic expansion for small amplitudes, we obtain the following time-
dependent approximation for a,:

at(t):'4,sin$'Io,[(I-(a,r,)-,)łłą.,A?]t+l,}+f,A?, (7)

The amplitude damping is given by
A,(t):,4o,exp (-t/r,). (8)

Here, the term with a, accounts for the amplitude dependence of the oscillation
frequency. p, represents the asymmetry of the amplitude ar(t), and Qo is the phase
angle. A slight decrease of the droplet radius due to evaporation, observed during
longer time sequences, is compensated with help of the normalization function ly'(f)
defined in Appendix A (A 1).

The six free parameters: a7, l3,,,,, ś),, Tt', and,4o, were used to fit (7) and (8) to the
measured values of the instantaneous amplitudes a, and au. The fitting procedure is
based on the quasi-Newton optimization method mentioned earlier. The'best fit'
curves displayed in figure 3 (a, b) were obtained for the following values of the fitting
parameters d)z:5939 (6414) s 1, rz : 3.953 (4.193)x 10 3 s, dz : -0.19, f z:0.21,Qz:II342 (12+21) s-1, rs:L552 (I.4gi)x10-3s, ds: -29.5, fs:3.59. For
comparison the corresponding values of the linear theory, calculated from (2) and (3)
bv inserting measured values of o and lt, are written in brackets.

The observed weak increase of the oscillation frequency is well described by the
parameter ar. However, owing to the short registration time and still large final
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a30

Freunp 3. Measured. osciilation amplitudes of an et'hanol droplet Jet excitat'ion with 1 Vno'

(a) Mod.e l:2; (b)I:3; (c)l:a; GL)l: s. pusr'"a Lne_best.fit of the funct,ions (7) and (8)'

amplitudes of t'he oscillations (Az(t:3ms) > 0'1)the fitilig procedure does not give

the correct asymptotic behaviour of the analysed curYe' This brings out' discrepancies

between asymptotic'-unJ ""p""ted 
values of the oscillation frequency' Higher

oscillation modes (l: 4,5) demonstrate strong nonlinearities and the asvmptotic

u"ufy.i. given by (7) and (8) fails for these modes'

oscillation amplitudes io." u .ro-ber of consecutive periods, from the droplet
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ą,0

-0.1

0.1

ąn 0

Time (ms)

Trcunn a@_d). o.lilTil3:1ji*T:il:..'J',i''iJ-"J;"TŁ:t1:"i"i"o'*'es the moment

generation nearly at the jet tip until their disappearance, including the absorption
of the satellite droplet, are displayed in figure 4. The mean droplet radius is
172 pm and the perturbation amplitude of the jet is still small (U: 3 Vnn). The
fitting procedure here gives quite reasonable approximations of the damping factor
and of the asymptotic value of the oscillation frequency. The 'best fit,' parameters
(beginning after the satellite merging) and the corresponding'linear theory values'
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0.19 ms

0.31 ms

0.64 ms

0.75 ms

2.79 ms

12.8 ms
0.45 ms

Frsunp 5. lmages of oscillating droplets at-different moments after the breakoff from the iet'

The solid' lin" is iu"ct]i'on 1s; *ittt l'u* : 10 fitted to the droplet boundaries'
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ate ś),:6140 (6696) S_1,7z:3.448 (3.959)X10 3S,4z:_0.88, l32:0.36, Q,:
13420 (12966) s 1, rs :1.47+ (I.4I4) x 10 3 s, d': B3B, p.: -1.8.It is interesting to note that the enhancement of nonlinear effects, expectecl due to
the larger initial amplitude of oscillations, is evidcnt mostly at the highcr oscillation
modes (figure 4c, d). The nonlincar behar'-iour of the higher mod". p"rJi.t. even when
their amplitudes become very small. This eff'cct. v-hich is due to second- and third-
order resonance coupling, was found by Brown and co-workers in their theoretical
analysis (Tsamopoulos & Brown 1983; Natarajan & Brown 1987). 'Ihe fundamental
mode seems to be less affected, as er.cn merging of the satellito, which results in a Ioń
incrcase of thc droplet radius. has no visible influence on the eyolution of its
oscillations.

A more extremc example of droplet oscillation is ciisplayed in figure b. The jct is
modulated with amplitudes of {,I': J!0 r'" at the funćlamental freqiency ancl 5ó Vno
at the third harmonic. The rccord of the dr.oplet begins shortlv afteiit bróaks offfroń
the jet. \To satellite droplets are obserr.'ed. The initial ampliiude of the second mode
reaches a value of Anr: 0.65. The mean undisturbed radius of the rlroplet is 202 pm.
To improve the fitting analysis given in $2.2, nine surface modes (l-u" : 10) arc used.
The mean fitting error for the first tv'ent1'- images of the stronglł;^dóformed clroplet
is about 2.5oń but for thc following images reducos to 0.2oń.

l'igure 6 shows thc measurea amptituAcs of the obselved droplet oscillations. The
nonlinear cffects are cvident for all analysed modes. The fundamental mofle still has
clearl5'- rogular oscillations but its frequency does not change monotonically in time:
it incrcases initially and then decreases. Thus the asl'mptotic behaviour of ihis mocle
could be analysed with the help of equations (7) and (8) onlv for times greater than
2.5 ms. The values of the final oscillation frequencv and damping factoiso obtajned
ate.. ś),:5275 (5261) S_1, 7z :5.177 (5.460) x 10_3 s. The ..n,l,'". are quite close to
those given in brackets and obtaincd from (2) and (3). The initial oscillation
frequcncv of the fundamental mode, found with (7) and (8) for the first 2.b ms of the
re,gistration time. equals 33116 s-1. The corresponding frequency drift is ar: -0.g7.The droplet oscillations at higher modes cxhibit nonlinearitics which cannot be
anal;,sed with our simple approximation given by equations (7) and (g).

The following conclusions can be drau'n from our expcrimcntal investigation:
(i) For small and moderate amplitudes of the fundamental moc]e the aśymptotic

behaviour of thc drclplet oscillations can be well described with help of tńe simple
model given in (7) and (8). The resulting values of thc initial oscillatioi f,"qu",'.y ńcl
damping factor corrcspond to those pror,'idecl by the linear theory. justifying its
applicabilit;. for low viscosity liquids' To some extent. the approximatión 

".óa 
nuta.

for the third mode. Thc quality cif the fit. hor'vever, is no ló'q". as good as for / :
ż. For higher modcs lhis desr.ription bccomr.s unsa1isfacl orr.Jue to ń" prnnoun"..d
mode intr.racl ion.

(ii) The nonlinearitv of the fundamental mode appears mainly in the form of a
frequencv drift. Assuming a square dependence of the frequency on the amplitude,
this decrease is described by the nonlincarity parameter ar. The value of arfound in
our experiments is in the range of -0.6 to -0.g. For an initial amplitude Aor:0.68,
rvhich-is about the highest r''alue lve observe in our experiments, tńe frequenc1. of the
second mode deviates from that calculated according to equation (2) by:aboit ssrlr.
This deviation decreases down to 50ń ftł A,:0'1.

(iii) rn most of the cases observed up to nou,'. the oscillation frequency
monotonically increases as the amplitudes becomes small. However, foi so-"
breakup configurations! as in the last example shown, frequency modulation
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Treunn 6. Measured oscillation amplitudes of t'he droplet shown in figure 5: large-amplitude
excitationwithoutsat'ellitedrops.(a) Model:2;(b)l:3;(c) l:a;@,)l:5.Dashedline-best
fit of the function (7) and (8) for time I > 2.5 ms.

appears. In such cases the asymptotic analysis generally fails and can be applied only
to the final behaviour of the oscillations.

(iv) The decay rate of the amplitude of the fundamental mode, zr, is in most cases

quite well described by the exponential relation (8).
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(v) At relatively small amplitudes of the fundamental mode there seems to be a

verv weak excitation of modes /: B and l: l from the base mode /: 2 (compare
figures 3Ó and c). This is inferred from the observation that the decay rates r, as well
as r, and 74, measured in the above way, yield values very close to those calculated
from equation (3). At larger fundamental.mocle amplitudós (figures 4 and 6), a weak
nonlinearity of this mode is accompaniecl by a strong ,ror.iir."ur" excitation of the
higher modes' In this case their oscillation frequencies"and damping factors cannot
be described by the linear theory.

This 'oversensitiveness ' of the higher oscillation modes, caused by nonlinear mode
coupling, is obvious if we notice that most of the oscillation energy is stored in the
fundamental mode. Therefore even a small energy transfer between the funclamental
and a higher mode changes appreciably the enórgy balance of the last one.

Summarizing, the asymptotic approximation óquations (7) anci (8) cannot beapplied for the determination of the variation of the frequency of the first few
consecutive oscillations after the break-off of the droplet. However, they describe
well the asymptotic variation of the frequency of the łundamental mo<le for a 1onq
enough series of droplet oscillations. As we mentioned earlier, there exists . p.u.;i;;j
demand for a precise determination of the instantaneous values of'surface tensio'
using large-amplitude droplet oscillations, and therefore it was necessary to develop
a theorctical model taking in account all the nonlinear effects. As a first attempt, th'efull theory of the nonlinear inviscid clroplet oscillations will be described and its
features compared with our experimentui fir.dir.g..

3. Nonlinear model for inviscid droplet oscillations
Although the theoretical analysis of clroplet oscillations for inviscid andirrotational fluid motion is generally of limited applicability for the stucly of real

liquids, the usefulness of the invisci<l linear model iór the asymptotic description ofthe oscillations of low-viscosity droplets justifies our attempt to use an inviscid
approximation for the nonlinear modelling. The numerical meihod we use is a least-
squares approximation to the kinematic and normal stress boundary conditions. Thesimple parameterization of the dropret surface (equation (5)) allows us astraightforward comparison of numerical results with the experimental data.

3. I. Mathetnatical formulation
We analyse the motion of a droplet of an inviscid and incompressible liquid in
vacuum, or in a gas of negligible density. For simplicity our analysis is limited to theaxially symmetric case. The movement of the suria." hu. been given by equation (5).
The assumption of constant droplet volume is satisfied by tile volume correction
function d(l), given previousll. in equation (6). In the foilowing calculations the
maximum number of surface modcs /*u* is set to 6, found to guarantee sufficient
accuracy at a still reasonable computation time (see Appendix B;.

The incompressible, irrotational and axially *y--"iii. motion of the liquid in
spherical polar coordinates (r, d) is clescribed ńy it'" Laplace equation:

Y2Q(r,0,Ą : o, 0 ś r ś R(0,t),0 ś 9ś n,

with thc velocity field given by

u(r,0,t): -V@(r,0,t).
Expanding the potential @ in partial solutions of the

(e)

(10)

Laplace equation with
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expression coefficients linear in the time derivatives ri,(ó) of the surface amplitudes,
we can write

J.u* J.u* ż."*

@(r, 0,r) : > @,(r, 0,t) crt(t) : Z Z c,r(t) Qo(r, 0) ar(t),
l:2 l:2 ż:7

(11)

where lu?,0) : riĘ(cos d) and Ę(cos 0) arc Legendre polynomials in cos d.

X'rom the kinematic boundarv condition at the moving surface it follows that

u(r: R(0,t),0,t)'en@,t):tP",'e,(0^t), (t2)

where, e,, lhe vect'or normal to the surface, is given by the unit, vectors e,andeuoł.
the coordinate system in the following form:

Re,_ (ÓuR) eo
e:--n 

lfi,+(ad'ę)'];'
The pressure difference across the surface must be balanced by the surface tension.

Assqming for simplicity zero pressure outside the droplet, the pressure at the droplet
surface is given by p(r : R(0, t), 0, t) : - 2rrH(0, t), (14)

where H,the mean curYat'ure of the surface, is

H - _1 (R,+2Oą!!f R93R * j. "ll.d..,=f.') (l5)
2\ ((d,B)'-|fi,;c -E((adfi), łRf1;1

The origin of our coordinate system is arbitrarily chosen and does not need to
coincide with the centre of mass of the droplet. Moreover, it can be shown that during
oscillations the centre of mass moves forward and backward in our coordinate

system. Owing to the axial symmetry of the problem this movement takes place

aiong the symmetry axis d : 0. The location of t,he mass cent're at any t,ime ł can be

found to be

; (16)

e, is the unit vector in the direction 0 :0.
Therefore the acceleration of the coordinate system relative to the centre of mass

1S:

Hence, the
form:

e 

" 
s(a,, . .., a,^u,) : e 

"{R 
o |' u1.o. 0) cos 0 (,,o,, . .., a,^u*)+,f o, ł, 1.o. a;)n
"J l \ -'- I:z /

(13)

( 17)

the following

(18)

l.a^ / |,ę 1!-q* i2,ę . \_€,ś : -e 
y l_.'' ,7.-1- \.. ,? \óo, 

u,* 
ł,Ó,,Wo.,,).

Euler equation in our non-inertial coordinat'e system has

a,uł(uY),u_Śez: -Vpp
By use of the Bernoulli integral and (10) we find the equation for the pressure inside

the droplet:
p(r,0,t) : p@,Q(r,0,t)-!pa(r,0,ĄY+ś(Ąrcos0+g(t))' (19)

where g(t) is a time-dependent integration constant.
Co-tinitrg (5) and (11) the kinematic boundary condition (12) takes the form

'y r,a!-l!:-.F'!J) (.R,+(adR),)l+nT : o t: r...../.u* (r0)

giving " ."r';=, 
"o""a,o.l='ror 

the expan.,". .""*u.llnts r,,.
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the equilibrium spherical droplet (as in the case of the linear theory) but on the
deformed droplet surface R(0,t). This however is not automatically guaranteed by
the assumed truncated expansion for the velocity potential (11). TLerefore, instead
of looking for the exact solution of (20), we try to find 'the best fitting ' combination
of the coeffrcients c,o by minimizing the following integrals:

x?(;-uh: f' a1.o. 0)L?(0,{c,u})+min, l :2,...,l^u*, ęI)
J -T

-E_.", Lr(O,{cro}) is given by the left-hand side of the equation (20).
The minimization conditions (21) represent a system of linear algebraic equations

(ayz,lac,o: 0)' from which the coeIfrcients c,u can be found as functións of the droplet
shape parameters a, only: 

c,t(t): c,o@,(t),...,a,^u'(t)). ę2)
The value i^u.-the limiting number of expansion terms in (20) -is chosen so that
all relative errors of minimization

lft [ ,rpl2
(X,",)?,: X?l I d(cosd)|ł#l ę3)lJ-t L dat)

are below 10-2. x'or moderate deformation amplitudes (ar<0.4) this condition is
fulfilled if ,i^u*: 12.

In an analogous way the second boundary condition (15) is solved to obtain the
unknown function q(t) and the accelerations cir(t) of the surface parameters.
S.ubstitution of the pr"..o." in (1a) by its representation given in (1g) and expanding
the velocity potential according to (11) results into the ?ollowing equation; "

l^^..t 1 \ g-
>^ ( o, +3r"os d )4, + s +? rl
r:z \ oQt / P

l^"" (Ó@, ' Ó2s - \+ > | -+.f rcos0 -lVQ,VA-la1d,- : 0, r : R(0,t), (24)t,m:z\oqm oataam "/ ,'"

which we solve by minimizing the integral over the square of its left-ha nd, sid.e gz(0,
{a,}, s) 

17

tr,({d,},s) : 
| . 

d(cos 0) g2(0,{cił,g)+min. (25)

From (25) follows a system ", ;;" hnear algebraic equation tor g(t) and cir(t)
@#2lalą:0; atrzlag : O).

The related relative error of minimization

, I fr ^ / t:t+" /a@, 02,s \ ro \2ff?"t: #'l I dlcosdll )l l=''+. '." rcosg-*v@,v@,ldtd,+'z!Hl
I J l ,\,,_*_,\0rł' ' aa,aa.' ""-" ,- -, - - / |) /

(

remains with the chosen limit /-u* : 6 below 10-2.
Finally the surface motion of the droplet is given by

differential equations ' 
cit : F1(a2, ..., cL6, a2, . . ., du).

It can be shown that the linearization of (20) and (24)
equation:

wl\o I - -
ct(t-I) (t+2)

and the function g(l) becomes a constant.

(26)

a set of five nonlinear

(27)

leads to Lamb's linear

pR3 (28)ailt)
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Frcuno7. (a) Theoscillationmod.esgeneratedforinitial conclitions:a.(ó:0) :0.3,a, u(ł:0) :
d, u(t :0) : 0 using t'ne fresent .ód"1 "o.pnred 

with (Ó) the corresponding ca1culat'ions ot

T,undsren & Mansour tró81s) i."p.od,'"".i f.o''itheir figures 7 and 8, pp. 501-502).

It should be pointed out that, the proposed method, solYing t'he dynamic boundary

condition directly, is generally equiivaient to the Hamilton principle (Sommerfeld

1978), which i. o.ouLly-o."d 1ń,o* eta'l.1989; Natarajan & Brown 1987) to obt,ain

a, generalized dinereniial equation of the droplet, motion (like (27)) The problem is

that the formal use of t-he Hamilton priirciple provides no information' like

minimization error ff!"r, onthe accuracy -ittt -rti"rt the assumed parameterization

of the droplet surface f.rinf. the boundaiy condition for t'he pressure (14)' For large

oscillation amplitudes this is not guafanteed by the truncated expansion (5) anci

erroneous solutions can be obtained'

Time (Ą x Q)ł)
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The final ",,^,,!ł,,ni,:,:i:,:, -?,,,:,,::{,,::,:?,:,,.jju ""''",,""'," illsurface integrals resulting from (2r) and (28) are calculated by the use of
extrapolation in rational functions (Stoer 1972). The partial derivatives of the
coefficients c,o with respect t'o the shape parameters a,, are obtained by polynomial
extrapolation (Stoer Ig72). Finally the ordinary differential equations (27) are
integrated using a modified (by Fehlberg 1970) Runge Kutta algorithm. The
integration starts at t :0 with initial values of surface deformation parameters a,
and their velocities rż,, subsequently calculating values for the following time steps'
The accuracy per time step relative to the norm (o!ł ... ł a!^^*+ a3+... + aL"")I i*
beller tlran l0 3.

A dimensionless form of the equations used in the computation is obtainecl
with the help of the following scaling: [length]:Bo, ftimel:T,:(R|p/3c)ł ą6
fenergy] - Eo: $ncRfi);. To keep track of the overall accuracy, the total oscillation
energy of the droplet (sum of kinematic and potential one) and all related minimi-
zation errors are monitored (see Appendix B). X'or a typical calculation with 300 time
steps (two periods of the fundamental mode) the fluctuation of the total energy is
below 1%. This calculation requires about 20 minutes CPU time on an IBM 3090-
300E.

3.2. Comparison with other theoreti,cal mocl,els

The reliability of the theoretical model was tested by comparing its results with the
trajectories published by Lundgren & Mansour (1988), who calculated numerically
the nonlinear oscillations of low-viscosity droplets. For this purpose we simulate the
initial conditions given by these authors as an example in their paragraph b.1 (p.
499), i.e. a4(t:0) :0.3 and a, u(r:0) : dr_u\:0) :0. The comparison of the
obtained trajectories for the first three even modes (uneven modes are not excited)
is displayed in figure 7. The numerical analysis of Lundgren & Mansour, based on the
boundary-int'egral method, describes a droplet surface with 101 points. This
corresponds to the surface parameterization with a large number of modes. In spite
of the fact that our description of the surface displacements is limited to 5 modes, and
that the viscous effects are neglected in our calculations, it can be seen that the
displayed oscillation trajectories are very similar to those reproduced from their
paper. This confirms the adequacy of our model but also suggests that small viscosity
effects incorporated in their model are mainly responsible for the amplitude decay
and have a relatively small effect on the mode interactions.

Tsamopoulos & Brown (1983) and Dtirr & Siekmann (1987) have studied,
respectively analytically and numerically, non-viscous droplet oscillations. Both
calcula,tions confirm that nonlinearity of the fundamental mode is mainly
characterized by a decrease of the oscillation frequency with increasing amplitude.
In figure 8 data describing this dependence are recalculated from both papers and
compared with those obtained from t'he present calculations and experiments.
Although such a comparison has limits, it is worth noticing that all theoretical
models predict a very similar dependence of the oscillation frequency on the
amplitude, indicating their mutual consistency. The data evaluated from experi-
ments (where the viscous damping was responsible for the decrease of the
amplitude) are generally below the theoretical values.

3.3. Appli,ccttion to the erperimental d,ata

The presented calculations have been carried out for an inviscid liquid. Therefore, to
compare quantitatively numerical results with experiment we must limit our
attention to a single period of the fundamental mode, during which damping effects

?
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Freunn 8. Relative frequency shift of the fundamental mode: typical values obtained in the
present experiment (using the parameter a, in (7)) ( ' ' ) ; values predicted by: Tsamopoulos &
B.o*'' (19ś3) (-), Dtirr & Siekmann (1987) (x ) and present theoretical model (Q).

0.30

0.15

a20

-0.15
- 0.30

0.06

0.03

aB0

- 0.03

- 0.06

0.06

0.03

a40

- 0.03

- 0.06

0.04
\a)

0.02

a50

- 0.02

- 0.04

0.02
\D)

0.01

a60

- 0.01

-0.02

(d)

036912
Time (Ą)

'^i' 
i;i1i1ffi

U)0.04
(Ć)

5 o.o.l
h ^^^gr uur
,F o.o1

0 0369rf
Time (Ą)

Freunn 9(a-e). Theoretical simulation of oscillation amplitudes compared with
experimental data (......) from figure 3 for l: 2-6. (f ) calculated potential ( ' ), kinetic
(-l--) and total (-) energy of the droplet. The potential energy of the droplet in equilibrium is
set to 0;time unit Ę is defined in the text.

are not too strongly manifested. However, to illustrate nonlinear effects better, we

display in figure 9 several periods of the calculated and measurerl oscillations.
The numerical calculations in figure 9 are compared with the experimental result's

of figure 3. The calculation, performed for physical paramet'ers characterizing the
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droplet (radius, density and surface tension), begins at to:0.59 ms, defined by the
moment when the amplitude a, reaches its first maximum. The initial values of
a, ,(t) and rż'_'(lo), evaluated from experimental data, are (0.283' 0.017, 0.015,
0.006) and (0, - 0.085' 0.109, - 0.061) respectively, whereas au(fo) and rż,u(ło) are taken
equal to zero. As we can see, during almost one period of oscillation the calculated
trajectories of the deformation amplitude ar(t) agree very well with experimental
data. For longer time, owing to damping the discrepancies of the amplitudes begin
to be evident. However, both the period of oscillation (or, more aptly, the location
of amplitude extrema) and the general form of ar(t) coincide very well with displayed
experimental point's. It is also worth noticing the similarities with the experimental
data manifested by the higher surface modes a,(l) and an(l). x.or example a,(ź) shows
a frequency modulation which appears simultaneously in the experimental and
calculated curves. Furthermore, the nonlinear behaviour of on(l) is characterized by
an amplitude modulation, which can be observed for both curves in figure 9(c).
Similarly to the experimental observations, in the calculated oscillations the
nonlinear effects become most evident for higher (l > 2) modes.

To confirm the applicability of the theoretical model for the prediction of the
surface tension of the liquid, the surface tension was calculated iteratively. The
surface tension defines the characteristic time Ą needed for the calculation of the
time derivatives of the initial velocities dr_u(to). We start the calculation at the point
where dz: 0 with an arbitrary value of surface tension. Then, the first period of the
calculated oscillation trajectory ar(l) is compared with the experimental data and a
nerv value of the time unit Ą, hence of the surface tension, is used to calculate the
velocities dr-u(td. Repeating successively calculations until the period of ar(l) does
not change (three times was sufificient in our case), the final value of the surface
tension is found. For the data of figure 3 the surface tension was found to be
22 mNr/m, this is, remarkably, closer to the physical value than the asymptotic
estimate of 19 mN/m, obtained for the same data using the linear approximation of
equations (7) and (8).

4. Conclusions
Both experimental and analytical results indicate that for amplitudes of the

fundamental mode exceeding I0oń of the droplet radius nonlinear effects cannot be
neglected in the analysis of droplet oscillations. For short periods, the nonlinear
effects observed in our experiments can be well predicted by the proposed inviscid
theoretical model, confirming its applicability for prediction of the surface tension
from large-amplitude oscillations of low-viscosity droplets.

This research was supported by the Deutsche Forschungsgemeinschaft (DFG).
The authors wish to thank Priv. Doz. Dr U. Brosa for his suggestions and valuable
discussions concerning the presented theoretical model.

Appendix A
The present study is limited to axially symmetric deformations of a droplet. The

droplet is observed from one direction only, therefore the validity of the above
assumption must be proved by monitoring the temporary deviation of the
equilibrium radius .R0(/) of the droplet from its mean value -B-0. For this purpose

207
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Treunn 10. Temporal variation of the relative droplet radius. The arrow indicates the moment of
merging with the sate]]ite. (a) Typical effect o{.non-axially symmetric osci]]ations, (Ó) the droplet
analysed in figure 10.

relative values of the radius (Ro-Eo)lRo are fitted to the linear function q(t):
cL' t + b. Only such measurements, for which the standard deviat'ion of the fit is below
2xID-BE, are assumed to fulfil the assumption of axial symmetry and used for
further analysis. To acquire the effect of monotonic radius variation on the
oscillation frequency the empirical formula (7) includes the time variable nor-
ma liza l ion function :

1r(r) :f5)t. (A1)
\s(t))

This modification, of minor significance in the present, study, allows the analysis of
oscillations of evaporating droplets, which will become one of our next aims.

Figure 10 displays two examples of time variation of the instantaneous relative
value of a droplet radius evaluated from the experimental observations. The first
example, figure 10(a), shows the typical effect of non-axially symmetric oscillations,
not acceptable for our analysis; the second one, figure 10(ó), displays the radius
variation for the droplet analysed in figure 4.

Appendix B
The numerical analysis of droplet oscillations we use is a least-squares

approximation to the boundary conditions. The accuracy of this approximation
depends on the truncation numbers /-u" and i-u" (equations (5) and (11)), and the
maximal amplitude of the oscillations. To find the optimal truncation numbers
control computations were done for the trajectories displayed in figures 3 and 9 by
varying values of l-u* and z-u*. The initial values of a, and a, are given in $3.3. The
calculations are performed for t'he first period of the fundamental mode keeping the
relative accuracy per time step below 10-3. Table 1 displays the time-average values

a<

I

5
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1."" i^t*
o-DI

48
510
511
6If
713
814
914

10 14

l-u" i.u'
o-DI

48
510
511

[612| 7 13
814
914

10 t4

E(Er)
3.129 x 10 

'Ż

3.152 x 10 
'Ż

3.187 x 10 
'Ż

3.187 x 10 
'Ż

3.183 x 10 
'Ż

3.182 x 10-'
3.182 x 10 

'Ż

3.181 x 10 ':

3.181 x 1O-'Ż

max ((X.",)!)

1.5x10'z
4.6x10 "
łt.6 x 10-3
1.2x103
1.2x10 3

4.3 x 10-o
2.9x10 4

3.1x10 a

max(A,E/E)

2.1 xI0 2

3.8 x 10-3
2.7x10 3

2.7 x lO-3
1.2 x 10-3
9.6 x 10-a
7.8x10 1

6.1 x 10-a
5.2xto ą

max ((X,",)!)

2.3 x I0-z
7.8x10 "
6.1 x10 3

2.1 x 10-3
1.3x10 "
1.3x10 3

1.7 x 10 3

rnax (ff1"r)

1.6x10'Ż
3.6x10 3

2.4x IO "

2.4x10 B

1.1 x 10-3
5.6x104
6.1 x 10-a
3.4x10 a

4.2x10 a

CPLT (min)

2
4
6
6.5

10
18

60
80

max ((X.",)!) max ((X.",)!)

6.1x10 3 1.1x10 2

1.6x10 3 8.4x10 3

4.6x10 4 2.5x10 3

4.5r l0 a 8.8x l0 a

1.7tl0a 6.2xlOa
1.1x|0ł !'$x|Qa
7.i < l0-5 l.l x lO-a
3.7x105 l.lxl0a
3.7x105 l.Sxl0a

T,r.sr'n 1. Time averaged value of the total energy, its maximum relative deviation and maximum
values of related minimization errors. The last column qives the required CPU-time.

of the total energy E/Eo with their maximum relative deviation, and maximum
values of the error functions ff!", and Xrelf. The approximate computation time is
given in the last column of the table.
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