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Nonlinear dynamics of viscous droplets

By E.BECKERt, w.J. HILLER łNn T. A. KowALEwsKIt
Max-Planck-Institut fiir Strómungsforschung, Bunsenstrassę I0,D-37073 Góttingen, Germany

(Received 9 July 1992 and in revised form 21 May 1993)

Nonlinear viscous droplet oscillations are analysed by solving the Navier-Stokes
equation for an incompressible fluid. The method is based on mode expansions with
modified solutions of the corresponding linear problem. A system of ordinary
differential equations, including all nonlinear and viscous terms, is obtained by an
extended application of the variational principle of Gauss to the underlying
hydrodynamic equations. Results presented are in a very good agreement with
experimental data up to oscillation amplitudes of 80 % of the unperturbed droplet
radius. Large-amplitude oscillations are also in a good agreement with thę predictions
of Lundgren & Mansour (boundary integral method) and Basaran (Galerkin-finite
element method). The results show that viscosity has a large effect on mode coupling
phenomena and that, in contradiction to the linear approach, the resonant mode
interactions remain for asymptotically diminishing amplitudes of the fundamental
mode.

1. Introduction
The study of droplet dynamics can be traced back to the early work of Lord

Rayleigh (1879). Lamb (1932, pp. 473-475, 639-641) extended the inviscid linear
analysis, including weak dissipative effects, and later Chandrasekhar (1961, pp.
466477) solved the full viscous problem by mode analysis. Subsequently, Prosperetti
(19,7,7,1980a, ó) noted that the linear theory left open some questions about the initial
value problem. For example, the amplitudes of Chandrasekhar's eigenfunctions are
unknown for the oscillations of a deformed droplet starting from rest. The analysis of
initial vorticity generation, first performed by Prosperetti, is repeated here (in
Appendix A)' using a new formulation for the velocity field, lęading to an analytic
solution for the problem.

Although during the last decades nonlinear droplet dynamics has become the object
of several theoretical and experimental investigations, it remains one of the classical
problems in hydrodynamics for which a complete theoretical solution is lacking.
However, theoretical models describing particular aspects of nonlinear droplet
dynamics have become Very important in sevęral applications, for example in
measuring fluid properties like surface tension and viscosity (Hiller & Kowalewski
1989; Becker, Hiller & Kowalewski 1991) or in nuclear physics (Brosa & Becker 1988;
Brosa et al. |989). In particular, the possibility of non-intrusive męasurements of
dynamic surface tension by the oscillating droplet method is of great interest for thę
determination of physico-chemical properties of liquid mixtures (Defay &Pćtre |97I;
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Stiickrad, Hiller & Kowalewski 1993). Our experimental investigations of droplet
oscillations have shown that linear theory as well as nonlinear inviscid theory have a
very limited range of applicability in the interpretation of experimental results. Hence,
our present interest is concentrated on the development of a nonlinear model including
viscous effect which allows an easy analysis of experimental data enabling a calculation
of the dynamic surface tension of the investigated liquids.

The existing theoretical models describing nonlinear droplet dynamics either neglect
viscosity (Tsamopoulos & Brown 1983;Natarajan & Brown 1987) or, whilst taking
viscosity into account, use a strictly numerical approach (Lundgren & Mansour 1988;
Basaran 1992). The limitations of existing techniques have been widely discussed by
Patzek et al. (I99I). It seems that two methods, namely the boundary integral method
applied by Lundgren & Mansour (1988) and Galerkin flnite element method by
Basaran (1992) offer a reasonable approach to nonlinear and viscous droplet dynamics.
However these methods, aside from their numerical complexity, have limited practical
applicability. The boundary integral methods, as was shown by Patzek et al. (I99I),
cannot model droplet oscillations when the effects of viscosity are in the range that is
physically of interest. The finite element methods are limited at low viscosities (higher
Reynolds numbers require fine discretizations and long computational time).

The new approach presented here offers the possibility of analysing nonlinear
droplet dynamics for a wide range of nondimensional viscosity. Furthermore, it allows
monitoring of the systematic errors of the algorithm by means of physically justified
integrals.

The present model of droplet oscillations ($4) uses the mode expansion method with
appropriate modes of the linear problem and takes into account all nonlinearities as
well as viscosity. This method is akin to the work of Boberg & Brosa (1988) who
analysed the transition to turbulence in a tube flow with the help of a corresponding
mode expansion. The existence of stationary boundary conditions in Boberg & Brosa's
problem allowed them to use Galerkin's method to deduce their system of ordinary
differential equations. In the case of a free boundary problem the modes do not satisfy
the boundary conditions a priori. Therefore, a direct application of semi-analytical
methods becomes difficult. Hence, the problem of deriving an appropriate system of
ordinary differential equations is solved by the use of the standard variational principle
of Gauss. This, one of the most general principles of classical mechanics, seems to be
well suited to the analysis of nonlinear droplet oscillations, since it offers the
straightforward possibility of treating the boundary conditions as additional
constraints on the Navier-stokes (or the vorticity) equations. For special cases, if high-
wavenumber modes of the droplet oscillation are strongly excited, the method
proposed in the present paper may become less appropriate compared with the
aforementioned pure numerical solvers of Lundgren & Mansour or Basaran. However,
this limitation of our approach has no effect on its application to physical experiments
with a free oscillating droplet, where amplitudes of the oscillation modes are strongly
related to their linear damping constants. On the other hand our method is close to the
physics of nonlinear droplet oscillations, describing its dynamics in terms of the natural
degrees of freedom. This has been established both by the comparison of the computed
droplet oscillations with experimental data given in Becker et al. (1991) and repeating
some droplet trajectories generated by Lundgren & Mansour (1988) and Basaran
fi994.
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Frcunp 1. A droplet cross-section described by the surface parametrization (2.1). The unit vectors of
the coordinate system as well as normal and tangential unit vectors ofthe surface are displayed. The
origin of the coordinate system is denoted by O, and, the centre of mass of the droplet by s.

2. Formulation of the problem
We consider an incompressible droplet of equilibrium radius ro, density p, uniform

surface tension (r and kinematic viscosity r, which is freely oscillating in a medium of
negligible density and viscosity.

In the mathematical description, limited to axisymmetric droplet dynamics, spherical
coordinates (r,0) are used where r is the distance from the system origin and d is the
meridian angle measured from the axis of symmetry, z. As in our previous analysis
(Becker et al. 1991), we assume that the radial distance R(0,t) from the origin of the
coordinate system to the droplet surface can be expanded in a series of Legendre
polynomiaIs Ę(cos d):

R(0, t) : r,{ao(a,, ..., atu) + 9, o,(t)Ę(cos d)}.
t:2

Figure 1 illustrates the geometry. Assuming constant liquid density, R(0,t) always
encloses the same volume:
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(2.2)

This condition leads to a cubic equation defining the dimensionless mean droplet
radius ao as a function of the surface parameters az .. . at^.It turns out that ao is always
less than or equal to one. The droplet shape is uniquely described by the parameters
az ... Qto. They can be interpreted as dimensionless amplitudes of standing waves, with
/ periods, on strings encircling the cross-section of the droplet. These waves oscillate
independently of each other only in the linear case.

The unit vectors normal (n) and tangential (Ą to the droplet surface are given by the
following formulae:

tnł : ," | ,+R,(o,r) 
d cos d.

- - 
Re,-i,uReo , - 

.d Re,ł Reu
ll:-- I-- 

[R'+ (Ja R)'Ż]'' [R'+ 10, n;11 '

(2.1)

(2.3)

where e, and eo are unit vectors in the radial and the polar directions, respectively.
In our experimental analysis (Becker et al. l99l) the surface parameftization (2.1)

yields the amplitudes a, ... a1^, the equivolumetric radius rn and the position of the
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coordinate System. These parameters are fittęd to the observed droplet shape.
However, the origin o of thę coordinate system does not need to coincide with thę
centre of mass s which may move along the symmetry axis z. The displacement s of the
centre of mass depends on the surface deformation and in thę chosen coordinate
system it is given by

d cos d. (f .4)

The parameterization (2.1) does not include the term with index / : I because in our
experimental analysis this term does not represent an additional degree of freedom for
the description of the surface. The amplitude a, which in the linear theory dęscribes a
pure translational motion cannot be separated out in the experimental analysis.
obviously it is possible to |et a, be different from zero and to require the centrę of mass
to coincide with the origin of coordinates. This gives a second relation in addition to
(2.2), which allows the elimination of aras a function of ar...a,^. Both descriptions
become equivalent if slr, (or ar) is small. In practice the value of ls/rol remains below
0.01 in our experimental and computational analysis.

In the non-inertial coordinate system the Navier-Stokes equation for incompressible
fluids has the followins form:

a,u*(u.Y)a_śe": _vplp_vY xY xa, (2.s)

where u denotes the velocity field, e" the unit vector in the z-direction and p the
pressure. The acceleration of the coordinate system with respect to the centrę of mass
is equal to _ś. In the case of constant density p the governing equation (2.5) is
equivalent to the vorticity equation (VE):

Arw: V x (u xw)-vY xY xw, w:Y xa. (f.6)

Surface motion and flow velocity are coupled by the kinematic boundary condition
(KBC): 

a.(Re,_a,Re,): RÓ,R, r: R. (2.7)

The driving force of droplet oscillations, namely the surface tension, acts per-
pendicularly to the free surface. Therefore, on the surface ofthe tangential stress ofthe
flow vanishes, and the normal stress balances the driving force. The tangential stress
condition (TSC) and dynamic boundary condition (DBC) become

(Tn).t:0, r:R,
(Tn).n:ŻcH, r : R.

7 is the Newtonian Stress tensor and H thę mean curvature of the droplęt surface. The
left-hand side of (2.8) contains only friction terms which are known from u. The
pressure p contained in the left-hand side of the dynamic boundary condition (2.9) is
given by line integration of the Navier-Stokes equation (2.5).

Computational results arę non-dimensionalized using ro and To: (pr|l3c)ź as scale
factors for length and time.

3. Linear oscillations of a viscous droplet
A simple analytical method of finding partial solutions of linearized Navier-Stokes

problems was given by Brosa (1986, 1988). These partial solutions applied below to
describe linear oscillations of a viscous droplet were found to be also usęful for

s (ą z . . . o,,) : t, o|' "", 
o (,,@, . . . a, 

o) 
ł !,,, ą1cos o1)"

(2.8)

(2.e)
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investigations of the corresponding nonlinear problem ($a). In Appendix A results
obtained previously by Prosperettr (1911,1980a) are recapitulated to illustrate the
advantages of Brosa's modes ansatz.

The partial solutions of the linearized Navier-stokes equation in the case of
rotational symmetry and free boundary conditions are given in the following form
(Appendix B):

ut: e_^t|b?V x V x {rj,[(A/Ąźr]P'(cos 0)}+ciV{(rlr,)t Ę(cosd)}],
and Pt : PAe_^t co,(r f r)l Ą(cos 0).

Owing to linearity, arwlll have the same time dependence as a, and pr..

a,(t) : a? ę_o,.

Inserting (3.1)-(3.3) into the linearized forms of the boundary conditions (2.i)-(2.9)
and making use of the orthogonality of the Legendre polynomials one obtains a
homogeneous system of equations for the amplitudes bl, c'j and aor.The condition of
non-trivial solutions for this system yields after several algebraic transformations

det (x) : 
lon, - 

1) (t + 2) - 2x, * r#),a r x7,{x) )

+ [- 4l(l + 2) (P - I ) * 412 xz - xn + an - 2(t + t) aa I xz];l(x) : 0, (3.4)

1 :: (Af v)ź ro,

a.n :: - er(rllv),
Q'Ż :: (ct I pr3) l(l - ll (l + 2).

The characteristic equation (3.a) is equivalent to that given by Chandrasekhar (1961,
chapter X, equation (280). O is the eigenfrequency in the case of an ideal fluid. The
existencę of periodic solutions depends on the value of |a,| which plays the role of an
|dependent Reynolds number. In the asymptotic case of small viscosity (|ą,|> co) and
oscillatory motion (x is complex) an analytical solution of (3.4), namely Lamb's
irrotational approximation

,\: d*i(o,-a')ł, ó: (2t+r)(t-1)v
(3.8)

Io

follows. In general the complex roots of det (x) must be found numerically. Figure 2
shows the results for / : 2. For large values of la'Żl two conjugate roots are obtained.
when la'zl increases fromlaf,,rrl to infinity, they form two branches in the complex plane
of x. These branches represent weakly damped oscillations. In the limit lcrtl> oo the
damping vanishes, i.e. the relation lRe(x)/Im(x)l becomes unity. with decreasing larl
damping increases until both branches combine at x : x",it (|ocz| : |q"Ż,uD, a''d u''
oscillatory motion is no longer possible. Further decrease of Ia,I leads to twó real roots,
describing aperiodic decay of droplet deformations. In the first case x tends to zero
with la'Żl whereas in the second x tends to xo. In addition to this pair of solutions, which
depends strongly upon la2l, there exists an infinite spectrum of nearly constant real
roots. These represent internal vortices of the droplet flow and give rise to strongly
dissipative modes. In figure 2 black squares mark the first three solutions. It is
surprising that these roots and therefore the corresponding velocity fields vary only
weakly as lazl changes from zero to infinity. The zero-maps for the higher wavenumbers
(l > 2) look similar to that in figure 2.

In contrast to the inviscid analysis the characteristic equation (3.4) has non-trivial
solutions for / : 1. This infinite set of ręal roots - not mentioned by other authors -

(3.1)

(3.2)

(3 .3)

(3 .5)

(3 6)

(3.1)
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Frcunn 2. Map of roots of the characteristic equation (3.4) for pola^r wavenumber /:2'
The arrows indicatę the direction of increasing |cr,|.
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57 .1 6.81 9.33 12.6

Xąt

8.86
10.2
11.5
12.8
14.r
15.3
16.5

TAsr,n 1. larur,l, x",u, r0 and the roots of the flrst five strongly dissipative modes fof given polar

wavenumbeis' i :"i-... S. O.ing to the weak dependence on la'Żl (for I > 2) the roots of the strongly

dissipative modes are only approximate values.

is independent of la'Żl and gives rise to strongly dissipative llodes, describing internal

velocity fields which leave the droplet surface at rest. In fact there are no ar-

deformations.
Summarizing, we obtain the discrete spectrum of eigenvalues

{in,li:I,f,...; l:I,2,...}, (3'9)

characterized by radial and polar wavenumbers i and /. Each pair of complex solutions

is defined as ,ł'iand ,ł,, wheie the imaginary part of tr', is SupDosed to be positive. The

additional dańping cónstants of the strongly dissipative modes are enumerated with

radial wavenumbers i>3.In the case of lo'l<lo?,lrl or l:1 only real eigenvalues

occur ; they are numbęred with monotonically increasing numbers i > I , The roots {xit}

of (3.4) ar; labelled in the same way (see figure 2). Table I displays the most important

values for polar numbers /: I ...8.
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(3.13)

(3.14)

(3. I s)

The amplitudes ó$, c|, and a|, of the mode system can be found from the
homogeneous equation system formed by the linerized boundary conditions. As one of
the amplitudęs is arbitrary we can choose b|, in a way that normalizes the partial
solutions of the vorticitv:

wu,(r, 0) e ł : b?,V x V x v x { ri,(",. :) Ę(cos a)}( "\-"r0,/ 
)

: e,b?t(ł,\,,,(-,,:\Pl(cos 0)sin0. (3.|0)P "\ro,/'r to/

f*'a"o, 0 |,,,,d,,y.,,,,.:Ą' (3.l1)J-, Jn l,i
In (3.l0) el: €,xe, denotes the unit vector in the azimuthal direction. Defining

b,,(r,0) : boźtv xv x{ri,(",.l)Ętcosa)}
( '\"-/o/ 

)

: ui,| 
",,,, 

!.',) i,( *, !\Ę(cos d)-"1 r ""\""rn/ '

_ 
",{ł,,(,,,') *ł,,(,"ą)} o,t"", a) sin a], ę .|2)

c,(r, 0) : YEt(r, 0) : v{(ą), 
"'rc"' 

a}

: 
", 
tĘ nrcos o) - e uĘĘ(cos g) sin d,

where i', denotes the derivative of jp we can expand any linear droplet oscillation of the
/th surface mode in the followins wav:

Each mode

{,,(l,,?,o } 
: 

?,,,(Ą {,,,(,, ul ł?,,y, ",ę, 
e1},

Brr(t): Brr(0)e-^"t.

{u,,,, ul ii,,y,,,ę,, a1}

contributes to surface deformation (a$), vortex flow (óu,) and potential flow (c?lc,).

4. Mode expansion and dynamics of nonlinear dropret oscillations
In this section we introduce a new approach to the nonlinear free boundary problem

(2.1)-(2.9) which allows us to find a semi-analytical solution by mode expanśion and
application of the variational principle of Gauss to the hydrodynamic equations. It is
based on the following premises:

(i) The boundary conditions are used either to eliminate dependent variables or
become additional constraints on the vorticity equation.

(ii) The partial solutions provided by mode analysis must certainly be modified.
(iii) The linear and low viscous limits must result.
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FIcuRB 3. (a) Real and (ó) imaginary part of the velocity field ó', (definition (3.l2)) inside an
undeformed droplet. The dimęnsionless viscosity of y : 0'0l I23ri/r, (|a,|: |45.4 in the case of.
/: 2) corresponds to droplets observed in our experiments.

FrcunB 4. As flgure 3 but within a weakly deformed droplet, and the lengthscale of the flow
vectors is halved.

The surface parameterization is given by (2.1). The mode expansions of the velocity
field and vorticity contain several modifications:

lo i, lo

u(r, 0, t) : t t B rr(t) b rr(r, 0 ; a r . . . at 
^) 

+ Z r rG) c r(r, 0),

(b)

l, ź,

w(r, 0,t : 
: }U"f,) 

w,,(r, 0 ; ar... a,,) eq,

w,,(r, 0 ; a,... at,) eł : V x b,,(r, 0 ; a,... a,).

(4.1)

(4.2)

(4.3)

First the fixed couplinE ct:2 Borcy, of the potential and vortex modes is removed. In
the linear analysis this coupling arises because the tangential stress of each velocity
mode bu,ł c!,c,vanishes at the undeformed droplet surface. obviously this cannot hold
in the case of nonlinear deformations.

Furthermore b, and w,, become dependent on the surface parameters. This
modification generates reasonable vortex modes for arbitrary droplet shapes. The
former modes (3.10) are not appropriate as the spherical Bessel functions 7, with
complex argument grow exponentially. Therefore the vorticity of the weakly damped
modęs is concentrated in a sheet below the droplet surface (see figure 3), and its
thickness vanishes with the damping. This is a mathematical equivalent of Lamb's
irrotational approximation where potential flow inside the droplet and finite vorticity
at the surface are assumed. For the Same reason thę boundary layers of the modes
(3.15) change signiflcantly even if the deformations of the droplet are small (see
figure 4).

It is expected that the boundary layers should adjust their structures to the actual
droplet shape. Indeed, this is accomplished by modifying the argument of the spherical
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Bessel functions in (3.12), substituting for ro the time- and angle-dependent droplet
radius

yielding

Xźt 
ro> 

xil R(0Ą,
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(4.4)

b,,(r, 0 ; a, . . . at,) : bl,v 
" {,, Q " WA) 

o;1"o, o) sin 0 e r}

: ą,|",{U?,,(',,;)Ę(cos a_ftĘi;(''';)Pj(cosa)sina} (4.5)

- ",{#,,k',;) *!,,(,"i)}łr"o, a) sin a]. (4.6)

Figure 5 shows that the new vortex modes (4.5) behave as expected, i.e. their boundary
layers agree with the droplet surface. Unfortunately the simple modification (4.4) not
only results in rather complicated formulae for the derivatives of óo, but it also
produces singularities at the origin O.In particular, singularities of wrr, V xY x b, and
V x V x {wre,p} occur for l: l, l: I,2 and l: 1,f,3, respectively. This is a result of
the angle-dependent scaling of the radius r which produces distortions everywhere,
especially close to the origin. We could avoid singularities at the expense of more
complicated modifications and thus even more complicated formulae for the
derivatives. Therefore we keep the scaling (4.4), trying rather to eliminate the influence
of singularities on the overall solution. This is possible because the effects of vorticity
are only ręlevant close to the surface. Hence, without losing accuracy we may split the
droplet interior into two domains: a little sphere of radius e surrounding the origin
where we set the rotational part of the flow equal to zero, and the rest where (4.5) is
valid. The thickness of the'vortex'layer depends on the viscosity; therefore e should
remain small compared to ro in order to assure validity of the solution for highly
viscous liquids. The irrotational approximation of Lamb and the nonlinear droplet
model of Lundgren & Mansour (1988) are limiting cases of this boundary-layer
approximation.

The potential modes c, (defined in (3.13)) were used previously to describe the
inviscid flow in the nonlinear case (Becker et al. 1991). They are taken without any
modification.

With the mode expansion (2.1) and (4.1) defined so far the mean square errors of the
governing equations (2.6YQ.9) are defined in the following way:

fl fR

X?a : |_, |" 
* drdcos 0|2 Bu,,*ł Bo,(a,w,,)

* er.(vV x V x u,-V x (o x w))l', (4.7)

x'xac: ft b.(^r,-auReu)-RO,Rl'Żdcosd, (4.8)
J7

, lfr.X'zsc:_l l(Tn).tl'Żdcosd, (4.9)
uvL

x2osc : f 
' 

[], rnt.n-': ,1' d cos e. 14. ro)JtLP P l
The problem is solved by minimizing the least-square ercor yzr, of the vorticity
equation with the constraints given by minimizing (4.8)-(4.10).
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FIcunp 5. (a) Real and (Ó) imaginary part of ó,, (definition (4'5)) within a weakly deformed
droplet, obtained with thę viscosity and lengthscaie o| flgure 3'

It turns out to be appropriate to choose the surface parameters a, and the amplitude
Bo, of the vorticity as independent variables. Hence, the amplitudes c, of the potential
flow as well as the time derivative a, and Bo, must be found by variation.

The potential flow is determined by the tangential stress condition:

(4.11)

The amplitude c, cannot be evaluated from (4.11) because the tangential stress of the
homogeneous flow c,:, vanishes. We proceed, eliminating c' and thę surface velocities
a, from the kinematic boundary condition:

AKBC

The results of @.11) and A.lf) can formallv be written as

( f tri,
Xzrsc : f dcosBl > ) Bu,{2(n.Y) b,,+nxY x br,}. t

J Lt-r t-t
to '.l2

+ ) c,{Z(n.V) c,}. t | --> min
t.:2 l

-Ayzrr"f acr:0, I :2 ...10.

I, ź,

ct : Z Z Cl-@r... aro) Bi-, I : I ... lo,
m:l L:L

I, ź,

dr: f 2KI-@r...aro)Br-, l:2...1o,

(4.r2)

(4.r3)

(4.14)

S,-(o,... ą,,) B,-. (4,l5)

and the first differential equations,

f | 1o ,lP: 
J 

d cos ?lc.,cr.(Re,- Rreu)-E a, R#,

+(+,,",+*śr r 
.lz

\E , , ;_,= 
ł,,b,,).tne,- R,eil| 'min

-Óyzuu"f Óc': 0, ay,uu"f aa,: 0, l :2 ...lo.

m:Li:L
/^"0 atc_ś:-)id.:-

l:z vu t

So far all expansion parameters for vel
namely (4.14) arc known.

lo i,YY

ocities

The accelerations, i.e. differential equations of thę form Bu,:... must be derived
from the dynamic boundary condition (2.9) and the vorticity equation (2.6) in one step.
These equations are fundamentally of differing importance to the problem. Whereas
the vorticity equation plays its role only for viscous flow, the driving force for
oscillations the surface tension - dominatęs droplet dynamics in general, independent
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of the presence of viscous effects. Therefore it is most important to satisfy the dynamic
boundary condition with the smallest possible error. Hęnce we must determinę the
unknown time derivatives Ą, by minimizing the mean error x}u" without any regard
to the value of XTr.The remaining flexibility of the modes must be used to satisfy the
vorticity equation.

Accordingly we rewrite the dynamic boundary condition (2.9), substituting the
pressure by line integration of the Navier-Stokes equation (2.5):

fR )-
| 7a,u-se"+(u.V) ułvV x V x u) .drłc,+v{Z(n.V)a}.n :::! H; eI6)Jo p

co is a time-dependent constant of integration and equal to - 2c f pr o in the linear limit.
By inserting expansion (4.1) into (4.16), the mean-square error (a.10) is transformed to

, [, l/o'o I fR ) /o

X2oa. :J, o.o',L: 
.łd'tB,. ),,,,.o1*.ł 

ć,p,-Śp,łf,az

fR )r 12

| (u x w -lV x V x a),d'r łv{f(n.v) a1.n-2 u|J, p )

(4.r1)

In (4.I1) the lower integration limit r : 0 has been replaced by e in order to separate
the singularities of the rotational modes (4.5). FDBC is the local error of the dynamic
boundary condition.

If viscous effects were absent, the flow would be described by the velocity potential
Er,V, alone. In accordance with the boundary-layer urg,r*.ni, the bulk flow can be
considered as nearly irrotational in the case of damped oscillations also. Hence, XLu"
become small if we choose formally the time derivatives ć, as variational parameters.
From (4.17) we see that this variation is equivalent to the projection of Fru" onto the
potentials p,. Thus we obtain the following set of /n * 1 independent equations from thę
dynamic boundary condition :

: 
J',0"o. 

oFBu".

rrh,: lX,,,"/u.. : 
J.' 

dcos0F,,"ę,:0, l :0 ...lo.

-,ł ź B,, r @, b,). o, * z(ź,k,"- #,,,) o,

+!a2+ I,,xVx u- a xw),d,r_v{2(n.v)a\.n-Łn. (4.|g)

(4.18)

Of course, these additional constraints are calculated after inserting (4.13) into Fru":

&.5 /fR to \Foac: ))B..{ | b,,.drł2Cł,E"_Sttgl |*.opo
,:1 i:1 \Jo n:l /

Now the outstanding differential equations result simply from the variation yzru >min
with the constraints (4.18): h,: O^ /: 0... Ą: \

ax?r +ś ̂
- 
oŁ : o. r : l ... io. l: r ...l": IiĘ-#,^.óĘ_". r-r...lo. ._'....0t 

l G.20)
ax?u * g, *-u!. : r. Id.o #o 

.. ać, )
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The vorticity equation and dynamic boundary equation are weighted automatically

because the śet óf equations (4.20) determines not only B,,and co but also the Lagrange

multipliers rc-.In the linear limit they become equal to zero. The constraint (4.18)'

appearing as,thę first (/o + 1) equations of (4.20), ęnsure the correct solution for the low

viscous limit.
Owing to the complex roots xir of the characteristic equation (3.13) the parameters

determiied by the minimization procedure are generally complex numbers. To find reaL

modes and róal amplitudes every expansion containing the weakly damped modes or

their derivatives must be rearranged to separate their real and imaginary parts' For
simplicity our notation describes full complex functions'

fle piime errors (4.7)-(4.10) are normalizedby referring them to the mean-square

values óf th. 
"o.,.sponding 

functions that are approximated by the mode expansions:

- Ru"u)), @.rr)

X?a,"t :,?, 
l r,f ,, d, dco,,[ź 

|uo,@,w,,)+ 
er.(zV x V x w _Y' 1,',;)]',

A.fI)

u""- u [(ź Zu,u,,+ 
9,,",). {o",

flo żo 12

dcos0|'' B,,{2(n.Y)b,,+nx v x ó,,}.l |,Lłń l

Xzt<ac-r"t: f'-r"lf-,

Xzrsc-r"t: fbr"lf-,

X.o a c _, 
"t 
:,L, 

" l r_'d 
cos d 

tź ź B,, r @, b u). o, * Ł(ź,#, " - #,o') o,

+!a2 +| .,o x V x u- u x w). dr - v{Z(n.,),Ą. "-,; Ą

(4.23)

(4.24)

These relations are used to measure the systematic errors of thę governing equations

(2.6),(2.e).
The final differential equations (4.I4) and (4.20) are solved numerically applying the

following standard methods:
(i) eitrapolation in rational functions and polynomial extrapolation to evaluate

integrals and derivatives (Stoer 1972);

1ii; Gauss elimination to solve systems of algebraic equations;

fiiii u modified Runge-Kutta algorithm (Fehlberg 1970) to integrate ordinary

differential equations, and
(iv) approximation of the spherical Bessęl functions by Legendre polynomials to

reduce computational time (Amos 1986).

Finally let us consider the linear limit of the model. We have chosen the surface

coefficieńts a, and the vorticity amplitudes B,, a degrees of' freedom. Thęrefore one

might expect inconsistency with the linear theory in which only the B, ate independent

parameters and the a, are always given by

) Buraorr- a, : 0, I : 2... lo

L:I

(see (3.1a)). This problem would be avoided if the fixed relations (4.25) and their time

derivatives were considęred as additional constraints. However, a greater flexibility of

the mode expansions seems preferable to us. The example shown in figure 6 confirms

(4.2s)
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FIcunB 6. Computation in thę linear limit. Truncation numbęrs and initial conditions are lo : J,
lo: 2, ar(O) : 0.02 and Bu(O) - 0. The radius of the irrotational region e : 0. 1ro, and the dimensionless
viscosity r:0.00123rllTo. The solid curves show the results of the nonlinear model. The dashed
curves follow from linear theory (see (3.14)). They start at t :0.36Ąand t : 1.|7Ąitdlcated by solid
vertical lines. Their initial conditions are the actual values .8,,(t) of the nonlinear numerical solution.

that the present model behaves correctly in the linear limit. The computation (solid
lines) begins at initial conditions not allowed by (a.25). Comparisons with the linear
solutions (dashed lines) following from (3.14) show initially some deviations. However,
as can be seen, these deviations disappear with time, i.e. the nonlinear model
approaches the linear solutions.

5. Results
5.1. Initial conditions

Our experimental method of generating and evaluating oscillating droplets has already
been described in recently published papers (Hiller & Kowalewski 1989; Becker et al.
1991). Strongly deformed axisymmetric droplets of about 0.5 mm in diameter are
produced by the controlled breakup of a liquid jet, and the time evolution of a droplet
cross-section is observed using a stroboscopic illumination technique. Further analysis
consists of fitting the function (2.1) with a truncation number /o:5 to the recorded
droplet shapes. This yields the surface parameters az...as and the equivolumetric
radius ro as functions of time. Usually the droplet radius decreases weakly with time
owing to evaporation. In the present model we neglect this small effect and assume for
rn its mean experimental value.

In the following we compare two typical experimental results already given in Becker
et al. (1991, flgures 5 and 6) with the theoretical predictions. Figure 7 shows an example
with large initial amplitudes.
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-0.r2

I

All our nonlinear computations presented in the following sections węre Started using
(5.3) to calculate initial conditions for the new model from the initial values of the
Surface parameters a| and their velocities rż,.

0.6

.; I j^rj^vr.a\^

02468101214
Time (ms)

:. /ą.*u^

02468101214
Time (ms)

(5.3)

FlcuRp 7. Experimental ręsult for an ethanol droplet oscillating in air. The surface parameters
(dotted lines) a, .,.ą5are shown as functions of time. Each dot corresponds to each time the droplet
cross-section was recorded and analysed. The mean equivolumetric radius of this measurement was
ro:20'7 pm. ll t, and t, mark points in time where computations with the model were started.

The flow field inside the droplet cannot be determined experimentally. Observations
of droplets yield solely the surface parameters at and eventually their time derivatives
rż' (which can be evaluated by interpolating a,,(t)). Therefore, it is difficult to formulate
exact adequate initial conditions for the model. However, the a, and a, contain more
information than one might expect. With the help of two additional assumptions it is
possible to compute reasonable initial amplitudes Burfrom the available experimental
data. These assumptions, justified by comparison of numerical and experimental data,
are: (i) the strongly dissipative modes can be neglected, and (ii) the amplitudes obey the
relations (4.25). These postulates correspond to the irrotationalcasę where the velocity
field is determined by the surface motion only. Accordingly the tangential stress
conditions, (4. 1 1) yields

(s. 1)

and the kinematic

'ldR.lt* *?,*,0 
| -nin (s.21

The couplings (4.25) now become additional constraints on (5.2) because variation of
yzuu" with respect to c, and .B,, gives only /o independent equations. Analogously to
(4.20) we obtain the following system of algebraic equations:

l,^ 2

ct : 2 Z C:-(ar... ar^) Bi-, I : 2... lo,
m-2 i-l

boundary condition (4.I2) can be rewritten in the form

f / to 2 / t, \\
I|",",+> t B,,lbr+> Cf c-ll'(ne,-arReu)
L\ t-2 i-t \ m-z / /

xzxac : 
/o "o, 

a

lo2
Kt: at-t t a!,Br:0, l:2...Lr,,

N,"* ś . ÓK,:u
^ 

| 4 "m \act m:2 ocl

uł^,n:"*ś 
"-5:o, i:|,2, l:2...to.aB,, #r"- dB,,
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Flounn 8. Computational ręSults-(solid lines) starting at 11 (cf. figure 7). In addition the experimentaldata''(dotted lines) and the predictions of linear ń"o'y'1ou't"d ńe;j are included. The initialconditions and model 
' 
parameters ?re a2 : 0, !,^-.9.0łB' ,. : 0.0ó5, as : _ 0,03, (t, : 0.9 /7;,ćIB:-0.3|lT0,an:-0.3|/Ą,du:0.18/Ą'u:o.btI23ri/Ą,ł,,:3,lo:6and e:O.1i^.

5.f. Comparison with experiments
In fi,gure J tr tz and tB mark three zero crossings of a2(/), separated in each case by two
oscillation periods. The experimental data at tńese póints aie used as initial conditionsto start the calculation for the next interval. Hence, simulation of the wholę
experimental run is done in three steps, covering three regions of droplet oscillations:
strong nonlinear (max|a,(t)| ł0.6), nonlinear (max|a,(Ą|x0.4), and quasi-linear
(maxlar(t)l 

= 0.2).
Calculations were performed using the physical data of the liquid used in the

experiment, i.e. p :803 kg/m3, c : 22.9x l0 3 N/m, ł : |.49x 10._6 m'7s, respeci-
ively. The free parameters of the nonlinear model are chosen to be io : 3, ir: o ande:0.1ro. Although. the large-amplitude oscillations were somótimes analysed
experimentally with lo : 70, amplitudes found for / > 5 are too small to be evaluated
with reliable accuracy. The initial values of au and auhave been set to zero as they are
also not significant for the overall accuracy ór tn" numerical analysis.

Figure 8 shows results of the first computation starting at t1. They are compared with
the experimental data and results of thó linear model

ą{t) : exp{-Re(,ł',) t}(A,,cos{Im(,ł',) t}+ Azlsin{Im(,\',)r}), (5,4')

where the constants lu and,4r, correspond to the initial values of a, and ar.
The strongest nonlinearities are visible shortly after the droplet is generated at the

tip of the jet. The maximum droplet deformation, i.e. the -u'i-,,.,' ""i". "iltżl'.i'approximately 0.8. one can see that, unlike the case of the linear theory, the presónt
model describes the experimental data very well. The following effects of nonlinearities
can be readily seen, when comparing with the linear model:

(a) The oscillation period of the fundamental surface mode arincreases. The surface
displacements are asymmetrical: the maxima (prolate deforńation) are 1arger and
flatter, whereas minima are sharper and have a smaller value. These effects ire also
typical for inviscid nonlinear models (Tsamopoulos & Brown l9g3).

(ó) The observed nonlinearity of the first higher-order mode a, iś even stronger; it
oscillates faster for negative displacements of a, and clearly slowór for positivńnes.
The combined action 

.of a,and a, shows that tńe average óeformation órtn. drop1et
changes faster when the droplet ńas an oblate shape anó slower when it is elongaied.
These periodic frequency modulations can be understood in terms of'effective masses.
Ininviscid theory the kinetic energy of the droplet can be written 

^ +il,rr_i,i_'.
FLM 258
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FrcunB 9. Computational results (solid lines) starting at tr(cf . figure 7). In addition the experimental
data (dotted lines) and the predictions of linear theory (dashed lines) are included. The
initial conditions are ąz:0, aa:0.026, a4:0.009, ds:0'001, a,:0,65/Ą, a3:0'069/T0'
aą:-0.058/To,a5--0.022/Ą. Themodelparameters v,i,, l,, earethoseof flgure8.
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Frcunn 10. Computational results of the nonlinear viscous model (solid lines) taken from figure 9

compared with a corresponding inviscid calculation (dashed lines). The solution of the inviscid mode-
(Becker et al. 1991) has been evaluated with the maximum polar wavenumber /: 6 in the surface
p ar ametrrzation and velocity potential expansion.

Each diagonal element of the mass tensor M,- gives the inertia of a single surface wave
and the non-diagonal elements describe the nonlinear couplings. Linearization leads to
a diagonal matrix and effective masses M,-x\mll(21+ 1). In the nonlinear case the
matrix elements depend on the instantaneous droplet shape and it can be shown that
a shape elongation yields growth of its diagonal elements.

(c) The third higher oscillation modę a4 shows a Strong coupling with a,. Except for
the small ripple at t ź 3Ą, the maxima of an coincide quite well with the extremes of
a,. According to the linear analysis (compare (3,7))' one might rathęr expect the
frequency ratio 1 :3 instead of the observed ratio 1 :2 and an arbitrary phase shift
between both amplitudes. This indicates that predictions of the linear theory cannot be
related to the real behaviour of an. This holds also for amplitude au although the mode
coupling is not so straightforward.

The predictions of the nonlinear model for thę second interval t2-t3 arę shown in
figure 9. Comparing it with the previous interval (figure 8), one can see that the
quantitative coincidence with the experimental data is clearly improved although the
nonlinear characteristics remain. The short-time bęhaviour of the oscillation
amplitudes can also be relatively well described by the former inviscid nonlinear model
(figure 10).

The results of the third computational run which starts at /3 are displayed in figure
11 together with both previous computations. They are compared with the measured

t0
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FIcunB 11. Three successive computations (solid lines) starting at t, tzand l, (cf. flgure 7), compared
with the experiment (dotted lines). The discontinuity of the theoretical curves at t: t, and r: l" is
due to the restarting of calculations. The initial conditions for l, are ąz: O, as : 0.0003, an : 0.00"5l,
45:0'001, a,:0.384/ą,iB:0.029/T0,dą:_0.0034/Ą,du:-1'61;|/r,'Themodelparameters
v, i, lo, e are those of figure 8.
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FlcunB 12. Relative mean ęrrors of the tangential stress conditions (X\,"-,,), kinematic boundary
condition (|?,n.,",),.dynamic boundary condition (XL,"_,,) and vort1ói1y equation (y,,,,") @€e
definitions (4.21Y(4.24)) corresponding to the oscillation shown in figure l I. - "'

oscillation amplitudes. It can be seen that the long-time behaviour of a, and a3 shows
oscillations typical of the damped harmonic oscillator. Asymptotically both ąz and a3
approach the predictions of the linear theory. Surprisingly, even in this last-analysed
interval the amplitude an remains always positive, indicating the presence of the
nonlinear mode coupling with ar. The surface waye a6 is not displayed as its small
amplitudes are not of interest.

Figure 12 shows the corresponding systematic errors (4.21Y@.24) for the three
calculation runs. Ifstrong nonlinearities are present, the tangential stress condition and
Vorticity equation cannot be solved appropriately. The maximum relative męan errors
of these equations are of the order of l00oń. Nevertheless, kinematic and dynamic
boundary conditions, which determine the droplet dynamics, are always solved with
negligible errors and the results are in accordance with the experiment. This validates
our approximation of treating the boundary conditions as additional constraints on
the equation of motion. The kinematic and especially the dynamic boundary
conditions are essential for the irrotational inviscid droplet dynamics. They remain
dominant in the viscous case also. The tangential stress condition and the vorticity
equation seęm to pIay a secondary role, mainly affecting the amplitudes by damping.

One example of modelling another experimental run, characterized by moderate
excitation amplitudes, is shown in figure 13 (compare also figure 4 in Becker et al.

8-2
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Frcunr 13. Experimental (dotted lines) and theoretical (solid lines) results of an ethanol droplet
oscillating at a moderatę excitation amplitude. The initial conditions ate.. a2:0, al:0.061'
a4:0.042, as: -0.002, a,:0.625lTo, d": -0.065/Ą' ćt4:0.085/ą, d,: -0.103/Ę. The
mean equivolumetric radius of the droplet rr:0.1733 mm results in a dimensionless viscosity
of v:0.0l227r!lTo.The otherparametęrsare io:3, l,::6ande :0.1ro. Att:t"o, theobserved
droplet merges with a satellite.
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Flcunr 14. Phase-space relations of mode couplings: (a) between a4 and aź; (ó) between a5 and
ara".The dots represent numerical results obtained with the present model, taken from the data set of
figure 11 for l > 5Ę. The slopes of the fltted straight lines arę (a) 0-47 and (Ó) 0.99.

1991). At t: ts,lrź0.5Ą the observed droplet merges with a satellite droplet. It is
interesting that this relatively violent disturbance has an appreciable influence only on
the higher surface waves aLatd as. However, as time passes, the severe deviations from
the model predictions for these two amplitudes diminish. Finally the experimental and
theoretical data coincide again, at least qualitatively. This leads to the assumption that
a4 and 45 are ręgenerated by nonlinear interactions with a2 and a3 and that their long-
time behaviour is independent of initial disturbances.

5.3. Mode couplings

The mode interaction for an and au with initial conditions taken from the experiments
can be simply analysed in the phase space. These phase-space investigations have bęen
done using a multi-parameter editor Relation (Wilkening 1992). In particular,
reasonable results seem to be offered by the relations au: an(af,) and ar: ar(arar)
shown in figure 14. According to these representations the couplings of an and ascan
be approximately described by

an x C'az, and a5 ź C2a2a3, (s.s)
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FIcunn 15. Calculated oscillations with weak viscous effects compare with figures 7 and 8 of
Lundgren & Mansour (1989). The dimensionless viscosity of v:4.0825x10 arf,lT, corresponds to
their Reynolds number of 2000. The time is scaled wlth (3 12)ź Ę. The other model parameters are
given in the text.

Computations performed for several initial conditions (taken from experiments with
ethanol and water droplets) indicate that these nonlinear couplings are in most casęs
the same and are approximately given by C, x 0.45 and C, x 0.9. The phenomena can
be understood in terms of driving forces proportional to af, and ą2a, which are present
in the differential equations for ą4 and au' The Structures of these nonlinearity terms
also follow from parity.

Asymptotically the higher modes are always forced oscillators, i.e. despite
diminishing oscillation amplitudes the higher modes do not reach their linear solution
(cf. figure 11). This is because the damping increases with the wavenumbęr / (cf. (3.8)),
and within a short time the higher modes become dependent solely on the energy
transferred from the fundamental mode. Such a mode locking mechanism, selected by
the linear damping constants, has already been described in Haken (1990, pp.
2r1 2r7).

5.4. Additional computations and accurący
As was shown in the previous sections, it is typical in experimental observations that
the lower modes (l : 2,3) contain most of the energy and that they are more or less the
only degrees of freedom of surface motion. The higher modes, of lower energy, are in

-0.10
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Frcuxn 16. Transition from underdamped to critically damped conditions - compare with figure 12

of Basaran (1992). Variation of the dioplet's prolate aspect ratio.a/b: R(0,t)/R({:Ą. The time

is scaled *itt' ,1z:ą' Calculations for three dimensionless viscosities (Reynolds numbers):

v:5.7735xto-Ą1r, (Re: 100) (solid line)' v:5.77351!\ar!/T,.(-lte: 10) (dashed line)'

v : 5.7735 x to_,ri/r, (Re : 1) (dotted line). The initial conditions are given in the text' The othęr

model parameters are io -- 4, lo: 6 and e : 0.lro-

fact generated by strong nonlinear coupling with a, and ar. Such energy distributions,

clearly noticeable in the damping constants of Lamb's approximation (3.8), seem to be

typicil of natural droplet oscillations. Of course, one might propose any artificial initial
condition.

One interesting example with very low viscosity has been given by Lundgren &
Mansour (1989, figures 7 and 8). Their Reynolds numbęr of 2000 corresponds to a
dimensionless viscosity of l, : 4.08f5 x l}_ar!lĄ. We havę repeated their calculation
with io : 3, lr: 8 and e : 0.1ro using their initial conditions' i'e'

an(O):0'3' d4(0) : 0

andzęro for the other surface modes. The computed trajectories (figure 15) coincide
quite well with those of Lundgren & Mansour' except for a slight discrepancy il tĘ
&t'.-. values of the amplitudes. The nonlineat charactęristics are the same in both
calculations: second-order coupling of a, and au and third-order coupling of a, with the

energy carrier a4.

,tn-ottrer comparison is shown in figure 16. We have repeated calculations of Basaran
(1992, figure 12) for a droplet starting to oscillate with only the second mode excited,

i.e. ar(g) : 0.4, dz(Q): 0 and zero for the other surface modes. The computations have

been.performed lor threę difference viscosities (Basaran's Reynolds numbers l00, l0
and 1), demonstrating transition from damped oscillations to an aperiodic decay.

It iś worth mentioning that all of Basaran's nonlinear calculations showed aperiodic

decay beyond a criticai Reynolds number which closely corresponds to the critical

a ,"-T L.'
D

1.6

1.4

1.0

0.8

0.6
t2



Nonlinear dynamics of uiscous droplets 2ll

value given by the linear theory. This justifies our approach of describing nonlinear

droplei oscillations in terms of the linear modes'

Tie accuracy of our numerical solutions depends on the truncation numbers io, /o

and the assumed thickness of the vortex layer (ro-e). It is rather difficult to find

parameters justifying these values a priori' To find the optimal truncation numbers and

ihe optimai radius . sęveral controi calculations have been performed to analyse the

influence of these parameters on thę solution and its minimization ęrrors (Becker

rńil It was found that for the cases analysed optimal values of io.and lo are 3 ?!d 6,

respóctively. Larger truncation numbers involvę long computation times without

significant improvement of the resulting accuracy. The radius e of the zero-vorticity

domain could be varied from 0.05ro tó 0.3ro without noticeable deviations of the

generated solutions.

6. Concluding remarks
A new droplet model for nonlinęar viscous oscillations has been developed. The

method is based on mode expansions with modified solutions of the linear problem and

it. appticution of the variitional principle of Gauss. Computational results are in

u""oń.un". with experimental data and numerical ca1culations of other authors up to

ielative droplet deformations of 80 oń of the equilibrium radius. Typical nonlinear

characteristics like frequency modulation and mode coupling are found to be dominant

even in the case of s,mall dęformations. Consequently' considerable discrepancies

between the predictions of linear theory and the nonlinear dynamics are observed'

The present droplet model cannot describe such strong effects as droplet rupture'

Also some finę details of the intęrnal flow may become difficult to accurately model.

However, our main interest, namely experimentally observable droplet deformations'

are properly described over a wide range of the excitation amplitudes. The method also

allow a wióe variation of the dimensionless viscosity (oscillation Reynolds number)'

describing both aperiodic decay of droplet deformations and oscillations with nearly

vanishing- dampińg. This flexibility cannot be obtained easily by the avai1able pure

numerical methods.
The evaluation of surface and volume integrals at every time step involves relatively

long computation times, limiting the applicability in solving practical problems'

Hoi".ue.,lt has been found that with the help of the present model it is possible to

construct simple differential equations which approximate the nonlinear behaviour of

the surface parameters a,(t) itd reduce the óómputational time by two ordęrs of

magnitude. Manipulating'ihe coefficients of these equations, i'e' surface tension and

visósity, it is feaiible to obtain within a short time an adequate description of the

selected experimental data. such a model can be easily applied to measure dynamic

surface teniion and viscosity by the oscillating droplet method.
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OFG). The authors wish to tńank Priv.-Doz. Dr U. Brosa' Professor Dr F. obęrmeier
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Appendix A
Looking at the linear solution given in

can the amplitudes of the vorticity field
amplitude a, and the velocity field u, are

$3, we can see the following problem. How

'Bź' (3.15) be calculated if only the surface
given a priori? This question is not a trivial



2I2 E. Becker, W. J. Hiller and T. A' Kowalewski

one. Consider a droplet at rest which starts to oscillate due to an initial surface
deformation. To solve this special problem we must know a non-trivial set of
amplitudes B,, that, combined with the velocities bźt+ c?tcl, assure a Zero velocity field
inside the droplet. Obviously these amplitudes remain unknown without further
analysis. The reason is that any initial value problem is solved by mode analysis only
if the system of equations is self-adjoint, i.e. if all its eigenvalues are real.

Let us apply Brosa's (1986, 1988) separation ansatz (B 3) in the following form:

u,(r,0,t) : v x V x {r'B(r' l) Ę(cos 0)}+ c,(t)V{(r/r)l Ę(cos d)}. (A 1)

The corresponding representation of the vorticity yields

V xu,(r,0,t): -lArB@, t)Pi(cos 0)sinqer.

Thus an irrotational initial condition is given by

a{t : 0), a,(t : 0), B(r,t :0) : 0.

Applying (A 1) to the linearized boundary conditions we obtain

(A 2)

(A 3)

(A 4)

(A 5)

(A 7)

where the kinematic boundary condition has been used to eliminate c, and c,. Because
time and radius dependence have not been separated, the function B(r, l) has to satisfy
the diffusion equation

,,ł, 
,u, B(r o, t) - !,u,, ,, t)) + (i{t) + 26a{t) ł Q2 a,(t) : g 

,

!a,,1,,,,) : 
i?,Ó, 

B(ro, t) - lB(r,, t)) -2!ł a,(t),

,{ui ut,, t) +?a, B@, t; -l!Ą! n@, t)} : at B?, t)

ital : f f{,) 
"^, 

o,, Re (,Ą) < 0,

(A 6)

which follow from the vorticity equation.
The dynamic boundary condition (A 4) ensures that for short times and irrotational

initial conditions every droplet oscillation obeys Lamb's approximation (3.8). This
holds independently of the value of z. As the droplet starts to oscillate, vorticity is
generated at the surface owing to the tangential stress condition (A 5). For low fluid
viscosity the vorticity cannot diffuse inside the droplet (the left side of (A 6)

diminishes), and Lamb's approximation holds during the full oscillation time. This
means that an irrotational initial condition is approximated by the weakly damped
modes in the asymptotic limit of large Reynolds number la'Żl. For larger viscosities the
initial condition consists of both weakly damped and strongly dissipative modes. The
latter disappear quickly in time. Hence, as already shown by Prosperetti (1977), the
long-time behaviour of the droplet will differ from the initial one.

The analytical solution of the initial value problem (A 3)-(A 6) can be found using
the standard Laplace transform method with the following conventions for a time
function / and itś Laplace transform f
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(A 8a)

(A 8ó)

"f(t) : ilAye-^, dl, Re (zl) < o,

1,\) e-ut d,\.

The sum in the inversion formula (A8ó) includes all residues or^,t)e ^'with non-
negative real parts of ,ł. The integral of (A 8ó) represents the counterclockwise
integration along the infinite semicircle with positive real parts.

Laplace transform of the system (A 4) (A 6) with respect to the initial conditions
(A 3) yields after several algebraic transformations:

a,(0) -,Jil, {!p+ o,(9lś2'} {drłgl * (łx,_ t1+ l ))yl(x)i.ott,\t: -- u -'d"t(rltl" ;Jt a" *,tt- 
l

(A e)

(A 10)
frr.. r, 2(l - I) rfrj,(xr lrr) {a,(0) + a,(0) O, I A}Ult'.t\):--ł-jffi

1 fRe(/:l) i{

#Jo.,,,*,*

: -) nesf(n) 
" "j**l_

As expected the singularities of d, and 6coincide with the solutions of the characteristic
equation (3.4). A formula equivalent to (A 9) has already been given by Prosperetti
(1917) who used a numerical method to obtain the inverse transform. To invert (A 9)
and (A 10) analytically we make use of (A 8ó) and obtain

. /.\ ..- 4'fr (a'(0) ła,(0| Q2/ 
^,)1x..7j{x,.) 

+(x?,/2- |)j,(x,,))n(t\- \'- u' ''-' ^-0,,,
7:,. v xordet'(xrr)

B(r, t) : ^ 2il_
a,ll)l 

-,
t(zt + I)

lr)'
\/n/

I) (2t +3) v

*{-ło'.ol. i-: (All)tu, / > (.),

e-0,,,j,1r";), (A 12)
ćt{0) 

^żł 
a,(0) Q,

xrrdet'(xrr)

where ji and det' denote the derivatives ofj(x) and det(x).
The result (A 12) gives rise to the following interpretation: the velocity modes

Ibil+C?lc,|l:i....o} are linearly dependent for tż 2, i.ę. there is one non-trivial
combination of the amplitudes, namely

_ll
8,, x 

6r.,4pa, W. lA 13)

resulting in zero velocity. Moreover (A 12) yields two non-trivial amplitude
combinations for the vorticity modes {wuli:1 ... oo} which generate zero vorticity for
r 1t11> namely (A 13) and

8,, y, ,1,, x"
" bideil(xJ ' (A 14)

However, if we consider only a finite number of velocity or vorticity modes, it turns out

t Lra l- 1_y "0' '
1;,v l
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that they are linearly independent. For polar wavenumber /: I the independence
holds in general. This flexibility of the mode system confirms the completeness of
Brosa's separation formulae.

Appendix B
In the case of constant fluid density and in the absence of bulk forces, partial

solutions of the Stokes equation can be obtained as follows (Brosa 1986). The
linearized Navier Stokes equation

A,u@,t): - orr@,t)-vV 
xV xa(r,t)

and the equation of continuity
Y .u(r, t) : g

are solved using the following representations:

u(r, t) : V x {V p(r, t)} + v x V x { Vb(r, t)} ł V {c(r, t)},

p(r, t) : - pArc(r, t),

where the scalars li, b and c must satisfy the diffusion equations

and the Laplace equation

vYzp :6,p, vYzb : Ótb

Yzc :0,
respectively. The supporting vector fięld V is given by

V : Ął V,r,

where Ą and Ą are arbitrary constants.
For the problem of droplet oscillations it is convenient to choose

V: r.

The partial solutions of (B 5) and (B 6) in spherical coordinates (r,0,Q) ate given by
(Moon & Spencer 1961):

(B 1)

(B 2)

(B 3)

(B 4)

(B s)

(B 6)

(B 7)

(B 8)

(B e)

(B 10)

(B 11)

p or b cr e_^, i,7(A1v)ź r]Y,-(0, Q),

c u: e-^'(r f r )' \-(0, 1).

7, denotes the spherical Bessel functions (Abramowitz & Stegun, chap. 9) and Yr- tl:re

spherical harmonics. In the case of rotational symmetry (m:0) the spherical
harmonics can be substituted by the Legendre polynomials Ę(cos d).

The velocity fields corresponding to (B 9) and (B 10) have the following forms:

V x(r{}): 
"u -W,-"rąP,

V x V x (rb\: 
"/!i})b*""au(o. 

,*Ł)*",#(o, ,-|) (B l2)

V(c) : 
",! 

,+,,tr,+"^łĘ,. (B 13)r r 'rslnu

where e,, euand eóare the unit vectors in the radial, polar and azimuthal directions.
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the velocity modes (B 11)-(B 13), evaluated on a

215

sphere

Ł(u"a-p\srnd\ " r)

ao(24,(4,+ b lr) + Alv b)

for Y x (rp)

forVxVx(rb)

for Vc

tor V x (rp)

(B 14)

"^ 
/ort\Lwr | 

- 
I

(Te,).eu: pv

-Au@,13- lj/r)
U.ń ,^-,._;-]1;(Zdr(dr+ b/r)+ A/vb) for V x V x (ró) (B 15)sln f7

za.l' af t 
=)' \r sln t/ for Vc

7 denotes the Newtonian stress tensor of the corresponding velocity fleld. According
to (B 14) and (B 15) the tangential stresses of vxvx(rb) and vc depend on the
angles of 0 and / in the same way, namely proportional1o a0Yr-in the d-direction and
proportional to (ad/sin 0) Y,- in the /-direction. In the case of V x (rB) these
dependencies are exchanged with respect to the (d, /)-components. Hence, this velocity
mode produces tangential forces on the surface that cannot be balanced by the other
modes. The first term V x(rp) of the representation formula (B 3) therefore vanishes
if free boundary conditions of a liquid sphere are considered.
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