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Fundamental questions
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 What is Information?
 How we can define and measure the quantitative information?

Shannon Communication Theory

 For which objects it is possible to define the information?
Uncertain phenomena… mathematically random variables, stochastic processes
Assuming reasonable axioms Shannon derived the formulae: 

𝑰 𝒙𝒊 = − 𝐥𝐨𝐠𝑷(𝒙𝒊)

Shannon C. E., The Bell System Technical Journal, 1948



General statement of the problem
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Shannon 
Communication Channel

Neuronal 
Network

(Neurons)

Unfortunately, noise
is inherent property 
of biological systems

INPUT
Spike trains

seqences of bits

OUTPUT
Spike trains

sequences of bits

Decoding scheme; Optimal ??? - Shannon.Fund.Theorem

Shannon C. E., The Bell System Technical Journal, 1948 



Communication Channel
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Neurons, neural networks ---> Communication channel
conditional probabilities

general formulae 𝑝𝑛(𝑦1,𝑦2, …, 𝑦𝑛|𝑥1,𝑥2, …, 𝑥𝑛,s)

𝑦1,𝑦2, …, 𝑦𝑛 - output symbols 𝑥1,𝑥2, …, 𝑥𝑛 - input symbols

𝑠 - states

Memoryless channel

𝑝𝑛(𝑦1,𝑦2, …, 𝑦𝑛|𝑥1,𝑥2, …, 𝑥𝑛,s)=𝑝1(𝑦1|𝑥1),𝑝1(𝑦2|𝑥2), …, 𝑝1(𝑦𝑛|𝑥𝑛)

Fundamental channel characteristic

Channel capacity 𝐶 ≔ max
𝑝(𝑥)

𝑀𝐼(𝑋, 𝑌)

Mutual Information



Shannon Fundamental Theorem
Decoding opportunities

TARGET: EXISTENCE OF DECODING SCHEME FOR A GIVEN PROBABILITY ERROR 

Given a discrete memoryless channel with capacity C>0 

and a positive number R<C there exists sequence of codes
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nA ,,2 where

n – is the length of word associated to a given symbol to be transmitted

















2
nR - number of symbols from a given alphabet {a,b,c, …} to be encoded

by sequences of bits of length n

0n probability of error  n
The point is R must be less than C !!! then, 

there exists decoding scheme for given error
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Mutual Information
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Mutual Information formula

𝑴𝑰 𝑿, 𝒀 ≔ 𝑯 𝑿 −𝑯 𝑿 𝒀 = 𝑯 𝑿 +𝑯 𝒀 −𝑯(𝑿, 𝒀)

Conditional entropy

𝐻 𝑋 𝑌 =  
𝑦𝜖𝑌

𝑝 𝑦 𝐻(𝑋|𝑦) = − 
𝑦𝜖𝑌

𝑝(𝑦) 
𝑥𝜖𝑋

𝑝(𝑥|𝑦) log 𝑝(𝑥|𝑦)

𝐻 𝑋 ≔ − 𝑖∈𝐼𝑠
𝑝(𝑋 = 𝑖) log 𝑝(𝑋 = 𝑖) entropy of the INPUT

𝐻 𝑌 ≔ − 𝑗∈𝑂𝑠
𝑝(𝑌 = 𝑗) log 𝑝 𝑌 = 𝑗 entropy of the OUTPUT

𝐻 𝑋, 𝑌 ≔≔ − 𝑖∈𝐼𝑠
𝑝 𝑋 = 𝑖 𝐻(𝑌|𝑋 = 𝑖) JOIINT entropy

To be estimated -
tacitly assumed ergodicity



Entropy and (Lempel-Ziv) Complexity
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 Entropy = Average Information (measure of uncertainty)

𝑋-random variable
𝐼𝑆- set of values to be reached by 𝑋
𝑝(𝑋 = 𝑖) – probability the random variable 𝑋 reaches the value 𝑖

𝐻 𝑋 := 𝐸(𝐼 𝑋 ) ≔ − 
𝑖∈𝐼𝑠

𝑝(𝑋 = 𝑖) log 𝑝(𝑋 = 𝑖)

 Lempel-Ziv Complexity (1976) Complexity converges to Entropy

LZ: Number of new phrases which arrived along the sequence
Example: 𝑆𝑒𝑞 = 01011010001101110010

New phrases:                                  0 1 011 0100 011011 1001 0

𝐿𝑍 𝑆𝑒𝑞 = 7

Lempel A., Ziv J., IEEE Transactions on Information Theory,  1976

Pattern matching 
approach !!! 

Idea: to handle short 
sequences



Entropy estimation
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Estimation of the entropy

Lempel-Ziv estimator Strong estimator

 𝐻𝐿𝑍76 = 𝐿𝑍(𝑆𝑒𝑞)
log 𝑛

𝑛
encoded spike train

Number of symbols

Lempel A., Ziv J., IEEE Transactions 
on Information Theory,  1976

Strong S. P., et. all, Physical Review
Letters, 1998



Fundamental questions
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 What is optimized in biological systems during transmission of 
information?

 Mutual Information ? (in Shannon Theory sense)
 Mutual Information per energy used ?
 Something else ???

 How efficiency of information transmission is affected by the 
mechanisms formed in the process of evolution

van Hemmen J. L., Sejnowski, 23 Problems in Systems Neuroscience Oxford University Press, 2006



Experiments
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Sanchez-Vives Lab

Szczepanski J., Arnold M., Wajnryb E., Amigó J. M., Sanchez-Vives M. V., Network, , 2003
Amigó J., Szczepanski J., Wajnryb E., Sanchez-Vives M. V., Biosystems, 2003

Szczepanski J., Amigó J. M., Wajnryb E., Sanchez-Vives M. V., Neurocomputing, 2004
Amigó J. M., Szczepanski J., Wajnryb E., Sanchez-Vives M. V., Neural Computation, 2004

Szczepanski J., Arnold M., Wajnryb E., Amigó J. M., Sanchez-Vives M. V., Biological Cybernetics, 2011
Arnold M. M., Szczepanski J., Montejo N., Amigó J. M., Wajnryb E., Sanchez-Vives M. V., Journal of Sleep Research, 2013

Spike train recordings

Implanted rat/or cat Microdrive mounted with two tetrodes
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http://www.sanchez-vives.org/


Experiments (idea)
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Sanchez-Vives Lab

Visual stimulus consisted of sinusoidal drifting grating presented in a circular patch
Intracellular recordings from a cortical cell in vivo and vitro during sinusoidal current injection
A membrane potential trace showing the trajectory while intracellular sinusoidal currant was 
injected. During the depolarizing phase the membrane potential value reached threshold, 
inducing a train of spikes or action potentials
Spikes as acquired in a separate channel to be used for the analysis 
Sinusoidal current injected into the cell 

Sanchez-Vives M. V., Nowak L. G., McCormick D., Journal of Neuroscience, 2000

http://www.sanchez-vives.org/


Experimental results
Intracellular recordings in vivo and in vitro - classification
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The data was obtained from primary cortex recordings both in vivo and in brain slice
preparations (in vitro)
Intracellular recordings in vivo were obtained from anaesthetized adult cats

Sanchez-Vives Lab

Szczepanski J., Amigó J. M., Wajnryb E., Sanchez-Vives M. V., Network: Computation in Neural Systems, 2003

Current and Visual Stimuli
Complexity –

Signal classification for 
given type of Stimuli

Interspike time coding

http://www.sanchez-vives.org/


Experimental results
Intracellular recordings in vivo and in vitro - classification
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Sanchez-Vives Lab

Szczepanski J., Amigó J. M., Wajnryb E., Sanchez-Vives M. V., Network: Computation in Neural Systems, 2003

Normalized complexity versus number of intervals for periodic stimuli
More information is transmitted with binary bin coding
Significant advantage with in vivo

Binary bin coding

http://www.sanchez-vives.org/


Experimental results (brain states …)
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Male Listed Hooded Rat – tetrodes were implanted in primary visual cortex
Typical runs of the information rate for two neurons (spike trains)
The awake-sleep transitions for two typical physiological states as a function of time
The rat alternated several times between the states of sleep and awake
The brain states classification by EEG (red line) and behavioral observations

Sanchez-Vives Lab

Arnold M. M., Szczepanski J., Montejo N., Amigó J. M., Wajnryb E., Sanchez-Vives M. V., Journal of Sleep Research, 2013

Polish National Science Centre grant 

N N519 646540, and by the Spanish 

Ministry of Science and Innovation to 

Maria V. Sanchez-Vives (BFU2008-

01371 and BFU2011- 27094). Jose 

M. Amigo was supported by the 

Spanish Ministry of Science and 
Innovation, grant MTM2009-11820

http://www.sanchez-vives.org/


Relative Mutual Information
measuring transmission efficiency
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𝑹𝑴𝑰 𝑿, 𝒀 ≔
𝑴𝑰(𝑿, 𝒀)

 𝑯 𝑿 +𝑯 𝒀 𝟐
=
𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

 [𝐻 𝑋 + 𝐻(𝑌)] 2

The quantitate Neuroscience Spike-Trains 
Correlation (NSTC) coefficient

𝑁𝑆𝑇𝐶 𝑋, 𝑌 ≔
𝑝11 − 𝑝1

𝑋 ∙ 𝑝1
𝑌

𝑝1
𝑋 ∙ 𝑝1

𝑌

Relative Mutual 
Information concept

Relative Mutual Information against Correlations

Szczepanski J., Arnold M., Wajnryb E., 
Amigó J. M., Sanchez-Vives M. V., 

Biological Cybernetics, 2011
Exp.: Rats – primary visual cortex

Pregowska A., Szczepanski J., 
Wajnryb E., BMC 

Neuroscience, 2015



Relative Mutual Information - experimental results
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Sanchez-Vives Lab

Szczepanski J., Arnold M., Wajnryb E., Amigó J. M., Sanchez-Vives M. V., Biological Cybernetics, 2011

Recordings were obtained from Lister Hooded rats weighing 300-400 g at the time of surgery
The brain was sliced coronally into 100-μm thick sections, which were mounted and 
sustained to aid visualization of the electrode track and trip
tetrodes were implanted in the primary visual cortex 13 neurons 6 neurons

http://www.sanchez-vives.org/


Redundancy - experimental results
measuring neurons population collaborations
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𝑅 =
𝑙𝑆 − 𝑙𝐶

𝑙𝑆 − m𝑎𝑥
1≤𝑖≤𝑘

{𝑙𝑖}

Redundancy concept

𝑙𝑖-the information rate of neuron 𝑁𝑖

𝑙𝑆- the sum of information rates for each cell separately
𝑙𝐶- the information rate of the combined spike train

Sanchez-Vives Lab

Reich D. S., Mechler F., 
Victor J. D., Science 2001

Szczepanski J., Arnold M., Wajnryb E., Amigó J. 
M., Sanchez-Vives M. V., Biological Cybernetics, 

2011

http://www.sanchez-vives.org/


BRAIN –inspired networks
Model of neuron proposed by Levy-Baxter

probabilistic approach

incorporates all essential qualitative mechanisms
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Levy W. B., Baxter R. A., Neural 
Computation, 1996

Levy W. B., Baxter R. A., Journal of 
Neuroscience, 2002

Paprocki B., Szczepanski J., 
Neurocomputing, 2013



Model of neuron: Levy-Baxter 
idea
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Activation Threshold Formula

𝜎 =  

𝑖=1

𝑛

𝑋(𝑖)ϕ𝑄𝑖 + 

𝑣=1

𝑤

𝐸(𝑣)ϕ𝑄𝑣 − 𝑏 ∙ 𝑙ϕ𝑄𝑙

Activation potential 
compared with 

activation threshold 
𝑔

Source input
(for excons only)

Associated Inhibitor

Inhibitory Impact

Inner inputs from 
exons

Amplitude fluctuations
(noise)

Synaptic failure/Synaptic noise
Levy W. B., Baxter R. A., Neural 

Computation, 1996
Levy W. B., Baxter R. A., Journal of 

Neuroscience, 2002



Brain-inspired networks architecture
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Brain model - we consider three 5-node architectures 
powered with 3-dimensional source of information

Paprocki B., Szczepanski J., Biosystems, 2011
Paprocki B., Szczepanski J., Brain Research, 2013

Paprocki B., Szczepanski J., Neurocomputing, 2013



Parameters of the brain-inspired networks
communication channel

12th INCF Workshop on Node Communication and Collaborative Neuroinformatics, April 16-17, 2015

Source Parameters
Firing rate 𝑓𝑅
Entropy
Correlation

Neuron parameters
Synaptic failure/synaptic noise 𝒔 random variable
Activation threshold 𝑔
Number of synapses 𝑛
Amplitude fluctuations 𝑄𝑖 random variables
Inhibitor strength 𝒃

Network parameters
Size/Delay 𝑟 radius of circle
Long-range connections (architectures)
Number of nodes/neurons



Numerical simulation/ Estimations details
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 Synapses number 𝑛 = 3

 Firing-rate of the source 0 ≤ 𝑓𝑅 ≤ 1 in step of 0.05

 Synaptic success 0 ≤ 𝑠 ≤ 1 in step of 0.05

 Amplitude fluctuation 𝑔 ∈{0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.6}

 Inhibition strength 𝑏 ∈ {0.0, 0.25, 0.5, 0.75, 1.0, 1.5}

 Sequences lengths 1 000 000 bits, this assures high accuracy

to reach high accuracy we consider very long sequences

We chose to consider architectures consisting of 5 nodes



We assume that most energy is consumed for generating spikes

 For excitatory neurons 𝐸 without accesss to the source

𝑀𝐼

ϑ
=

𝑀𝐼(𝑠,𝑓𝑟,𝑏,𝑔)

𝑠∙(𝑏𝑓𝐼+ 𝑤 𝑓𝑤)

 For excitatory neurons 𝐸 with access to the source 𝑋
𝑀𝐼

ϑ
=

𝑀𝐼(𝑠,𝑓𝑟,𝑏,𝑔)

𝑠∙(𝑛𝑓𝑟+𝑏𝑓𝐼+ 𝑤 𝑓𝑤)

 For inhibitory neurons 𝐼
𝑀𝐼

ϑ
=
𝑀𝐼(𝑠,𝑓𝑟,𝑏,𝑔)

𝑠∙ 𝑤 𝑓𝑤
M

Brain-inspired networks - efficiency criteria

Mutual_Information (between Inp, Out) / Energy
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𝑓𝐼 - firing rate of the inhibitory neuron, from the same node as a given neuron 𝐸
𝑓𝑤 - firing rate of the wth excitatory neuron, preceeding a given neuron

Paprocki B., Szczepanski J., Biosystems, 2011
Paprocki B., Szczepanski J., Brain Research, 2013

Paprocki B., Szczepanski J., Neurocomputing, 2013
Papers has been supported by Polish National Science 

Centre Grant NN519 646540



Brain-inspired networks questions
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What is the role of synaptic failure/synaptic noise in the network?

What is the role of inhibitory neurons in the network? 
How the inhibitors influence on the Mutual Information-Energy and Mutual 
Information efficiency?

How the long-range connections affect the Mutual Information-Energy and 
Mutual Information efficiency?

How the size of the network, i.e. delay effects influence on 
the Mutual Information-Energy and Mutual Information efficiency?



Brain-inspired networks
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Inhibitory effects (inhibitory neuron strength)

Effectiveness increases even by 50 percent

INPUT OUTPUT

Paprocki B., Szczepanski J., Brain Research, 2013



Brain-inspired networks
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Long-range connections effects

Effectiveness increases even by 70 percent

Origin neuron 
has access to 

the Source

Origin neuron 
has access to 

the Source

FOR TARGET 
NEURON

Origin neuron 
has no access to 

the Source
INNER CON.

INPUT OUTPUT

Paprocki B., Szczepanski J., Brain Research, 2013

INPUT

FOR ORIGIN
NEURON



Brain-inspired networks
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Size effects (Delay effects)

The most effective is the network with the smallest size

INPUT OUTPUT

Paprocki B., Szczepanski J., Brain Research, 2013

2 times increase of the size can cause even 3 times decrease of the information-energetic efficiency



Feed-forward networks
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Synaptic failure/Synaptic noise 𝒔

Solid line – Mutual Information with zero noise 𝑠 = 1
Dotted line - maximal Mutual Information values 
Size of a dot is proportional to 1 − 𝑠(noise), indicating the bigger the dot 
The corresponding Mutual Information value is achieved at lower 𝑠. 

The most effective is the network with the smallest size

Paprocki B., Szczepanski J., Biosystems, 2011



Conclusions
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Related to the experiments

 We apply the Method of Estimation of Information Transmission Rate (ITR) by neurons
- this allows to characterize quantitatively the ITR in different brain states or brain areas

 Relative complexity curves discriminate neuronal responses under different 
experimental conditions

 In vivo sources transmit more information than in vitro source, as expected!!!, but we 
are able to characterize the transmission rates quantitatively (we observed the increase
even by factor of 2)

 Information transmission by nearby neurons occurs in the mid-regime (Redundancy and 
Relative Mutual Information) – just to assure a kind of Reliability ?

 If the source is ergodic the entropy can be read off from the saturation levels, it is 
related to the choice of parameters)

 The choice of coding affects the results - the obtained information depends on the 
coding used



Conclusions
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Related to the brain-inspired networks

 All brain-inspired networks components (inhibitory, longe-range connections, size/delay) 
significantly improve the Information-Energetic efficiency

 Inhibitory neurons improve the Information-Energetic transmission efficiency even 
by 50 percent

 Longe-range connections improve the Information-Energetic transmission 
efficiency even by 70 percent

 Size/delay affects essentially on the transmission efficiency. The most effective is 
the network with the smallest size (2 times increase of the size can cause even 
3 times decrease of the information-energetic efficiency)

Biological organisms/Biological communication systems evolve 

to optimize the Information-Energetic efficiency


