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Abstract 

In this paper we address a group of recent research focused on the semi active control problems in carrying 
structures systems subjected to a travelling load. The magnitude of the moving force is assumed to be constant 
by neglecting inertial forces. The response of the system is solved in modal space. The optimal control problem 
is stated and it is solved by using of Pontryagin Maximum Principle. Switching control method is verified by 
numerical examples. The controlled system widely outperforms passive solutions. Due to its simplicity in 
practical design, the presented solution should be interesting to engineers.  
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1. Introduction  

An increasing speed requirements in transport and technological processes forces 
engineers to apply new and unique solutions for the carrying structures design. From the 
last few decades the main role in such a design play an integrated systems of control. 
Semi-active methods superiority over active result from its reliability and low power 
consumption.  

 

Figure 1. Semi-active controlled guideways. 

In this paper we propose two fields of applications of semi-active controlled systems. 
The first one is dedicated to technological processes such as cutting or bonding, where 
the  straight passage of a moving load is essential. The second one is directed to large-
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scale engineering structures like bridges that span gaps or beams that must resist loads 
due to heavy and fast vehicles.  

Technical difficulties with the rigid support of the bottom parts of the dampers 
require new, more practical solutions. One of them is presented in Fig 1.  

A good number of semi-active control methods have spread widely and some of them 
have been put into practice recently. They are usually based on sky-hook and ground-
hook ideas. These strategies are used for the active suspension of a moving oscillator in 
[3, 4]. The idea of a beam vibrations control by dampers and preliminary results were 
presented in [5]. The early papers deal with the problem of active control of a beam 
vibrations [6]. An active constrained layer is applied in [7]. 

In this paper we propose an open loop switching control method. The optimal 
solution is based on the Maximum Principle [8]. The form of cost integrand depends on 
the aim of control. 

2. Mathematical background 

In this section we present a control method and its optimal solution in a short. The aim of 
the proposed strategy is to provide a straight passage for the moving load. We consider 
the double-beam system as shown in Fig. 1. The solution scheme for a single-beam 
system is analogous. 

 

Figure 2. Double Euler-Bernoulli beam system coupled by a set of semi-active dampers. 

We can write the governing equation for the considered system as follows: 
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together with the boundary and initial conditions: 
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Here, w1(x,t) and w2(x,t) are the transverse deflections of the beams at point (x,t), ui(t) is 
the i-th damping coefficient as a function of time, m is the number of viscous supports 
and P is the concentrated force passing the upper beam at constant velocity v and δ is the 
Dirac delta function. For the control design we use a representation of the system in 
modal space. Respecting the boundary conditions we look for the solution expressed 
upon the  sine serie base.  
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Furthermore, we consider only approximate solutions of  Eq. 1 by using a finite-
dimensional modal space, i.e. j, k = 1,2,…, M. The transformation (3) yelds the 
following system of ODEs 
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Introducing a new state variable 1=)(1 tyn+& , 0=(0)1+ny  and rebuilding AA ˆ→ , 

ii BB ˆ→ , )(ˆ)( yftf →  in such a way they respect a new variable, we replace (5)-(8) 

with the autonomous optimal control problem so Maximum Principle can be applied 
directly. The Hamiltonian function is given by  
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The adjoint differential equation and the transversality conditions are as follows: 
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The Hamiltonian (9) takes the maximum value when the controls equal:  
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However Maximum Principle is only a nessesary condition for the optimal solution. We 
suppose the most efficient control method is generated by switching controls.  

The implicit solution of stated problem can be solved numerically by the shooting 
method for instance. However, it can be extremely difficult due to high dimensional 
problem. For the alternate method we assume a priori a number of switchings for every 
control and then transform the problem into mathematical programming.  

3. Numerical examples 

Here, we present a few numerical solutions of optimal control problem stated in the 
previous section. We use Hooke-Jeeves Direct Search Method, where we consider at 
least 3 different starting points with 3 reducing step size schemes for each case. The 
number of switchings was first assumed as 3, then 2, and finally 1 for every control. 
Reduced number of switching actions is a great advantage from the practical point of 
view while the cost (Eq. 5) is comparable. 

 

Figure 3. Transverse vibration of controlled beam in space-time domain. 

The idea of straight-line passage is based on the principle of a two-sided lever. The first 
part of the beam which is subjected to a moving load is supported by an active damper 
placed on the rigid base. The first damper is active while the second one is passive. At 
this stage, a part of the beam is turned around its centre of gravity, levering the right 
hand part with a passive damper attached. The temporal increment of displacements on 
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the right hand part of the beam enables us to exploit it during the second stage of the 
passage. This phenomenon can be observed in the space time-domain (Fig 3). 

Below, we present the exemplary optimal deflection trajectories under a moving load 
in two different cases. In the first one (Fig. 4), we consider a single beam with two active 
dampers placed in the positions 0.25l, 0.75l. In the second one (Fig. 5), four dampers 
placed in positions 0.2l, 0.4l, 0.6l, 0.8l are attached to the double beam system. 
Trajectories for passive cases (all dampers are on) are added for comparison.    

 

Figure 4. Optimal deflection trajectory and switching controls. 

While the cost integrand is calculated with respect to velocities or accelerations of 
vibrations we do not observe a significant efficiency of the proposed method. High-
frequency harmonics included in those trajectories can be reduced by high-frequency 
switching controls. This is the ongoing research topic of the authors.     

 

Figure 5. Optimal deflection trajectory and switching controls. 
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4. Conclusions  

In this paper, a semi-active control method for linear carrying structures has been 
presented. A bang-bang control method has been proposed and its performance has been 
verified by numerical examples. The best efficiency is obtained at high travel speeds. 
The controlled system can efficiently decrease the mass of the guideway. The control 
strategy is simple for practical design. It can be implemented by creating an optimal 
control map in the memory of the controller. Integration of a neural network with the 
system will be addressed in future works. 
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O semi-aktywnym sterowaniu układów nośnych pod ruchomym obciąŜeniem.  
W pracy przedstawiono wyniki badań półaktywnego sterowania w układach nośnych poddanym obciąŜeniom 
ruchomym. ObciąŜenie zostało przedstawione jako bezinercyjne. Odpowiedź układu została wyznaczona  
w reprezentacji modalnej. Sformułowano zadanie sterowania optymalnego. Uzasadniono zastosowanie 
sterowań typu bang-bang opierając się na Twierdzeniu o Maksimum Pontryagina. Proponowana metoda 
sterowania została zweryfikowana na podstawie przykładów numerycznych. Wykazano przewagę układów 
sterowanych nad układami tłumienia pasywnego. Opracowana strategia sterowania jest prosta  
w implementacji i moŜe być atrakcyjnym rozwiązaniem dla inŜynierów.   


