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Introduction

Ultrasound contrast agents consist of microbubbles with
diameters in the range of 1-5 µm, small enough to pass
through the capillaries of the pulmonary system. To en-
able an examination time of several minutes and prevent
them from dissolving, these bubbles need to be stabilised
by a shell. The gas core of a microbubble is a strong
scatterer of ultrasound because of the fundamentally dif-
ferent acoustic impedances of gas and water. Further-
more, these bubbles are resonant at frequencies used in
diagnostic ultrasound imaging. The oscillation of a con-
trast agent microbubble is highly nonlinear, which can be
exploited for detection purposes. In this paper, nonlin-
ear modelling of ultrasound contrast agent with Wiener
series is evaluated for the numeric evaluation of pulsing
sequences for contrast agent detection.

Nonlinear modelling

To optimise detection schemes, it is necessary to model
the oscillation behaviour of the contrast agent. Cur-
rently, contrast agents are modelled by nonlinear differ-
ential equations set up from physical insight into bub-
ble oscillation and parameters determined from optical
observations of single microbubbles. Simulating bubble
behaviour with such a model, however, involves a high
computational cost.
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Equation (1) presents a general black-box model for a
nonlinear system with memory. The kernels hn, which
describe the system behaviour, can be determined from
simulations or measured data with suitable identification
algorithms, for instance as presented in [1]. Such a model
then enables a computationally cheap evaluation of bub-
ble behaviour and thus detection schemes.

Identification results

To evaluate pulsing schemes, a free gas bubble with a
resting diameter of r0 = 0.75 µm was simulated with a
modified Rayleigh-Plesset equation as given in [4]. The
parameters used for the model were c = 1480 m s−1,

µ = 10−3 Pa s, ρ = 998 kg m−3, σ = 0.072 N m−1, δt = 0,
Sf = 0 kg s−1, χ = 0 kg s−2.
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Figure 1: First order kernel of identified contrast agent. It
can be seen that the linear component of a contrast agent
microbubble features the behaviour of a damped oscillator.
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Figure 2: Second order kernel of identified contrast agent.
Since the kernel contains components at locations with time
lags greater zero, the system under inspection is a nonlinear
system with memory.

A constant kernel of h0 = 0.75 · 10−6, which corresponds
to the bubble resting radius, was determined. Linear,
quadratic and cubic kernels are shown in Figures 1, 2
and 3 respectively. The linear kernel which describes
the system’s linear response displays the behaviour of a
damped oscillator. The quadratic and cubic components
show meaningful amounts at off-diagonal positions which
indicate that the system in question is a nonlinear system
with memory.
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Figure 3: Third order kernel of identified contrast agent.
Similar to the second order kernel, the memory of the system
can be seen.

Evaluation of pulse sequences

The most common imaging techniques for contrast agents
are pulse inversion (PI) and contrast pulse sequencing
(CPS). They consist of pulses with amplitudes accord-
ing to Figure 4 which are transmitted sequentially with
the responses to each pulse being added. With both
methods, signal originating from linear scatterers is elim-
inated.
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Figure 4: (a) Pulse inversion imaging. (b) Contrast pulse
sequencing

While the signal obtained from pulse inversion contains
only the even-order harmonic response, the signal ob-
tained from CPS also contains odd-order harmonic com-
ponents. The quality of the imaging technique, however,
depends on the properties of the imaging device (e.g.
transducer bandwidth), the propagation properties (lin-
ear and non-linear propagation) and, most importantly
on the dynamic properties of the contrast agent itself. To
evaluate a pulsing scheme, a system as shown in Figure
5 is presented.

Transducer Propagation

PropagationTransducer

Contrast
agent

input

output

Figure 5: Block diagram for pulsing scheme evaluation sys-
tem.

The evaluation system consists of a transducer model
and a propagation model which can account for nonlin-

earities in the propagation path. The microbubble radius
is computed from the model identified earlier and a far
field approximation of the sound emitted by the bubble
is made according to [2].
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Figure 6: Comparison of pulse inversion and contrast pulse
sequencing imaging modes. With CPS, a peak signal increase
of 12.3 dB over PI can be achieved.

The comparison of signal strength obtained by using the
PI and CPS pulsing schemes can be seen in Figure 6.
The signal of a microbubble obtained by CPS is 12.3 dB
higher than the signal obtained from PI. This is consis-
tent with earlier results such as published in [3].

Conclusion

A method for nonlinear system modelling was applied
to ultrasound contrast agents. A Wiener model of a
microbubble allows calculation of the bubble oscillation
with a low computational cost. The pulse sequence eval-
uation system gave realistic estimates of signal strength
gained by various pulsing schemes. This enables evalua-
tion and optimisation of pulsing schemes for the detection
of contrast agents.
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