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Abstract. Ultrasound contrast agents consist of small encapsulated bubbles with diameters below
10 µm. The encapsulation influences the behavior of these microbubbles when they are insonified by
ultrasound. The highly nonlinear behavior of ultrasound contrast agents at relatively high acoustic
amplitudes (mechanical index>0.6) has been attributed to nonlinear bubble oscillations and to
bubble destruction. For microbubbles with a thin, highly elastic nanoshell, it has been demonstrated
that the presence of the nanoshell becomes negligible at high insonifying amplitudes. From our
simulations it follows that the Blake critical radius is not valid for microbubble fragmentation. The
low maximal excursion observed and simulated for a thick, stiff-shelled microbubble is in agreement
with previous acoustic analyses. The ultrasound-induced gas release from stiff-shelled bubbles has
been reported. However, we also observed gas release from microbubbles with a thin, elastic shell.
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INTRODUCTION

Ultrasound contrast agents consist of gas microbubbles encapsulated by a nanoshell.
Because the resonance frequencies of these microbubbles lie in the clinical ultrasonic
range, contrast agents have been used for diagnostic imaging purposes. If a microbubble
is subjected to very small pressure changes with an amplitude much smaller than the
static ambient pressure, its radial excursion may be considered linear [1, 2]. Contrary to
tissue, however, a microbubble exhibits highly nonlinear behavior at higher acoustic am-
plitudes. With harmonic imaging methods, microbubbles are therefore suitable markers
for perfused areas.

We investigate the influence of the nanoshell on the behavior of ultrasound-insonified
encapsulated microbubbles. More specifically, we are interested in finding the conditions
needed for shell rupture.

OSCILLATING MICROBUBBLES

Let us consider a microbubble with an equilibrium radius R0 and a shell thickness
hs ¿ R0. In equilibrium, the gas pressure inside the bubble pg0 can be expressed as:

pg0 = p∞
0 − pv +

2s
R0

. (1)
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Here, p∞
0 is the static pressure of the liquid, pv is the vapor pressure, and s is the surface

tension. For an encapsulated gas bubble, the oscillating behavior has been described by
a modified RPNNP equation, named after its developers Rayleigh, Plesset, Noltingk,
Neppiras, and Poritsky [1, 2]:

ρ RR̈+ 3
2ρṘ2 = pg0

(
R0

R

)3γ
+ pv− p∞

0 −
2s
R
−2Sp

(
1

R0
− 1

R

)
−δ ω ρ RṘ− pa(t) ,

(2)
where pa(t) is the acoustic pressure in time, R is the instantaneous microbubble radius,
Sp is the shell stiffness parameter, δ is the total damping coefficient, γ is the specific
heat ratio, ρ is the liquid density, and ω is the angular driving frequency. R(t) is periodic
with period T = Te +Tc, where e stands for expansion and c stands for contraction. The
excursion is defined by a(t) = R(t)−R0. The shell stiffness parameter is given by [3]:

Sp =
8π E hs

1−ν
, (3)

where E is Young’s modulus, and ν is the Poisson ratio. For albumin and lipid
nanoshells, we take 0.499 < ν < 0.500. Sp can be estimated from optical observations
of radius–time curves or from acoustical data using the relation [4]:

ω2
s = ω2

r +
Sp

4π R3
0 ρ

, (4)

where ωs is the angular resonance frequency of the nanoshelled microbubble, ωr is the
angular resonance frequency of an unencapsulated microbubble of the same size.

At high acoustic pressures (mechanical index >0.6) destructive phenomena have been
observed, such as microbubble fragmentation, coalescence, and ultrasonic cracking [5].
The critical stress at which a shell ruptures σc, is related to Young’s modulus by:

σc ≈ E εc , (5)

where εc is the critical lateral shell deformation. For most biomaterials, εc < 0.5. Here,
we treat two opposite cases: I. microbubbles with a thin, very elastic shell, and II.
microbubbles with a thick, fairly stiff shell.

CASE I: THIN, ELASTIC SHELL

For microbubbles with a thin, highly elastic monolayer lipid nanoshell, like SonoVue™
and other Bracco agents, it has been demonstrated that the presence of the nanoshell
becomes negligible at high insonifying amplitudes [5]. Such microbubbles have been
observed to expand to more than ten-fold their initial surface areas during expansion.
The nanoshell behaves like an elastic membrane that ruptures under relatively small
strain [6]. By the time of maximal expansion, therefore, the nanoshell has ruptured,
leaving newly formed clean free interfaces. This confirms that these microbubbles may
be assumed free (unencapsulated). Similar to inertial cavitation, the relatively slow
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TABLE 1. Elastic properties of three contrast agents

ωr
[2π×106 rads−1]

〈R0〉
[µm]

Sp
[kgs−2]

E∗
[106 Pa]

Albunex® 2 4.0 10 2
Quantison™ 4 1.6 25 2
SonoVue™ 3 1.0 1.1 2

∗ Estimated with ν ≈ 0.5

microbubble expansion is followed by a rapid collapse: Te > Tc. The microbubble has a
time-varying radius R(t) > 0. Because the expansion is virtually unlimited, however, the
excursion can be asymmetric as well: max(a(t)) > min(a(t)).

We analyzed the occurrence of microbubble fragmentation with respect to the intrinsic
energy of the bubble [7]. Fragmentation occurs exclusively during the collapse phase.
We hypothesize that fragmentation will only occur if and only if the kinetic energy of
the collapsing microbubble is greater than the instantaneous bubble surface energy. From
our simulations it follows that the Blake critical radius is not a good approximation for
a fragmentation threshold.

CASE II: THICK, STIFF SHELL

For microbubbles with a thick, stiff nanoshell, like Quantison™, a(t)¿ R0. From high-
speed optical observations, we derived that max(a(t)) ≤ R, where R ≈ 0.3 µm is the
resolution of the optical system. From the difference in resonance frequency between
Quantison™ and free gas microbubbles, we determined Sp = 25 kg s−2 and E = 2×106

Pa. The critical stress of Quantison™ is σc ≥ 80 kPa [8], and thus εc ≥ 0.4. Taking into
account that εc < 0.5 and 〈R0〉= 1.6 µm, it follows that:

max(a(t))≈ 0.3 µm = R . (6)

Clearly, the acoustic observations are in agreement with the high-speed optical observa-
tions. The hypothesis that the rupture of the shell primarily occurs with micrububbles
that have tiny flaws in the shell, has been supported by the optical observations of asyn-
chronous cracking and cracking during a subsequent pulse.

SUMMARY OF THE RESULTS

Tabel 1 shows an overview of the shell properties of three contrast agents. SonoVue™
has a thin monolayer lipid shell, Quantison™ has a thick albumin shell, and Albunex®
has a thin albumin shell.

Asymmetries with respect to the excursion axis and to the time-axis can be observed
with a spherically symmetric oscillating microbubble. Although the ultrasound-induced
gas release from stiff-shelled bubbles has been reported, we also observed gas release
from microbubbles with a thin, elastic shell (cf. Fig. 1).
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FIGURE 1. Gas release from a lipid-shelled microbubble (A) and a schematic representation thereof
(B). The frames were captured at 3 million frames per second. Frame 1 has been taken prior to ultrasound
arrival. Frames 2–8 cover one full ultrasonic cycle. Each frame corresponds to a 88×58 µm2 area. The
images were captured at the Department of Experimental Echocardiography, Thoraxcentre, Erasmus MC,
Rotterdam, The Netherlands.
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