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A b s t r a c t  

Axisymmetric rotating disks optimal with respect to ductile creep rupture time are considered. Finite 
strain theory is applied. The material is described by the Norton-Bailey law generalized for true stresses 
and logarithmic strains. The set of four partial differential equations describes the creep conditions of 
parabolic disk. The optimal shape of the disk is found using parametric optimisation with two free 
parameters. The results are compared with disks of conical shape. 
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S t r e s z c z e n i e  

W artykule przedstawiono problem optymalizacji wirującej tarczy osiowosymetrycznej ze względu na 
czas zniszczenia ciągliwego. Do opisu materiału stosowano teorię nieliniowego pełzania Nortona-Ba-
ileya, uogólnioną dla naprężeń rzeczywistych i odkształceń logarytmicznych. Dla złożonych stanów na-
prężeń stosowano prawo podobieństwa dewiatorów w połączeniu z hipotezą Hubera-Misesa-Hencky’ego. 
Proces pełzania tarczy wirującej opisuje układ czterech nieliniowych równań różniczkowych. Wyniki 
otrzymano przez zastosowanie optymalizacji dwuparametrycznej. 

Słowa kluczowe: teoria skończonych odkształceń, tarcza pierścieniowa, czas zniszczenia ciągliwego, 
pełzanie, optymalizacja dwuparametryczna 
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1. Introduction 

Application of rheology to problems of structural optimization offers a new wide scope 
of possible optimization criteria [3]. Detailed review of them and classification were given 
by Życzkowski [7]. From them, the most important, from practical point of view, seems to 
be time to creep rupture. Vast majority of papers devoted to problems of optimization with 
respect to creep rupture time took advantage of Kachanov’s brittle rupture theory. It was 
caused by its relative simplicity – rigidification theorem may be applied. 

Problem becomes much more complicated, when Hoff’s ductile creep rupture is used. 
Then finite strain theory must be applied – the creep process must be analyzed from its 
beginning up to rupture. For the first time such an approach was made by Szuwalski [5]. 
The problem for annular disk was formulated and solved by Szuwalski, Ustrzycka [6], who 
were looking for the best conical disks. 

In present paper we will look for better solutions among annular axisymmetric disks 
with initial profile described by quadratic function [2, 4]. The disk is clamped on the rigid 
shift of radius A, and rotates with constant angular velocity ω (fig. 1). The own mass of 
disk is taken into account, as well, as mass M uniformly distributed at the outer radius B.  

 

 
Fig. 1. Annular rotating disks 

Rys. 1. Wirująca tarcza pierścieniowa 

The problem is solved in spatial (Eulerian) coordinates and all parameters for initial 
disk are denoted by capital letters, while for current configuration by the same small ones. 

2. Search domain 

Because of difficulty of the problem: nonlinearities both – physical and geometrical and 
additional time factor, we decide on parametric optimization. The best disk will be sought 
among those, which initial shape is defined by quadratic function 

 2
0 1 2 0 1 2( ; , , )H R b b b b b R b R= + +  (1) 
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From three parameters in this function, only two may be treated as free ones, due to 
condition of constant volume 
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from which results 
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where: β is the radio of given outer B and inner A radii. 
In the process of optimization we will look for such values of parameter b0 (the 

thickness of disk at the inner radius) and b1, for which time to ductile creep rupture will  
be the longer. On the values of these parameters some limitation must be imposed. One 
may expect, that for discussed case of centrifugal forces – rotating disk, the thickness 
should diminish with growth of radius (though sometimes this limitation may be violated). 
It leads to 
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Obviously the thickness at the outer radius, (and on the whole width of the disk), must 
be positive, what means 
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Moreover, it may be anticipated that optimal shape should be convex 

 
( )( )2

0

2 1 3

3 1 1
20

1

b
b b

− −β
> → <

−β
 (7) 

Finally, the search domain in the plane of free parameters b0 and b2 will be restricted to 
the area shown in fig. 1 for β = 0.125. 
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Fig. 2. Search domain in plane of free parameters 

Rys. 2. Obszar poszukiwań parametrów swobodnych 

3. Governing equations 

Material of disk is described by the Norton low, generalized for complex stress state and 
finite strains 

 n
e ekε = σ  (8) 

The process of creep for disk must at any moment satisfy the condition of internal 
equilibrium 

 21 ( ) 0r
rh r

hr R r g
ϑσ −σ∂ γ

σ + + ω =
′ ∂

 (9) 

where: σr stands for current value of radial stress and σϑ of circumferential one, h – for 
current thickness, γ – specific weight of material, g – acceleration of gravity, R – material 
(Lagrangian) radial coordinate and r – spatial (Eulerian) radial coordinate. Partial 
derivatives with respect to material coordinates are denoted by “primes”, and with respect 
to time by dots. 

Incompressibility of material is assumed 

 HRdR hrdr=  (10) 

The shape change law, assumed in form of similarity of true stresses and velocities of 
logarithmic strains deviators [1] leads to 

 11 (2 )
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Compatibility condition, after some rearrangements, takes form 
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In presented above equations we have four unknowns: true stresses σr and σθ, current 
thickness – h and spatial radial coordinate – r. 

4. Numerical calculations 

For sake of numerical calculations, dimensionless quantities, denoted by overbars, are 
introduced. Material and spatial coordinates are referred to the outer radius of the disk 

 RR
B

= ,     rr
B

=  (13) 

Thickness of the disk is related to mean thickness hm of annular disk of volume V 
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Radial loading at radius b of rotating disk is resulting from uniformly distributed on the 
outer edge mass M. 
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Dimensionless stresses are referred to calculated using rigidification theorem stress in 
motionless full plane disk subject to tension with uniform pressure p (15) 
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Dimensionless time is defined 

 tt =
τ

 (17) 

where: τ stands for the time of ductile rupture for full plane disk, rotating with the angle 
velocity ω, loaded by uniformly distributed at the external edge mass M, with neglected 
own mass. For such a disk relation between true stresses and logarithmic strains takes form 
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and effective stress is equal 

 e r pϑσ = σ = σ =  (19) 

Under assumption of plane stress (σz ≡ 0) and with help of initial condition 

 0t =      mh h=  (20) 

time to rupture τ was established 
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Consequently dimensionless time is calculated 

 nt nks t=  (22) 

Taking advantage of those dimensionless quantities the set of four equations describing 
the creep process takes finally form 
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At the beginning of the creep process (for t = 0) disk remains undeformed, therefore the 
initial conditions take form 

 ( , 0)r R R= ,     ( , 0) ( )h R H R=  (27) 

For disk clamped on the rigid shaft, boundary conditions at internal radius may be 
written 

 ( , )r tβ = β ,     ( ), 0r tβ =  (28) 
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The condition at external radius (15), where the mass M is distributed, in dimensionless 
form 

 1(1, )
(1, )r t

h t
σ =  (29) 

In those equations an auxiliary quantity is used 

 V
g M
γ ⋅

μ =
⋅

 (30) 

μ as ratio of own disk mass to mass distributed at the outer radius. Set written in given 
above form is very convenient for numerical calculations. 

5. Numerical results 

For given geometry of disk, described by pair of free parameters b0 and b2, assuming the 
value of radial strain at the radius a, from eqs. (23), (24) the distribution of true stresses 
may be found. They must satisfy the boundary condition at the outer radius (29), if not, the 
value of σr(A) must be changed and this procedure is repeated, until the condition (29) is 
satisfied.  

Knowing distribution of true stresses, from (25) velocity of spatial radial coordinate is 
established, and for given time step, new coordinates are calculated. Finally 
incompresibility condition (26) makes it possible to find changed shape (thickness) of the 
disk. Thus, geometry of disk after the time step is defined. For this new geometry, from 
(25), (26) distribution of stresses in already deformed disk may be found, in a way 
described above. Repeating those calculation up to the moment the criterion of rupture is 
fulfilled, we may establish time to ductile rupture. For example, the process of creep for 
disk, for given initial geometry: 2( ) 5.3 10 6.1H R R R= − + , is shown in fig. 3. 

The process of creep for disk accelerates in its final phase. Strains concentration effect 
occurs in places of locally weakened disk. With time, the deformations occur almost 
exclusively in these places. 

Consequently, for the same b0, we slightly change b2, and the full cycle of mentioned 
above calculations is repeated, and time to rupture for a new disk is found. In such a way, 
the best value of b2 for given b0 may be found. Next, in the same way calculations are 
carried for changed value of b0, and the best matching parameter b2 is found. Finding 
maximum maximorum of obtained curves, we finally establish optimal solution for given 
parameters n, β, μ. The results are presented in fig. 4, 5 and 6. 
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Fig. 3. The process of creep for disk, 2( ) 5.3 10 6.1H R R R= − + , n = 6, β = 0.5, μ = 0.1 

Rys. 3. Proces pełzania tarczy, 2( ) 5.3 10 6.1H R R R= − + , n = 6, β = 0.5, μ = 0.1 

 
Fig. 4. The dependences of the ductile creep rupture time on the parameter b2, n = 6, β = 0.125, μ = 0.1 

Rys. 4. Zależność czasu zniszczenia ciągliwego od parametru b2, n = 6, β = 0.125, μ = 0.1 
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Fig. 5. The dependences of the ductile creep rupture time on the parameter b2, n = 6, β = 0.25, μ = 1 

Rys. 5. Zależność czasu zniszczenia ciągliwego od parametru b2, n = 6, β = 0.25, μ = 1 

 
Fig. 6. The dependences of the ductile creep rupture time on the parameter b2, n = 6, β = 0.5, μ = 10 

Rys. 6. Zależność czasu zniszczenia ciągliwego od parametru b2, n = 6, β = 0.5, μ = 10 

As an instance, the dependence of time to rupture on free parameter b2, for three 
different values of β and μ is shown. Maximum of curves, appointing the optimal value of 
parameter, becomes more “sharp” for larger values of μ. For larger values of μ maximum 
moves to the left, while for smaller (less significant influence of own mass) to the right. 
Observing the curves of optimal solutions for different values of μ (as ratio of own disk 
mass to mass distributed at the outer radius) can be seen, that for small values of μ (small 
influence of disk own mass) restriction (4) is broken. The optimal shape of the disk strives 
for reinforcement of the outer edge. Greater thickness of the optimal disk at outer edge 
results on growth of stiffness there. The mass of the disk cannot spread out freely at the 
disk may work to collapse longer. With the increase of the parameter μ, optimal solution 
tends to reduce the thickness of the disk at the outer edge. 
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Fig. 7. Optimal design of parabolic disk, β = 0.125 

Rys. 7. Optymalny profil traczy, β = 0.125 

 
Fig. 8. Optimal design of parabolic disk, β = 0.25 

Rys. 8. Optymalny profil traczy, β = 0.25 

 
Fig. 9. Optimal design of parabolic disk, β = 0.5 

Rys. 9. Optymalny profil traczy, β = 0.5 
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6. Conclusions 

Applications of Hoff’s ductile creep damage theory in optimization problems are rather 
scarce, as it requires finite strain theory, resulting in significant complication of problem. 
The complexity of such problems is connected with nonlinearities both: physical and 
geometric and moreover existence of additional time factor. In present paper the problem of 
optimal shape with respect to ductile rupture time for the parabolic rotating disk clamped 
on the rigid shaft is investigated. Obtained solutions strongly depend on ratio µ of own 
mass of the disk to mass uniformly distributed at the outer edge, causing there tensile 
pressure. When this mass is very large in comparison with own mass of the disk optimal 
disks are close to flat ones, on contrary, when influence of own mass is dominating, mass 
of the disk should be concentrated as close to the shaft as possible. 

 

 
Fig. 10. The dependences of the ductile creep rupture time on the parameter μ 

Rys. 10. Zależność czasu zniszczenia ciągliwego od parametru μ 

For biparametric optimization some optimal solution have minimum inside the disk 
width – the thickness outer edge works as some kind of reinforcement and time to ductile 
rupture is longer. Optimization with one free parameter does not offer such opportunities.  
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