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Abstract

Objective

Due to the capacity of the amniotic membrane (Am) to support re-epithelisation and inhibit

scar formation, Am has a potential to become a considerable asset for reconstructive urol-

ogy i.e., reconstruction of ureters and urethrae. The application of Am in reconstructive urol-

ogy is limited due to a poor mechanical characteristic. Am reinforcement with electrospun

nanofibers offers a new strategy to improve Ammechanical resistance, without affecting its

unique bioactivity profile. This study evaluated biocomposite material composed of Am and

nanofibers as a graft for urinary bladder augmentation in a rat model.

Material and Methods

Sandwich-structured biocomposite material was constructed from frozen Am and covered

on both sides with two-layered membranes prepared from electrospun poly-(L-lactide-co-E-

caprolactone) (PLCL). Wistar rats underwent hemicystectomy and bladder augmentation

with the biocomposite material.

Results

Immunohistohemical analysis (hematoxylin and eosin [H&E], anti-smoothelin and Masson’s

trichrome staining [TRI]) revealed effective regeneration of the urothelial and smooth
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muscle layers. Anti-smoothelin staining confirmed the presence of contractile smooth mus-

cle within a new bladder wall. Sandwich-structured biocomposite graft material was

designed to regenerate the urinary bladder wall, fulfilling the requirements for normal blad-

der tension, contraction, elasticity and compliance. Mechanical evaluation of regenerated

bladder wall conducted based on Young’s elastic modulus reflected changes in the histolog-

ical remodeling of the augmented part of the bladder. The structure of the biocomposite

material made it possible to deliver an intact Am to the area for regeneration. An unmodified

Am surface supported regeneration of the urinary bladder wall and the PLCL membranes

did not disturb the regeneration process.

Conclusions

Am reinforcement with electrospun nanofibers offers a new strategy to improve Am

mechanical resistance without affecting its unique bioactivity profile.

Introduction
Every year, thousands of advanced surgical procedures are performed to replace or repair ure-
ters, urinary bladders or urethrae that are damaged through disease or trauma. Well-estab-
lished procedures of reconstructive urology utilise the small intestine for ureteral
reconstruction or urostomy and continent urinary diversion [1, 2]. In addition, autografts
derived from buccal mucosa and foreskin have an application in urethroplasty [3]. Although
these sophisticated surgical techniques restore the proper function of reconstructed urinary
tracts, they may increase the risk of stricture and fistula formation, and the development of
metabolic disorders. An effort of regenerative medicine is to search for new biomaterials that
are suitable for modern reconstructive urology, using the principles of tissue engineering [4].

Since the announcement of in vitro urinary bladder reconstruction by Atala et al., interest in
urinary bladder wall augmentation has increased [5]. Despite promising results, this milestone
in regenerative medicine has not been translated into clinical practice. Phase II studies con-
ducted in children and adolescents with spina bifida showed lack of bladder compliance or
capacity improvements after urinary bladder augmentation with an autologous cell seeded bio-
degradable scaffold [6]. Disregarding this unsatisfactory functional characteristic, the phase II
study proved the feasibility of using an artificially fabricated material for human urinary blad-
der replacement at long-term follow-up. This is encouragement for us to look for new technol-
ogies and biomaterials that may be used for the reconstruction of urinary tracts.

Am have been used in medicine for more than 100 years. Am was first applied by Davis in
1910 for severe skin burns and management of hard-to-heal wounds [7]. Further studies on
Am confirmed its unique properties i.e., anti-inflammatory and anti-scarring effects [8]. These
observations led to frozen Am being used as a biological wound dressing in ophthalmology [9].
Since the 1960s, allo-implantation of Am has become a gold standard therapy for intractable
epithelial defects, chemical and thermal burns, pterygium and persistent corneal ulcers, partial
limbal cell deficiencies, ocular cicatricial pemphigoid, and Stevens-Johnson syndrome
[10,11,12]. Allo-implantation of Am meets the expectation of scarless ocular surface healing
for oculists; urologists should thus pay more attention to the characteristics of Am during
reconstructive procedures.
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Despite the appealing biocompatibility and bioactivity of Am, its low mechanical strength
may discourage urologists from applying Am for augmentation of urinary tracts. Reinforce-
ment of Am with electrospun nanofibers is a promising strategy to create novel biocomposite
materials with attractive features that meet the necessary requirements for reconstructive
urology.

In this study, we introduced design and in vivo biological evaluation of a biocomposite
material composed of Am and electrospun PLCL nanofibers. This novel biocomposite material
was used to replace the urinary bladder wall after partial cystectomy in a rat model.

Materials and Methods

Graft preparation
The sandwich-structured biocomposite material was constructed from frozen human Am (Eye
Tissue Bank, Lublin, Poland) and covered from both sides with a two-layered PLCL membrane.
Each PLCL membrane was prepared from the copolymer, PLCL7015 poly(L-lactide-co-ε-
caprolactone) (Purac-Corbion, NL) containig 70:30 monomer units The electrospinning solu-
tion was made of 9% polymer dissolved in a mixture of solvents (chloroform+-
dimethylformamide, mass proportions 16:1). The electric potential was 15 kV, the solution
throughput was 0.500 μl/h and spinneret to target distance was 20 cm.

PLCL is approved by the US Food and Drug Administration for medical applications,
including body implants. Frozen pieces of 5x5 mm Am preserved in glycerol were sandwiched
between the PLCL layers. Two consecutive initial layers of the PLCL nanofibers were used as a
substrate to apply pieces of Am. An additional two layers of PLCL nanofibers were applied to
the initial PLCL nanofibers layers containing Am in order to obtain a ‘sandwich-structure’.
The orientation of the consecutive PLCL nanofibers were perpendicular to each other. The bio-
composite material was cut to form patches (10x10 mm) with a ca. 2.5 mmmargin left on the
edge of the Am piece. Scanning Electron Microscopy (SEM) analysis of electrospun PLCL
nanofibres containing Am was also conducted.

Cell culture and PLCL membranes cytotoxicity test
Mesenchymal Stem Cells (MSC) were isolated from the bone marrow of rat femurs. Method of
bone marrow derived MSC isolation was presented earlier [13]. Briefly, after the dissection of
rat femurs, the obtained cell suspension from flushed bone marrow was centrifuged twice.
Next, the cell pellet was suspended in fresh culture media and seeded in culture plates (BD Bio-
science, USA). Cells were cultured in DMEM/Ham’s F12 media (Sigma, Germany) containing
10% fetal bovine serum (FBS, Sigma, Germany) supplemented with 5 μg/mL amphotericin B,
100 μg/mL streptomycin, 100 U/mL penicillin (Sigma, Germany) and 10 ng/mL basic fibro-
blast growth factor (bFGF, GIBCO, USA). Scaffolds of the biocomposite material were placed
in culture plates and 6 x 106 MSC were detached and seeded onto the scaffolds (n = 5) in tripli-
cate at 1h intervals. The seeding procedure was repeated on the fourth and sixth day of culture.
Cells were cultured on the scaffold surfaces for 7–14 days. MSC survival on PLCL membranes
were analysed by SEM.

AmCytotoxic assay
Evaluation of Am cytotoxicity was conducted based on extract toxicity assay according to ISO-
10993 norm. Cytotoxicity of AM extracts were evaluated using MTT Cell Proliferation assay
and real-time cell analyser (xCELLigence RTCA DP, Roche Applied Science, Germany). Am
(*6 cm2) was extracted in DMEM/Ham’s F12 media (Sigma, Germany) containing 10% FBS
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(Sigma, Germany), 10 ng/ml bFGF (GIBCO, USA), 5 μg/mL amphotericin B (Sigma, Ger-
many), 100 μg/mL streptomycin (Sigma, Germany) and 100 U/mL penicillin (Sigma, Ger-
many) for 24 h (36°C, 5% CO2). After 24 h exposure to different concentrations (100%, 50%,
25% and 12,5%) of Am extract the number of live cells per well was determined by absorbance
measurement at 570 nm. MSC viability was presented on histogram as an average from five
measurements. To evaluate cytotoxicity of Am extracts using a real-time cell analyser MSC
were seeded on E-Plates 16 (5×103 cells/well) and cultured until reaching a log- phase growth
in standard medium. After 24 h incubation, the same concentration of Am extracts were added
to the wells. Cells were exposed to Am extracts for 72 h. Results were presented on a graph as
an average from five measurements.

Animals and surgical procedure
Ten-week old Wistar rats (n = 20) from one strain were selected for this study. All animals had
comparable weights oscillating between 250–300g. Animals were anaesthetised with intraperi-
toneal sodium pentobarbitone using a dose of 50 mg/kg based on body weight. Cystoplasty was
performed according to a previously described procedure [13]. Briefly, rats underwent hemi-
cystectomy and their bladders were augmented with prepared biocomposite patches anasto-
mosed using a 6–0 absorbable polyglycolic sutures. After surgery, animals were separated into
individual cages and post-operative analgesia with opiate based pain killers was provided. After
3 months, animals were sacrificed by CO2 overdose and the reconstructed urinary bladders
were collected for histochemical analysis (n = 10) and mechanical analysis (n = 10). Ethical
permission was obtained from the local committee for the study (Local Ethics Committee for
the Experimental Studies on Animals, University of Science and Technology, Bydgoszcz,
Poland No. 2/2014).

Histological and immunohistochemical analysis
Tissue specimens were fixed in 10% (v/v) neutral (pH = 7) buffered formalin and embedded in
paraffin. Cross-sections of the entire reconstructed segment were prepared. Histological analy-
sis using H&E staining was performed. The connective tissue components and muscle layers
were stained according to TRI protocol. Immunohistochemical staining using anti-smoothelin
antibodies (R4A, Abcam, Great Brittan) was conducted to identify contractile smooth muscle
fibres within the regenerated urinary bladder wall [14]. Briefly, tissue sections were incubated
with primary anti-smoothelin antibodies (dilution 1:400). After rinsing, the sections were over-
laid with peroxidase-conjugated anti-mouse secondary antibodies (EnVision/HRP anti Mouse;
Dako, Denmark). Stained samples were analysed by two independent pathologists using light
microscopy.

Digital evaluation of smooth muscle content
Digital images of anti-smoothelin and TRI stained specimens (640x480 pixels) were used for
quantitative evaluation of smooth muscle content within the reconstructed urinary bladder
wall. ImageJ was used for digital image processing [14]. The smooth muscle coverage (%) was
measured based on constructed histograms from the obtained images. Analysis was conducted
by one pathologist and repeated 20 times for each augmented urinary bladder. The same meth-
odology was applied to estimate the smooth muscle content in each control group, which con-
sisted of 20 non-operated urinary bladders derived from 10-week old Wistar rats. Statistical
analyses was performed using an one way analysis of variance (ANOVA). Comparison between
smooth muscle content in control and study groups for each staining technique was performed
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using a Student’s t-test (p<0.05) (JMP1 Pro 11.0.0 (64 bit) software copyright © 2013 SAS
institute Inc).

Analysis of the mechanical properties of the reconstructed bladder wall
Tensile tests were conducted on a load frame of a servohydraulic material testing machine
(MTS 242.01 actuator, Eden Prairie, USA). Specimens tested were derived from the recon-
structed bladder wall and intact bladder wall (control group n = 10). All specimens were
derived from the dome of the bladder. The specimens (10 mm length, 10 mm width) were
mounted into flat grips with a gauge base of 10 mm. During the test, the specimen was longitu-
dinally stretched at a rate of 0.3 mm/s until failure. The grip travel and specimen load were
continuously measured over the test procedure with a precision force transducer (Interface,
model 1500, measuring range 125 N, resolution 0.0625 N) and a MTS system linear variable
differential transformer (measuring range 100 mm, resolution 0.01 mm). The Young’s elastic
modulus (MPa) was estimated based on generated Stress/strain curves. The same protocol was
applied to measure Young’s elastic modulus of Am and PLCL.

Results

Ultrastructural analysis of scaffold
SEM examination revealed a clear line between the Am and PLCL layers, indicating a bilayer
structure (Fig 1A, 1B and 1D). Fig 1D displays a delaminated piece of material where all layers
of the created hybrid biocomposite material can be observed. Four layers of PLCL membranes
(two on each side) with an inner cavity containing a thin Am can clearly be observed (Fig 1D).
The analysed biocomposite material was approximately 400 μm thick (Fig 1D) and the diame-
ter of the electrospun PLCL nanofibers ranged from 0.7–2.7 μm (Fig 1C).

Cytotoxicity of PLCL membranes
MSC grew well on the PLCL membranes (Fig 2A–2C). After 7 days of incubation, large cell
clusters covered the surface of the PLCL membranes (Fig 2A). Microscopic evaluation revealed
extensive and deep cellular infiltration of the PLCL layers (Fig 2B and 2C). MSC tended to
migrate towards the Am, gradually colonising its surface.

AmCytotoxic assay
Both analysis, MTT and real-time cell analysis confirmed that the extract obtained from Am
didn’t exhibit cytotoxic effects against adipose-derived porcine MSC (Figs 3 and 4). Am didn’t
negatively influence the MSCs viability.

Surgical procedure
All animals survived the surgical procedure. No side-effects were observed during follow-up.
In all cases, no breakdown of the implanted patch or urinary leakage into the peritoneal cavity
was observed. After 3 months of follow-up, the urinary bladder could easily be mobilised and
resected (Fig 5A, 5B and 5C). The augmented urinary bladder wall was integrated with the host
tissue. The suture line was not visible. Adhesions were mostly formed by the abdominal omen-
tum majus. Macroscopic examination revealed rich vascularisation of the tissue engineered uri-
nary bladder wall (Fig 5C).
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Histological analysis
Cross-sections of the regenerated urinary bladder wall displayed a polarised structure with a
reconstituted multilayered urothelium in all cases. Regrowing of the detrusor muscle was also
observed. The Am acted as a surface for regenerating the urinary bladder wall. The partially
preserved structure of the Am, incorporated into the new urinary bladder wall, was visible
throughout the cross-sections. Am acted as a surface for growing neotissue, resembling a typi-
cal multilayered structure of the urinary bladder wall (Fig 6A, 6B and 6C). The urothelium cov-
ered the inner surface of the augmented urinary bladders and was hyperplastic. The lamina
propria was almost completely collagenised with visible vessels.

Anti-smoothelin staining and TRI revealed bundles of regenerated smooth muscle; forming
a muscular coat for the new urinary bladder wall. Immunohistochemical staining for

Fig 1. Preparation and structure of biocomposite. (A) The pieces of Am (black arrows) placed onto a sheet of PLCL nanofibers. A drum is used as a target
during the nanofiber production process. SEM images are displayed in B-D. (B) A cross-section image of the biocomposite material. The biocomposite
material is 389 um thick with an inner cavity containing the Am. (C) Visible drops of glycerin used for Am preservation are observed on surface of PLCL
nanofibers (white arrows). (D) Two pieces of delaminated biocomposite material. The borders between consecutive sheets of nanofibers (*) are clearly
visible with Am inside.

doi:10.1371/journal.pone.0146012.g001

Amniotic Membrane and Reconstructive Urology

PLOS ONE | DOI:10.1371/journal.pone.0146012 January 14, 2016 6 / 20



smoothelin confirmed the presence of a terminally differentiated contractile phenotype, a char-
acteristic of regenerated smooth muscle cells (Fig 6C, 6F and 6I). A rich distribution of smooth-
elin-positive cells were detected beneath the urothelium (Fig 6C and 6F). Bordering the intact
and reconstructed urinary bladder wall, bundles rich in smooth muscle cells could be observed
migrating and growing inwards (Fig 6D). The new muscular layer, located proximal to the

Fig 2. Cytotoxity testing of biocomposite using MSC. (A) MSCmigrating towards Am on the 7th day of in vitro cultivation. (B) Clusters of MSC distributed
on an external surface of a PLCLmembrane. (C) Dispersed MSC adherent to PLCL nanofibers.

doi:10.1371/journal.pone.0146012.g002

Fig 3. Amniotic membrane extract cytotoxicity measurement using the MTT assay. Each result was presented as an average from 5 independent
experiment with SD bars. No statistically significant difference in cell viability was observed between AME treated and control cells (p>0.05) after 24 hours.

doi:10.1371/journal.pone.0146012.g003

Amniotic Membrane and Reconstructive Urology

PLOS ONE | DOI:10.1371/journal.pone.0146012 January 14, 2016 7 / 20



intact part of the regenerated urinary bladder, was characterised with a regular arrangement of
smooth muscle (Fig 6E). The reconstructed urinary bladder wall exhibited a predominant
smooth muscle orientation in the longitudinal direction. In contrast to a normal urinary blad-
der wall, smooth muscle layers were significantly less distinct. The arrangement of the smooth
muscle bundles became more irregular closer to the centre of the reconstructed urinary bladder
wall. An uneven distribution pattern with an increase in abortive myocytes was observed,
resulting in haphazardly organised smooth muscle bundles (Fig 6H). H&E staining of the
reconstructed urinary bladder wall revealed a mild and moderate inflammatory infiltration
(Fig 6A and 6D). The dispersed inflammatory infiltrate was determined to be composed mainly
of lymphocytes. Degradation of the PLCL membranes was accomplished. No foreign-type rem-
nants or multinucleated cells involved in the resorption of nanofibers were observed.

Smooth muscle content
Anti-smoothelin staining and TRI determined smooth muscle coverage percentage of the spec-
imens surface to be in range of 18.1% to 41.4% and 19.7% to 37.3% respectively (Fig 7A and
7B). Percentage of smooth muscle coverage in the control group was significantly higher
(p� 0.001) in the 9 augmented urinary bladders (anti-smoothelin; 41% coverage and TRI;
42% coverage). In one case, statistically significant similarity in smooth muscle coverage per-
centage was determined (Fig 7A and 7B sample D) (TRI [p = 0.03] and anti-smoothelin stain-
ing [p = 0.35]).

Fig 4. Amniotic membrane extract cytotoxicity measurement using real-time cell analysis. Each result was presented as mean from 5 independent
experiment with SD bars. No statistically significant differences in cell viability were observed between AME treated and control cells (p>0.05) after 72 hours.

doi:10.1371/journal.pone.0146012.g004
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Analysis of the mechanical properties of the reconstructed bladder wall
In all cases Young’s modulus of the regenerated bladder wall was significantly higher (p<0.05)
than the native bladder wall (Fig 8). This result indicates that the reconstructed bladder wall
was stiffer in comparison to the native one. Mechanical evaluation of the reconstructed blad-
ders based on Young’s modulus corresponded to the histological findings that confirmed the
presence of fibrotic lesions and locally disordered detrusor cytoarchitecture within the aug-
mented wall. Higher elasticity of the reconstructed bladder than Am alone indicates regenera-
tion of the smooth muscle layer and components of the extracellular matrix that contribute to
normal biomechanical properties of the urinary bladder wall. Smooth muscle content, which

Fig 5. Urinary bladder augmented with biocomposite. (A) Biocomposite material scaffold prepared for the suture procedure. (B) Urinary bladder after the
augmentation procedure. Single fixing sutures are visible (black arrows). The optimal compliance of the biocomposite material scaffold allowed for bladder
filling shortly after the surgical procedure. (C) Resected reconstructed bladder 3 months after augmentation. The regenerated bladder wall (blue and cyan
line was well integrated with the native bladder wall (black line). The borderline between the intact part of the bladder and the reconstructed one was indistinct
and without scar formation (blue line). The upper surface of regenerated bladder wall (cyan line) was covered with adipose tissue forming a vascular pedicle
(red line) derived from the omentummajus (green line). The bladder neck (yellow line) can be observed with adjacent fragments of seminal vesicles (white
line).

doi:10.1371/journal.pone.0146012.g005
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mainly influences biomechanics, was higher in the regenerated bladder wall that exhibited a
lower Young’s modulus.

Discussion
Extracellular matrix (ECM) of Am is composed of collagen (type I, III, IV, V and VI) fibronec-
tin, nidogen, laminin, proteoglycans and hyaluronan in a proportion similar to the basement

Fig 6. Histological and immunohistological analysis of the reconstructed urinary bladder wall. Am; Amniotic membrane, Ur; Urothelium, Bl; lumen of
urinary bladder, IBW; Intact host urinary bladder wall. (A) H&E staining displaying mild inflammatory infiltration. (B) TRI displaying regenerating single muscle
bundles from the central part of the reconstructed bladder wall. (C) Anti-smoothelin staining revealing frequently arranged smooth muscle bundles. Strong
immunoreactivity beneath the urothelium layer is observed. (D) H&E staining revealing the border between the intact bladder wall and reconstructed bladder
wall (zigzag line). The elongating smooth muscle cells (black arrows) gradually loose their layered architecture. Moderate inflammatory infiltration is also
observed. (E) TRI displaying the regularly arranged smooth muscle bundles; some smooth muscle bundles run transversely (cyan line), but the most obvious
bundles run longitudinally (black line). The specimen was obtained from the edge of the reconstructed bladder wall. (F) Anti-smoothelin staining displaying
the distribution of smoothelin positive-cells (black ovals) under the urothelial layer. (G) TRI staining displaying the abundant disorganised hypertrophied
smooth muscle bundles in the peripheral part of the reconstructed bladder wall. (H) TRI showing smooth muscle bundles separated by collagenous fibres in
the central part of the reconstructed bladder wall. (I) Anti-smoothelin staining revealing abundant smoothelin expression in the peripheral part of the
reconstructed bladder wall.

doi:10.1371/journal.pone.0146012.g006
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membrane of urinary tracts [15,16,17,18]. Multiple soluble active growth factors have been
identified within cryopreserved Am [19]. This naturally derived composition of incorporated
growth factors are predisposed to support fetal healing that is fundamentally different to that
of healing in adults [20,21]. Wound healing in a fetus occurs rapidly via a regenerative process;
without an inflammatory response, resulting in a complete restitution of normal tissue function
[22, 23]. The ECM of Am develops within 8 days after fertilisation and belongs to an universal
fetal systemic mechanism that regulates tissue response to damage or injury [24, 25, 26]. Long-
aker et al. demonstrated that the scarless healing properties of fetal skin are intrinsic to the fetal
ECM and are not due to the fetal environment per se [27].

Fig 7. Percentage of the reconstructed bladder wall covered with smoothmuscle. Staining with (A) TRI and (B) anti-smoothelin staining. The
regenerated bladder wall with a statistically similar (TRI [p = 0.03] and anti-smoothelin staining [p = 0.35]) smooth muscle content compared to the bladder
wall in the control group (*).

doi:10.1371/journal.pone.0146012.g007
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Fig 8. Themechanical evaluation of reconstructed bladder wall based on Young’s elastic modulus. Young’s modulus of intact and reconstructed
bladder walls were compared to the digitally estimated content of smooth muscle content based on TRI staining average. Additionally, to reflect changes in
the remodeling of the augmented bladder wall, Young’s modulus of Am and PLCL are presented. The presented values of smooth muscle content was
rounded up.

doi:10.1371/journal.pone.0146012.g008
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Am allografts could initiate scarless and ‘fetal-like’ healing in different types of adult tissue
[28, 29, 30, 31, 32, 33, 34]. Am employed as a biological wound dressing reduced inflammation
and minimised scarring in corneal pathology [35]. These reported therapeutical effects were
linked to the synergistic action of diffusible growth factors released to the ocular surface. Fol-
lowing this, Güneş et al. postulated that covering a reconstructed section of an urethra after
buccal mucosa graft urethroplasty would prevent postoperative restenosis and fistula forma-
tion [36].

Biotechnology offers strategies to enrich biomaterials for tissue regeneration with growth
factors in order to customise their bioactivity spectrum and biocompatibility. Nevertheless, the
usefulness of this approach is limited by insufficient research data explaining the intercellular
dialog of multiphase processes like tissue regeneration [37]. In this situation, it is challenging
to predict an in vivo tissue response on an artificially composed set of incorporated growth fac-
tors. A seemingly appropriate combination might trigger an unexpected adverse reaction.
Nuninga et al. demonstrated that type I collagen biomatrices enriched with heparin-binding
vascular endothelial growth factor, fibroblast growth factor and epidermal growth factor
induced fibrosis and narrowing of the reconstructed urethra in a rabbit model [38]. Reproduc-
ing a biomaterial with a similar bioactivity potential as Am is difficult through current biotech-
nological processes. Application of Am for tissue engineering based on strategies for partial
urinary tract replacement could guarantee a regeneration-enhancing effect, independent of
growth factor enrichment or pre-seeding of cells.

Our sandwich-structured biocomposite material contained Am with an unmodified surface.
This concept aimed to provide a high retention of active agents and preservation determined
by their bioactivity and biocompatibility. The glycerine solution used as a preservation fluid
formed a thin film that acted as a barrier during nano-spinning. Many cross-linking agents
were recently evaluated to the increase strength and durability of Am [39, 40, 41, 42]. Neverthe-
less, this approach significantly influenced the biochemical composition and physical proper-
ties of Am, potentially affecting its clinical efficacy in urinary tract reconstruction[43].

Adequate biomaterial for reconstruction of urethrae, urinary bladders and ureters should be
endurable but continuous on low volume changes, lacking the tendency to collapse or tear dur-
ing the acute phase after implantation, to avoid urine leakage, and formation of strictures or fis-
tulae [44]. During the patients daily activities, the biomaterial must withstand the forces
exerted on it by pelvic musculature during neotissue growth [45]. Copolymers are found to be
very useful during cellular growth due to their elastic behaviour and mechanical strength. We
managed to obtain a flexible, elastic and tear-resistant membrane from PLCL composed of
70% L-lactide and 30% E-caprolactone.

The structure of the biocomposite material combines the bioactivity of Am, the synthetically
produced durability and mechanical resistance of PLCL nanofibers that formed the elastic
three dimensional frame, guaranteeing the necessary strength, shape and protection of Am.
Am turned out to be an unsuitable material for urinary bladder reconstruction in our rat
model due to its low mechanical resistance. We noticed the tendency of Am to tear during the
bladder filling phase shortly after completed urinary bladder augmentation (unpublished
data). PLCL nanofibers used in the biocomposite material had reinforced Am before the recon-
structed bladder wall gained mechanical endurance resulting from gradual stroma develop-
ment. No rupturing of the urinary bladder wall augmented with the biocomposite material was
observed.

Fabricated PLCL layers gradually degraded within 8–10 weeks after implantation. The deg-
radation-time of PLCL turned out to be optimal for cellularisation of Am and neotissue forma-
tion in our rat model. It is unknown if such a rate of PLCL scaffold degradation would be
optimal for reconstructive urology and should be investigated in the near future. The
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degradation rate of PLCL scaffolds was determined to be faster in vivo than in vitro [46]. By
changing the monomer content of PLCL copolymers; degradation behaviours and mechanical
properties can be adjusted [47,48]. Our research revealed that the PLCL scaffold exhibited
eight fold more stiffness compared to native rat bladder tissue. Taking this physical property of
PLCL in to account, natural distension and contraction would be impossible if the complete
PLCL degradation of nanofibers didn't occur. Mechanical mismatching is a major obstacle in
designing a scaffold for bladder tissue engineering applications.

Partial cystectomy in a rat model revealed regeneration of the urinary bladder wall including
complete re-epithelialisation and reconstitution of the muscular layer within 12 to 14 weeks
[49]. Between the second and third week after implantation, contractile tissue started to add
traction to the matrix scaffold, leading to shrinkage of the implant and formation of fibriotic
barriers. This limited the accessibility of the scaffolds to slow elongating muscles bundles and
sprouting nerves [50]. The role of the PLCL layers was to keep Am in a flattened arrangement
during the first phase of remodelling to facilitate its colonisation. We believe the stable spatial
environment provided by the biocomposite enabled restoration of reconstructed urinary blad-
der wall layered structure observed in our study.

Biomaterial used for urinary tract reconstruction should have physical properties making it
convenient for implantation during surgical procedures and allow for it to constitute a repro-
ducible surgical technique. The usage of Am in ophthalmology displayed susceptibility to rup-
tures propagating from areas traumatised during suturing [51]. Our prepared biocomposite
material could easily be twisted and bent. In addition, fixing sutures can be placed along the
edge of the tear-resistant nanofiber layer. Polymeric scaffolds play a crucial role in the process
of engineering new tissues, effecting cellular growth and viability. In addition to improving the
mechanical properties of Am, the role of the PLCL membranes were to promote cellularisation
of Am by the host’s cells. A propagating migration of MSC towards the Am was observed dur-
ing the MSC cultivation on biocomposite. Local injury-activated cells (including urothelial and
smooth muscle cells) expressed a similar migratory mechanism to that of MSC [52, 53, 54, 55,
56, 57,58]. PLCL nanofibers provided good adhesion sites and stem cells could migrate perpen-
dicularly along the nanofibers. The regular orientation of electrospun PLCL nanofibers aimed
to support graft cellularisation and restoration of the neotissue's three dimensional structure.

One of our previous studies compared scaffolds prepared from PLCL alone and decellu-
larised aortic arch to be used as a ureter replacement using a rat model [59]. PLCL scaffolds
appeared to be a better template for regeneration in terms of smooth muscle regrowth and res-
toration of a new ureter wall with a layered histo-structure. Saratonev et al. conducted an inter-
esting comparison based on the cytokeratin expression pattern for differentiated and stratified
human urothelium between PLCL membranes and Am as cellular matrices for urothelial cells
[60]. PLCL membranes supported the urothelium proliferation significantly more than Am.
Considering this observation, PLCL layers improve re-epithelialisation of Am at the initial
stage of urinary tract regeneration. Surprisingly, our earlier results indicated that a scaffold
made from PLCL alone was not suitable for rat urinary bladder augmentation due to severe
fibrosis and lack of smooth muscle regeneration [44]. This result in relation to effective urinary
bladder augmentation with biocomposite material underlies the importance of Am during the
regenerative process.

The concept of applying Am in reconstructive urology was introduced for the first time by
Lenko et al. in 1955 [61]. Since then, only a few groups have evaluated Am as a replacement for
the urinary tract wall. Shakeri et al. reported proper re-epithelialisation of urethrae recon-
structed with Am by transitional epithelium with cytokeratin expression in a rabbit model
[62]. In 2004 Koziak et al. was the first to use grafts made from Am for urethroplasty in 2 male
patients [63]. Three years later, the same group demonstrated a technique for supplementation
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of long ureteral wall strictures with use of Am allografts [64]. Brand et al. successfully recon-
structed a female urethra using autologous grafts prepared from Am [65]. The excellent inte-
gration of the implanted amnion graft with host urinary tract wall was observed after
mentioned reconstructive procedures. In all cases Am reduced fibrosis and prevented stricture
formation during follow-up. Due to the low mechanical resistance of Am, it required to be
folded multiple times in order to obtain its carrier surface before implantation during urethro-
plasty and ureteral reconstruction. Electrospinning creates an opportunity to fabricate an elas-
tic tubular-shaped biocomposite material prepared from Am and nanofibers analogous to the
design presented in our study. Following this concept it would be possible to facilitate recon-
struction of urethra and ureter with Am and popularise this unique biocompositie material
among urologists.

The mechanical and functional evaluation of the augmented rat urinary bladders is limited
by the lack of reliable research tools. Our previous study showed that urodynamic testing failed
to discriminate between the differences of regenerated urinary bladders corresponding to histo-
logical regeneration [66]. In the present study, the Young’s modulus was directly measured.
Elasticity of the urinary bladder wall is an active process and depends on the dynamically
changeable smooth muscle contractility during the storage and emptying phase [67]. Accord-
ing to published studies, reconstructed urinary bladders with an applied tissue engineering
approach analysed by urodynamics showed hyperactivity and improper smooth muscle tone
[68,69,70,71]. This is an outcome of disordered histological structure, inadequate innervation
and regulative signalling. Estimation of Young’s modulus provided data describing passive
elasticity of the reconstructed bladder wall, that indirectly reflects the content of muscle and
fibrotic tissue [72]. The ratio of these two components mainly determinate the stiffness of
regenerated bladder wall Young modulus increased with fibrosis progression and this relation-
ship was observed in the elasticity measurements of fibrotic organs and tissues including uri-
nary bladder, aorta, liver, skin and pericardium [73].

Therapeutical effects reported after urinary tract reconstruction with Am are related to its
supportive role during regeneration of urothelium and muscle layer. Am, a natural basement
membrane of the amniotic epithelium is likely to create a favourable environment for initial
urothelium re-epithelialisation and maturation [74]. Jerman et al. demonstrated that urothelium
cultivated on Am was characterised with molecular and ultrastructural properties similar to that
of native urothelium [75]. In our study the gradual biodegradation of PLCL nanofibers did not
interrupt formation of the urothelial layer on Am. A functional urothelial layer is crucial for the
regeneration process [76]. Apart from the isolation of neotissue due to the negative influence
from urine, the urothelium stimulated and partially guided smooth muscle ingrowth [77]. We
observed a rich distribution of smooth muscle bundles beneath the urothelium and a well devel-
oped lamina propria. At the site of adhesion between the intact and replaced bladder wall, bun-
dles of smooth muscles were collectively observed to migrate and spread within new neotissue.
Our findings support current opinions that smooth muscle development was promoted by the
host’s intact bladder wall through activated fibroblasts or myofibroblasts [78]. Strong staining
pattern for specific cytoskeleton protein smoothelin that is expressed exclusively by contractile
smooth muscle cells indicated on newly formed muscular layers corresponding to the regener-
ated detrusor muscle [79, 80]. In one case, the reconstructed urinary bladder wall had the same
percentage of smooth muscle surface coverage as the control urinary bladder wall (Fig 5). This
finding indicated that the Am provided a distinctly favourable local environment for muscle
growth. Tolg et al. demonstrated that expression of smoothelin by newly differentiated smooth
muscle cells was a sign of an optimal microenvironment for regeneration [81]. Sharifiaghdas
et al. reported that human smooth muscle cells cultivated on Am exhibited the same marker
(actin and desmin) expression patterns as normal smooth muscle cells [82].
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Our reconstructed urinary bladder wall was rich in bundles of smooth muscle cells, which
formed an organised layered structure, typical for an intact urinary bladder wall. This was
observed only locally and mainly close to the intact host’s bladder wall. This was similar to pre-
vious histological results where irregular arrangements of smooth muscle after urinary bladder
augmentation with Am seeded with MSC were noticed [66]. Interestingly, despite the seeded
MSC, the content of smooth muscle in the regenerated urinary bladder wall was lower than
that of the acellular biocomposite material used in the present study.

Conclusions
The ideal scaffold for an engineered tissue is the ECM of the target tissue in its native state.
Unfortunately this requirement cannot be met in most clinical problems of reconstructive urol-
ogy. Biomaterials for urethra, urinary bladder and ureter reconstruction must offer mechanical
properties similar to the lower and upper wall of urinary tracts. In addition, tissue regeneration
support is required. The presented bicomposite material managed to provide an microenviron-
ment that altered the default healing response towards regeneration. Histological examination
of all the explants with H&E, anti-smoothelin antibody and TRI staining confirmed that Am
was able to induce formation of a new multilayered urinary bladder wall similar to a native
one. Electrospun PLCL nanofibers improved the mechanical characteristic of Am without lim-
iting its bioactivity and biocompatibility. Electrospining technology enables the creation of
material with a controlled shape, size, porosity and biodegradation period. This makes it possi-
ble to adopt the physical properties of biocomposite material to meet the physiological
demands of various structures within urinary tracts. The unique combination of enhanced tis-
sue regeneration guaranteed by Am with customisation possibilities via electrospinning may
lead to development of a new group of personalised biocomposite materials. The use of this
technology could be adopted for the field of urethroplasty. The positive results suggest that par-
tial urinary bladder augmentation could be taken into consideration.
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