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a b s t r a c t

The analysis of mechanical response of joined bi- or multi-layer systems is a typical prob-
lem for both geomechanics and composite technology. The elastic or visco-elastic layers
interact through joining interfaces transferring stress state between layers and assuring
structure integrity. The typical damage modes are related to progressive delamination at
bonding interfaces, affected by distributed layer cracking. The present work is aimed to
provide an analytical study of the stress state in a bi-layer system and of the progressive de-
lamination process. The cohesive zone model is applied to simulate the interface response
with shear stresses related to displacement discontinuities and to the specific fracture ener-
gies in shearmode. The following specific issues are discussed: delaminationmode growth
with the related critical and post-critical response of evaluation length of the process zone,
scale effect of the critical stress. The analysis results can be applied to clarify the effect of
material parameters on the damage process and to discuss experimental testing of epoxy
joined ceramic elements, with specification of the connection strength, related to both the
critical interface stress and the specific fracture energy.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Coating layers are usually deposited on boundary
surfaces of structural elements in order to improve their
mechanical response, such as wear, corrosion or fatigue
resistance. Due to mismatch of the thermo-mechanical
properties of film–substrate systems the residual stresses
are generated both in the initial and loaded states. The
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damage and failure in layered structures or coatings on
substrate constitutes themost important class of problems
for this type of composite materials. In most cases the
delamination at interface and layer cracking are the
main modes of degradation of structure performance.
An extensive research has been conducted in the last
period in this area,with application of different approaches
generally based on the fracture mechanics models or on
Cohesive Zone Model (CZM) approach. In the case of
surface cracking the small cracks can nucleate from a
surface defect but for low load they do not channel through
the film. Thus, as a result, small cracks remain stable
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and can be tolerable for many applications. However,
for higher stresses within the coating one observes a
channeling process with a network of cracks surrounding
islands of the intact film.1 Upon reaching coating/substrate
interface several failure mechanisms can follow: cracks
enter the substrate material and stabilize at a certain
depth.2–4 They can also deviate and propagate along
the coating/substrate interface resulting in a subsequent
debonding of the protective film.5,6 The substrate spalling
is another intriguing phenomenon: the crack enters the
substrate and selects a path at a certain depth parallel to
the interface. This type of failure is common for brittle
substrates.7,8 The cracks arrested on the coating/substrate
interface have been observed, also when cracks tend to
interface under perpendicularly applied axial strain.9–12
Then new cracks may appear during loading with initially
increased crack density to stabilize at a fixed value,
unaffected by further loading. This mode of failure is
knownas a segmentation ormultiple cracking of thin films.
The fundamental mode of failure, when the load causes
the separation of the layers by generated interface cracks,
is delamination directly associated with the fracture
toughness.

The fracture mechanics models are usually based on
Linear Elastic Fracture Mechanics (LEFM) and energy
criteria, namely on the potential energy release rate as
the generalized driving force specifying progressive crack
growth at its critical value. In Ref. [10,13,14] the energy
release rate has been derived in a closed form by applying
the variational approach in crack analysis of coated
and multilayer systems. In the analysis of segmentation
cracking, Hu and Evans15 assumed the constant shear
stress value at the interface, corresponding to ductile
response. The similar elastic-perfectly plastic model for
the interface was applied by Timm et al.16 to predict the
crack spacing within asphalt pavements. A considerable
efforts have been devoted to develop fracture mechanics
of interfacial cracking. Hutchinson and Suo17 provided
an extensive study of the singular stress regime and of
cracking modes along the interface combined with layer
cracking. As the compliance discontinuity occurs, it affects
the driving force and induces the local shear stresses at the
crack tip. Due to the elastic mismatch the interface or near
interface crack experiences both tensile and shear modes
(Modes I and II) even if the remote loading corresponds to
Mode I. Generally, the crack growth near or at the interface
has been shown to depend on the relative strength of
coating and substrate or the strength of interfacial bond
relative to the strength of adjacent layers. Numerous
studies have also been devoted to the fatigue failure of
coated layers and correlation between the ability of cracks
to traverse an interface undeflected and the bond strength
of the interface.18–22 Suresh and Sugimara successfully
predicted the crack growth toward the interface in ductile-
bimaterial systems by accounting for the constraint of
plastic slip mechanisms ahead of the crack tip and adapted
this approach to the analysis for crack growth in a system
with brittle coatings.23–26

The LEFM solutions for interface cracks exhibit singu-
lar oscillatory behavior of stress field in the crack tip zone,
generating some difficulties in crack growth modeling. An
useful alternative to LEFM is the shear lag (SL) or the co-
hesive zonemodel (CZM). The shear lag approach has been
frequently applied in the analysis of stress transfer through
the interfacial shear stress in composite or bonded mate-
rials. The interface tractions τn, σn are then assumed to be
related to displacement jumps ut , un. The elastic analysis of
rivet connected elements using this methods was initiated
by Volkersen27 in 1938 and later by Cox28 in a simple one
dimensional model of analysis of stress transfer between
a matrix and a fiber assuming the linear elastic relation
between shear stress and tangential slip. The subsequent
treatments by Hedgepeth29 and Kelly and Tyson30 were
devoted to composite analysis assuming elastic or elas-
tic–plastic interaction models. The cohesive zone models
(CZM) first proposed by Dugdale31 and Barrenblatt32 were
addressed to analyze the localized damage or plastic flow
in the front of crack tip. Next they have been developed to
become an effective numerical tool for the analysis of crack
initiation and growth, also for study of interfacial fracture
of composites. In the literature, numerous proposals for the
non-linear interaction between interface tractions and dis-
placement jumps have been presented for the cohesive el-
ements, such as trapezoidal,33 perfectly plastic,34 polyno-
mial and exponential rules.35,36 However, the most com-
mon and useful is the bilinear model, accounting for elas-
tic and softening deformation stages preceding final fail-
ure. The cohesive zone models implemented in FEM have
been widely exploited for specification of critical loads of
bonded joints.37,38 The interface problems and delamina-
tion failure were numerically analyzed in Ref. [39–42]. The
comparative analysis of several cohesive models in pre-
dicting the onset of cracking and failure loads was pre-
sented in Ref. [42].

The analytical solutions for the cohesive zone models
have been presented in several papers. The analytical
treatment is important for the analysis of effect of material
and geometric parameters on failure loads and their
modes. The analytical solution of beam debonding form
rigid substrate under normal load was presented by
Williams and Hadivinia.43 The problem of fiber pull-out
for the assumed cohesive model was analytically treated
by Schreyer and Peffer.44 The delamination process under
compressive normal loadwas treated byMroz andBialas,45
next by Bialas and Mroz46,47 indicating differing tangential
deformation response due to coupling of delamination
and sliding friction effects. The numerical treatment
of cracking of surface coating layer in flexural mode
was experimentally and numerically treated by Bialas
et al.48 Crack patterns in thin layers under temperature
loading were studied analytically by Bialas and Mroz48,49
presenting stress analysis and applying the total energy
minimization method for prediction of crack pattern. The
analytical solutions for specific cases of delamination
process in a bi-material structure were presented by
Ivanova et al.50 and Nikolova et al.51

The objective of the present work is to provide the
analytical treatment of the delamination process in a bi-
linear structure for the assumed linear elastic and linear
damage relation between interface shear stress, τI and
displacement jump uI . The analytical solutions provide
the insight into the initiation and growth of the damage
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Fig. 1. (a) Bi-layer structure loaded by end forces on substrate plate (b) loaded lap-joint (c) stress acting on the infinitesimal bi-layer element.
process zone, crack initiation and growth length, leading to
ultimate failure of the interface. The length evolution of the
process zone along the interface is analyzed and compared
with the predictions based on the fracture energy and
critical stress concepts. Two cases are considered: first, the
interface delamination for substrate plate loaded inducing
delamination of the coating plate, next the lap joint failure
process due to growth of delamination zones from two
interface ends.

In Section 2 the problem formulation, governing
equations and general solutions presenting displacement,
and stress fields in both plates for different combination of
elastic, softening and failure stress regimes are presented.
The limiting cases for perfectly ductile or brittle response
of bonding interface and plate are also considered. In
Sections 3 and 4, the specific cases are considered when
the increasing load is imposed. The analysis of progressive
delamination is then presented. The analytical expression
anddiagrams illustrate the effect of geometric andmaterial
parameters on the damagemode in the bi-material system.

2. Problem formulation

Consider two plates A and B bonded along the interface
I and loaded uniaxially at two opposite edges (Fig. 1).
The thickness of plates is 2hA and 2hB, where 2hA
corresponding to the coating layer is usually much smaller
than the substrate plate thickness 2hB. The uniform in-
plane loading induces tensile or compressive stress in
plates A and B, bending and peel stresses are neglected.
The elastic analysis of double lap joints by Goglio and
Rosetto52 with account for bending moments and peel
stress indicates that this low value stress is compressive
and does not affect the shear failure. The bonding interface
is assumed to transfer shear stresses between two plates
and its response is expressed in terms of displacement
discontinuity of two plates. Denote the uniaxial stresses
(uniform across the thickness) in plates by σA = σA(x) and
σB = σB(x) and by τI = τI(x) the interface shear stress.
The following equilibrium equations can be written for the
resulting forces TA(x) = 2hAσA and TB(x) = 2hBσB

dTA
dx

= τI,
dTB
dx

= −τI,

or

2hA
dσA

dx
= τI, 2hB

dσB

dx
= −τI,

(1)

where x denotes the position along the plate length. The
displacement fields in plates are denoted by uA = uA(x)
and uB = uB(x), the corresponding strains are

εA =
duA

dx
, εB =

duB

dx
. (2)

The substrate plate is assumed to follow linear elastic
response σB = EBεB and its Young modulus is EB. The
mechanical response of the coating plate A and of bonding
interface is presented in (Fig. 2).

The coating layer A is assumed to deform initially, as a
linear elastic material and after reaching the critical stress
value σ C

A the damage induced softening response follows
until full failure. We can write

σA =


EAεA for εA ≤

σ C
A

EA
= εC

A

σ C
A − EAs(εA − εC

A) for εA > εC
A

0 for εA ≥ εf
A.

(3)

The similar interface response presented in (Fig. 2(a))
can be specified in terms of displacement discontinuity
uI = uA − uB. The shear strain in the bonding layer of
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Fig. 2. The stress–strain models of (a) interface, (b) coating plate.
thickness h can be expressed as follows

γ =
uA − uB

h
=

uI

h
and

τI =



Ktγ =
Kt

h
uI = K ef

t uI for uI ≤ uC
I =

τ C
I

K
,

τ C
I −

Ks

h
(uI − uC

I ) = τ C
I − K ef

s (uI − uC
I )

for uI > uC
I .

0 for uI ≥ uf
I

(4)

where, τ C
I is the critical stress initiating failure through

the softening response and uC
I is the corresponding critical

displacement discontinuity. Here the elastic shear and
softening moduli are denoted by Kt and Ks. The thickness
h of the bonding layer occurs only in the values of the
effective shear moduli K ef

t = Kt/h and K ef
s = Ks/h.

Assuming the coating layer and interface responses as in
Fig. 2, different cases can be analyzed. When EAs = 0,
the fully ductile response of the layer A occurs. On the
other hand, when EAs = ∞, the perfectly brittle response
with immediate stress drops to zero value after reaching
the critical stress, σ C

A and the strain εC
A = εf

A. The similar
ductile or brittle responses of the bonding interface can
be described. The critical failure strain εf

A or the critical
displacement discontinuity uf

I at the state of total failure
now are

εf
A = σ C

A


1
EA

+
1
EAs


, uf

I = τ C
I


1
K ef
t

+
1
K ef
s


. (5)

The total specific energy release due to coating layer or
interface failure is

GA =
1
2
σ C
A εf

A =
1
2
(σ C

A )2


1
EA

+
1
EAs


,

GI =
1
2
τ C
I u

f
I =

1
2
(τ C

I )2


1
K ef
t

+
1
K ef
s


.

(6)

Accounting for both layer and interface damage, different
interactive regimes can be generated, as illustrated in
Fig. 2. Assuming first two layers as elastic, only interface
damage growth and delamination process can be analyzed.
The present constitutive model assumptions follow the
previous more general formulation of interface damage
and failure model for mixed mode conditions in Ref.45,46.
2.1. Elastic solution (E-E-E)

Consider now first the elastic responses of the coating
(E), interface (E) and substrate (E) according to Fig. 3 and
write the equilibrium equations (1) in the form

2hAEA
d2uA

dx2
= K ef

t uI

2hBEB
d2uB

dx2
= −K ef

t uI

(7)

where, the second derivatives result from (2) and (3). In
view of (7), the following equation is easily derived for the
displacement discontinuity uI = uA − uB, thus

d2uI

dx2
= λ2

euI, (8)

where

λ2
e = K ef

t


1

2hAEA
+

1
2hBEB


> 0. (9)

The general integral of Eq. (8) has the form

uI = C1 sinh[λex] + C2 cosh[λex], (10)

where, C1, C2 are the integration constants. Having the
form of uI(x), the stress and displacement fields of two
layers are expressed by using the equilibriumequations (1)
and the strain–displacement relations (2). We have

τI = K ef
t (C1 sinh[λex] + C2 cosh[λex]),

TA = 2hAσA =
K ef
t

λe
(C1 cosh[λex]

+ C2 sinh[λex]) + 2hAC3,

TB = 2hBσB = −
K ef
t

λe
(C1 cosh[λex]

+ C2 sinh[λex]) − 2hBC̃3,

uA =
K ef
t

2hAEAλ2
e
(C1 sinh[λex] + C2 cosh[λex])

+
C3

EA
x + C4,

uB = −
K ef
t

2hBEBλ2
e
(C1 sinh[λex] + C2 cosh[λex])

−
C̃3

EB
x + C̃4,

(11)
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Fig. 3. Deformation models for coating-interface interaction.
where, C3, C̃3, C4, C̃4 are constants to be specified from the
boundary and continuity conditions. However, requiring
uI = uA − uB, the constants can be reduced, as follows:
C̃4 = C4 and C̃3 = −EB/EAC3. Then,

τI = K ef
t (C1 sinh[λex] + C2 cosh[λex]),

TA =
K ef
t

λe
(C1 cosh[λex] + C2 sinh[λex]) + 2hAC3,

TB = −
K ef
t

λe
(C1 cosh[λex] + C2 sinh[λex])

+ 2hB
EB
EA

C3,

uA =
K ef
t

2hAEAλ2
e
(C1 sinh[λex] + C2 cosh[λex])

+
C3

EA
x + C4,

uB = −
K ef
t

2hBEBλ2
e
(C1 sinh[λex] + C2 cosh[λex])

+
C3

EA
x + C4.

(12)

2.2. Elastic plates-softening interface (E-S-E)

Assume first that plates are in the elastic state (E) and
the interface in the softening state (S). Then we have

τI = τ C
I − K ef

s (uI − uC
I ) =


1 +

K ef
s

K ef
t


τ C
I − K ef

s uI

= A − K ef
s uI (13)
where the interface softening is beginning at τ C
I value, as

presented in Fig. 2(b). Then the equilibrium equations take
the form

2hAEA
d2uA

dx2
= A − K ef

s uI,

2hBEB
d2uB

dx2
= −A + K ef

s uI,

(14)

and the field uI(x) is specified from the equation

d2uI

dx2
+ λ2

suI = F , (15)

where

A =


1 +

K ef
s

K ef
t


τ C
I ,

λ2
s = K ef

s


1

2hAEA
+

1
2hBEB


> 0

F =


1

2hAEA
+

1
2hBEB


1 +

K ef
s

K ef
t


τ C
I

=
λ2
s

K ef
s


1 +

K ef
s

K ef
t


τ C
I .

(16)

The integral equation (15) is of the form

uI = D1 sin[λsx] + D2 cos[λsx] +
F
λ2
s
. (17)

The stress and displacement fields are now expressed as
follows
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τI = −K ef
s (D1 sin[λsx] + D2 cos[λsx]),

TA =
K ef
s

λs
(D1 cos[λsx] − D2 sin[λsx]) + 2D3hA,

TB =
K ef
s

λs
(−D1 cos[λsx] + D2 sin[λsx]) − 2̃D3hB,

uA =
K ef
s

2hAEAλ2
s
(D1 sin[λsx] + D2 cos[λsx])

+
D3

EA
x + D4,

uB =
K ef
s

2hBEBλ2
s
(−D1 sin[λsx] − D2 cos[λsx])

−
D̃3

EB
x + D̃4,

(18)

where, D1,D2,D3,D4, D̄3, D̄4 are constants. However, re-
quiring uI = uA − uB, the constants can be reduced, as fol-
lows: D̃4 = D4 − F/λ2

s and D̃3 = −EB/EAD3. Then,

τI = −K ef
s (D1 sin[λsx] + D2 cos[λsx]),

TA =
K ef
s

λs
(D1 cos[λsx] − D2 sin[λsx]) + 2hAD3,

TB =
K ef
s

λs
(−D1 cos[λsx] + D2 sin[λsx])

+ 2hBEB/EAD3,

uA =
K ef
s

2hAEAλ2
s
(D1 sin[λsx] − D2 cos[λsx])

+
D3

EA
x + D4,

uB =
K ef
s

2hBEBλ2
s
(−D1 sin[λsx] − D2 cos[λsx])

+
D3

EA
x + D4 − F/λ2

s .

(19)

The proper continuity conditions should be stated to
match different stress and displacement regimes. The
continuity of forces [TA] = [TB] = 0 at the transition point
require that [uA] = [uB] = 0, [u′

A] = [u′

B] = 0. These
conditions can also be expressed as follows

[uI] = [u′

I] = 0, [TA] = 0, [uA] = 0. (20)

In fact, for the bi-layer structure loaded axially at its end,
the condition TA + TB = T occurs, where T is the resultant
boundary load. Thus, it suffices to specify uI, next force
and displacement in one layer, say A. Then force and
displacement in the second layer B are determined in terms
of uI, force TA and displacement uA.

The case

uI = τI = 0 (21)

corresponds to uniform force distribution within both
layers. As then εA = εB, TA + TB = T , we have

TA =
ρ

1 + ρ
T , TB =

1
1 + ρ

T , ρ =
2hAEA
2hBEB

(22)
and the forces TA and TB are specified in terms of the
boundary load T and the layer stiffness ratio ρ. The state
(22) will be called the uniform stress state. It is important
state for a multilayer system, as the local stress state
affected by boundary conditions or imperfections (layer
cracks, debonded spots) tends to the uniform state (22) for
increasing distance from the stress perturbation source.

3. Substrate plate loading

3.1. Elastic analysis

Consider now the case of the substrate plate B loaded
at both ends by the force TB(l) = TB(−l) = T and the
coating plate A with stress-free ends, TA(l) = TA(−l) = 0,
Fig. 4. The plates are bonded along the interface layer I,
whose thickness h is included in the definition of effective
stiffness and softening layer moduli. As the boundary
condition does not satisfy the uniform state condition (22),
the interface shear stress τI(x) is generated. Introducing
the coordinate system x, y with its origin at the plate
center and applying (12) with the boundary and symmetry
conditions as

TA(l) = 0, TB(l) = T , uI(0) = 0 (23)

we obtain

C1 = −
ρ

1 + ρ
T

λe

K ef
t

1
cosh[λel]

, C2 = 0,

C3 =
ρ

1 + ρ

T
2hA

(24)

and the mechanical field is expressed as follows

ue
I (x) = −

ρ

1 + ρ
T

λe

K ef
t

sinh[λex]
cosh[λel]

,

τ e
I (x) = −

ρ

1 + ρ
Tλe

sinh[λex]
cosh[λel]

,

T e
A(x) =

ρ

1 + ρ
T

1 −

cosh[λex]
cosh[λel]


,

T e
B (x) =

1
1 + ρ

T

1 + ρ

cosh[λex]
cosh[λel]


.

(25)

Let us note that for increasing plate length, cosh[λel] →

∞ and the ratio T e
A(0)/T

e
B (0) tends to ρ, corresponding to

the uniform stress regime. The displacement field for the
boundary conditions ue

A(0) = ue
B(0) = 0 is obtained in the

form

ue
B(x) =

 x

0

T e
B (x)

2hBEB
dx

=
T

2EBhB

1
1 + ρ


x +

ρ

λe

sinh[λex]
cosh[λel]


ue
A(x) = ue

A(x) + ue
I (x)

=
T

2EAhA

ρ

1 + ρ


x −

1
λe

sinh[λex]
cosh[λel]


.

(26)

The interface damage initiation starts when τ e
I (l) = τ C

I .
The acting critical load then equals
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Fig. 4. Elastic interface model (a), mechanical loading (b).
T C
= TB(l) =

1 + ρ

ρ

τ C
I

λe
coth[λel]. (27)

Fig. 5(a), (b) present the distributions of forces TA, TB
and of the interface stress, τI, for constant value of τ C

I and
varying values of stiffness parameter λe. It is seen that for
increasing values λe, that is the ratio of shear stiffness of
bonding layer to tension stiffness of plates, the shear stress
near the boundary increases and the value of the critical
load expressed by (27) decreases. Fig. 5(c) presents the
dependence of critical load T C initiating the delamination
process on the plate length. It is seen that for increasing

length the critical load tends to its asymptotic value 1+ρ

ρ

τC
I

λe

which vanishes forλe → ∞. The diagram T C
−λel specifies

two domains of delamination and of no delamination.

3.2. Growth of process zone

For the elastic shear stress τI > |τ C
I |, the symmetric

damage process zones start to grow from two ends of
plates. In view of symmetry, consider only the solution for
0 ≤ x ≤ l. Assume the elastic zone to exist in the central
domain 0 ≤ x ≤ le and the damage process zone in the
boundary domain le ≤ x ≤ l, Fig. 6(b), with its initial
growing length dp = l− le. Fig. 6(b) presents schematically
the shear stress field in two zones.

Using formulae (12) and (19) the mechanical states in
two zones are expressed as follows.

Elastic zone: 0 6 x 6 le. The conditions τ e
I (0) = 0

requires that the integration constant C2 = 0 and then we
have
τ e
I (x) = K ef

t C1 sinh[λex],

T e
A(x) =

K ef
t

λe
C1 cosh[λex] +

ρ

1 + ρ
T (l), (28)

T e
B (x) = −

K ef
t

λe
C1 cosh[λex] +

1
1 + ρ

T (l).

Damage process zone: le 6 x 6 l

up
I (x) = D1 sin[λsx] + D2 cos[λsx] + uf

I,

τ
p
I (x) = −K ef

s (D1 sin[λsx] + D2 cos[λsx]),

T p
A (x) =

K ef
s

λs
(D1 cos[λsx] − D2 sin[λsx])

+
ρ

1 + ρ
T (l),

T p
B (x) =

K ef
s

λs
(−D1 cos[λsx] + D2 sin[λsx])

+
1

1 + ρ
T (l),

(29)
where uf
I is defined by (5). Satisfying the conditions T p

A (l) =

0, τ e
I (le) = τ

p
I (le) = −τ C

I , the integration constants are
specified, namely

C1 = −
τ C
I

K ef
t

1
sinh[λele]

,

D1 =
1

cos[λs(l − le)]


−

ρ

1 + ρ
T (l)

λs

K ef
s

cos[λsle]

+
τ C
I

K ef
s

sin[λsl]

, (30)

D2 =
1

cos[λs(l − le)]


ρ

1 + ρ
T (l)

λs

K ef
s

sin[λsle]

+
τ C
I

K ef
s

cos[λsl]

.

Satisfying the continuity condition [TA(le)] = 0, the
relation is obtained specifying the length of the initial
process zone dp = l − le

T
τ C
I

ρ

1 + ρ
=

sin[λsdp]
λs

+
coth[λele] cos[λsdp]

λe
. (31)

Finally, the mechanical fields are in the elastic zone 0 6
x 6 le:

τ e
I (x) = −τ C

I
sinh[λex]
sinh[λele]

,

T e
A(x) = −

τ C
I

λe

cosh[λex]
sinh[λele]

+
ρ

1 + ρ
T (l),

T e
B (x) =

τ C
I

λe

cosh[λex]
sinh[λele]

+
1

1 + ρ
T (l)

(32)

in the damage zone le 6 x 6 l:

τ
p
I (x) =

sin[λsx]
cos[λs(l − le)]


ρ

1 + ρ
T (l)λs cos[λsle]

− τ C
I sin[λsl]


−

cos[λsx]
cos[λs(l − le)]

×


ρ

1 + ρ
T (l)λs sin[λsle] + τ C

I cos[λsl]

,

T p
A (x) =

cos[λsx]
cos[λs(l − le)]


−

ρ

1 + ρ
T (l) cos[λsle]

+
τ C
I

λs
sin[λsl]


−

sin[λsx]
cos[λs(l − le)]
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Fig. 5. Elastic distributions of the shear stress τI(x), (a); of forces TA(x), TB(x), (b); critical force initiating the delamination process versus non-dimensional
λel values, (c).
4)
ue
B(x) =

λ2
eTx + (1 + ρ)τ C

I sinh[λex]
2EBhBλ2

e(1 + ρ) sinh[λele]

up
B(x) =

(λ2
e + λ2

s )(1 + ρ)τ C
I + λ2

eλ
2
sTx − λ2

e


(1+ρ)τC

I cos[λs(l−x)]+λsρT sin[λs(le−x)]


cos[λs(−le+l)]

2EBhBλ2
eλ

2
s (1 + ρ)

.

(3

Box I.
×


ρ

1 + ρ
T (l) sin[λsle] +

τ C
I

λs
cos[λsl]


+

ρ

1 + ρ
T (l), (33)

T p
B (x) =

cos[λsx]
cos[λs(l − le)]


ρ

1 + ρ
T (l) cos[λsle]

−
τ C
I

λs
sin[λsl]


+

sin[λsx]
cos[λs(l − le)]

×


ρ

1 + ρ
T (l) sin[λsle] +

τ C
I

λs
cos[λsl]


+

1
1 + ρ

T (l).

The displacement of the plate B satisfying the boundary
condition ue

B(0) = 0 and the continuity condition
[uB(le)] = 0 is expressed in two zones as Eq. (34) given
in Box I.

3.2.1. Growth of delamination zone
The full delamination starts when τ

p
I (l) = 0 and next

the full delamination zone d = dl −dp = l− ld grows from
both ends, Fig. 6(b). From (32), setting τ
p
I (l) = 0, we obtain

the load at the onset of delamination

T =
ρ + 1

ρ

τ C
I

λs

1
sin[λsdp]

, (35)

where, the value of dp is specified from (31).
In the subsequent stage there are the delamination and

damage process zones of lengths d and dp evolving during
the loading process, with the total damaged zone dl =

dp + d. In the delaminated zone, the mechanical state is
as follows

ld 6 x 6 l : TA = 0, TB = T , τI = 0. (36)

In the process zone: le 6 x 6 ld the same relations as in
Eq. (29) apply and the following boundary conditions are
stated T p

A (ld) = 0, τ
p
I (ld) = 0 and the constants are

D1 = −
ρ

1 + ρ
T

λs

K ef
s

cos[λsld],

D2 =
ρ

1 + ρ
T

λs

K ef
s

sin[λsld].
(37)

Similarly, for elastic fields: 0 6 x 6 le the condition
τ e
I (le) = −τ C

I provides the constant C1, thus

C1 = −
τ C
I

K ef
t

1
sinh[λele]

. (38)
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Fig. 6. Progressive growth of delamination: interface model (a); substrate mechanical loading and shear stress field for initial growth of damage zone, (b);
growth of delamination and motion process zone, (c).
The mechanical fields are now expressed as follows in
the elastic zone: 0 6 x 6 le:

τ e
I (x) = −τ C

I
sinh[λex]
sinh[λele]

,

T e
A(x) = −

τ C
I

λe

cosh[λex]
sinh[λele]

+
ρ

1 + ρ
T ,

T e
B (x) =

τ C
I

λe

cosh[λex]
sinh[λele]

+
1

1 + ρ
T

(39)

in the damage zone: le 6 x 6 ld:

τ
p
I (x) =

ρ

1 + ρ
Tλs


cos[λsld] sin[λsx]
− sin[λsld] cos[λsx]

,

T p
A (x) =

ρ

1 + ρ
T

1 − cos[λsld] cos[λsx]

− sin[λsld] sin[λsx]

, (40)

T p
B (x) =

ρ

1 + ρ
T
 1
ρ

+ cos[λsld] cos[λsx]

+ sin[λsld] sin[λsx]

.

Requiring τ
p
I (le) = −τ C

I and continuity condition
[TA] = 0 at x = le, two equations specifying le and ld are
obtained
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4)
ue
B(x) =

λ2
eT (l)x + (1 + ρ)τ C

I sinh[λex]
sinh[λele]2EBhBλ2

e(1 + ρ)
,

up
B(x) =

λs(τ
C
I + ρτ C

I + λ2
eT (l)x) + λ2

eρT (l)(sin[λs(ld − le)] − sin[λs(ld − x)])
2EBhBλ2

eλs(1 + ρ)
,

uh
B(x) =

λs((1 + ρ)τ C
I + λ2

eT (l)(−ldρ + x + ρx)) + λ2
eρT (l) sin[λs(ld − le)]

2EBhBλ2
eλs(1 + ρ)

.

(4

Box II.
Fig. 7. Progression of damage zone length for elastic-softening model
and varying parameters λe, λs and for fixed parameters: l = 0.3 m,
h = 0.5 · 10−3 m, τ C

I = 2 MPa.


T =

ρ + 1
ρ

τ C
I

λs

1
sin[λs(ld − le)]

=
ρ + 1

ρ

τ C
I

λs

1
sin[λsdp]

,

T
ρ

1 + ρ
cos[λsdp] =

τ C
I

λe
coth[λele].

(41)

From (41) the following relation specifying the length of
process zone, dp = ld − le, is obtained

dp =
1
λs

arctan


λe

λs
tanh[λele]


(42)

and the relation between the load of plate B and the elastic
zone length is

T =
ρ + 1

ρ

τ C
I

λs
coth[λele]


1 +


λs

λe

2

tanh2
[λele]. (43)

The displacement field of plate B is expressed for elastic,
process and delaminated zones. Satisfying the boundary
conditions ue

B(0) = 0 and continuity conditions [uB(le)] =

0 and [uB(ld)] = 0, we have Eq. (44) in Box II
It is seen from (42) that the length dp of the process zone

decreases during the delamination process and vanishes
for le → 0. On the other hand, the applied load expressed
by (43) increases and tends to infinity for le → 0.
This effect can easily be interpreted from the elastic
solution and diagram in Fig. 5(c). In fact the required
delamination load increases for short plate. Fig. 7 presents
the progression of process zone length dp versus total
delamination affected portion of the interface dl. Initially
dp = dl during the zone growth phase and next dp
decreases during the zone translation phase.

3.3. Specific case 1: elastic-perfectly brittle bond model:
K eff
s = ∞

The elastic–brittle bonding model is frequently used to
specify the lower bound on the delamination load. Now the
process zone does not exist as there is an abrupt transition
from the elastic shear stress value τ C

I to failure at fixed
value of uI = uIf, Fig. 8. Following (25), we have for 0 6
x 6 le:

ue
I (x) = −

ρ

1 + ρ
T

λe

K ef
t

sinh[λex]
cosh[λele]

,

τ e
I (x) = −

ρ

1 + ρ
Tλe

sinh[λex]
cosh[λele]

,

T e
A(x) =

ρ

1 + ρ
T

1 −

cosh[λex]
cosh[λele]


,

T e
B (x) =

1
1 + ρ

T

1 + ρ

cosh[λex]
cosh[λele]


,

(45)

for le 6 x 6 l:

τI(x) = 0, TA(x) = 0, TB(x) = T . (46)

Setting τ e
I (le) = −τ C

I , it is obtained

T C
=

1 + ρ

ρ

τ C
I

λe
coth[λele]

=
1 + ρ

ρ

τ C
I

λe
coth[λe(l − dl)] (47)

and the displacement for the boundary condition uB(0) =

0 is 0 6 x 6 le:

ue
A(x) =

ρ

1 + ρ

T
2hAEA


x −

1
λe

sinh[λex]
cosh[λele]


ue
B(x) =

1
1 + ρ

T
2hBEB


x +

ρ

λe

sinh[λex]
cosh[λele]

 (48)

and it is noted that uh
A,B(le) = ue

A,B(le) for le 6 x 6 l:
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Fig. 8. Elastic–brittle interface model (a); shear stress field for growth of delamination in bi-layer system, (b).
uh
A(x) =

ρ

1 + ρ

T
2hAEA


le −

1
λe

tanh[λele]


uh
B(x) =

1
1 + ρ

T
2hBEB


le +

ρ

λe
tanh[λele]


+

T
2hBEB

(x − le).

(49)

It is seen that the load T increases with the length of
delaminated zone dl. The formula (47) is identical to (27)
expressing the load value at the onset of delamination.

3.4. Specific case 2: elastic-perfectly plastic bond model:
K eff
s = 0

Referring to the previous case, the growth of plastic
zones from the plate ends induces higher load values in
order to drive the delamination process, Fig. 9, namely

T C
=

1 + ρ

ρ
τ C
I

 1
λe

coth[λe(l − dl)] + dl


(50)

and the displacement at the end of plate B is

up
B(x) = ue

B(le) −
(l − x)(2T + τ C

I (x − 2l + le))
4EBhB

, (51)

where

ue
B(le) = le

1
1 + ρ

T
2EBhB

+
tanh[λele]
2EBhBλe

×

 ρ

1 + ρ
T − τ C

I (l − le)

. (52)
3.5. Specific case 3: rigid-softening interface layer: λe → ∞

The analysis presented for the elastic-softening re-
sponse can be particularized for several specific cases re-
quiring more detailed discussion. Consider first the case
when the elastic modulus K eff

t tends to infinity and the
rigid-softening response occurs. Thismodulus is difficult to
identify for the FEM analysis where high values are usually
assumed. The softening rule is now expressed as follows

τI = τ C
I − K ef

s uI, GIf =
1
2
τ C
I uIf =

1
2

(τ C
I )2

K ef
s

. (53)

As uI = 0 for |τI| < τ C
I , then only homogeneous stress

states are allowed for which τI = uI = 0. After load
application the damage process zones are formed near the
plates ends and in the central part the homogeneous stress
state is generated, Fig. 10.

From the equilibrium equations for the damage growth
phase

dTA
dx

= 2hAEA
d2uA

dx2
= −τ C

I − K ef
s uI

dTB
dx

= 2hBEB
d2uB

dx2
= τ C

I + K ef
s uI.

(54)

The following differential equation is obtained

d2uI

dx2
+ λ2

suI = −


1

2hAEA
+

1
2hBEB


τ C
I (55)
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Fig. 9. Elastic-perfectly plastic interface model (a); substrate mechanical loading and shear stress field for motion of damage zone (b).
where

λ2
s = K ef

s


1

2hAEA
+

1
2hBEB


= K ef

s Cl and

K ef
s =

(τ C
I )2

2GIf
(56)

where, Cl denotes the elastic layer compliance, expressed
by the bracketed term of (56). Satisfying the continuity
conditions [uI] = [u′

I] = 0 for x = le and the boundary
conditions TA(l) = 0 it is obtained

up
I (x) = −

τ C
I

K ef
s

(1 − cos[λs(x − le)])

τ
p
I (x) = −τ C

I cos[λs(x − le)]

T p
A (x) =

τ C
I

λs
(sin[λsd] − sin[λs(x − le)])

T p
B (x) = T −

τ C
I

λs
(sin[λsd] − sin[λs(x − le)])

(57)

where, d = l− le. For x = le, the values of TA and TB should
be equal to the homogeneous state values, thus

TA =
τ C
I

λs
sin[λsd] =

ρ

1 + ρ
T ,

sin[λsd] =
λs

τ C
I

ρ

1 + ρ
T (58)

and the homogeneous stress state occurs for −le ≤ x ≤ le.
The end of growth phase takes place when τ
p
I (l) = 0,

thus

− τ C
I cos[λsdf ] = 0, λsdf =

π

2
and df =

π

2
1
λs

. (59)

It is seen that at the end of growth process the length of the
process zone reaches its critical value df expressed by (59).
Alternatively, it can also be presented in the form

df =
π

2
Ks

1
τ C
I

=


2GIf

Cl
. (60)

The critical value df depends on three parameters, with
the most sensitive dependence on τ C

I and less sensitive
dependence on GIf and Cl.

The progression phase of the process zone proceeds at
the constant load

T =
1 + ρ

ρ

τ C
I

λs
(61)

and the increasing displacement uB(l), Fig. 10(b). We have

lp 6 x 6 l : τI = 0, TA = 0,

TB = T =
τ C
I

λeff
s

1 + ρ

ρ
,

le 6 x 6 lp : τ
p
I (x) = −τ C

I cos[λs(x − le)],

T p
A (x) =

τ C
I

λs
(1 − sin[λs(x − lp)]),

0 6 x 6 le : TA = T
ρ

1 + ρ
=

τ C
I

λs
, TB =

τ C
I

λs

1
1 + ρ

.

(62)
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Fig. 10. Rigid-softening interface model, (a); process zone growth, (b); propagation, (c).
The progression phase is determined when the damage
process zones reach the symmetry axes at x = 0, Fig. 11.
The final phase, named the degradation of process zone next
proceeds. Assume uI to vary discontinuously at x = 0 with
growing value u1, at constant process zone length df , so
that

uI = −
τ C
I − K ef

s u1

K ef
s

(1 − cos[λsx]),

τI = −(τ C
I − K ef

s u1) cos[λsx],

T =
τ C
I − K ef

s u1

λs
(1 − sin[λsx]), TB = T − TA.

(63)
Final degradation occurs when K ef
s u1 = τ C

I , and TA =

0, TB = T . It is seen that for the rigid-softening model, the
process of full delamination proceeds differently from that
for elastic-softening model of bonding interface, where
the continuing reduction of length of the process zone
occurred at increasing plate loading.

Fig. 12 presents the dependence of the applied load
T or the length of delaminated zone. It is seen that for
increasing value of λe, the T − dl diagram tends to that
predicted by the rigid-softeningmodel. Fig. 13 presents the
T − uB(l) diagrams for several cases analyzed in the paper.
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Fig. 11. Degradation of the process zone.
Fig. 12. Relation of the driving force T (l) to the delamination zone dl , for
parameters: l = 0.3 m, ρ = 11, λs = 5 m−1 , h = 0.5 · 10−3 m, τ C

I = 2
MPa and two values of λe . Here I describes brittle interface response, IIa
plastic softening behavior until delamination occurs, IIb full delamination
with damage process zone, III—perfectly plastic behavior.

4. Lap-joint analysis

4.1. Elastic analysis

Consider the lap joint shown in Fig. 14 with the plate
B attached to a fixed support at x = 0 and plate A axially
loaded at its end x = l by the force T and with the free
end at x = 0. The reference system x, y is now put at the
left plate end. Applying the elastic solution (12) with the
boundary conditions TA(l) = T , TA(0) = 0, the static field
can be determined.

From (12) it follows that

T (x) = TA(x) + TB(x) = C32hA


1 +

hBEB
hAEA


= C32hA


1 +

1
ρ


(64)
and

2hAC3 =
ρ

1 + ρ
T (l).

Satisfying the boundary conditions, the following formulae
are obtained

τI = λe
T

1 + ρ

ρ cosh[λe(l − x)] + cosh[λex]
sinh[λel]

,

TA =
T

1 + ρ

ρ sinh[λel] − sinh[λe(l − x)] + sinh[λex]
sinh[λel]

,

TB =
T

1 + ρ

sinh[λel] − sinh[λex] + ρ sinh[λe(l − x)]
sinh[λel]

.

(65)

The stress τI at the plate ends x = 0 and x = l is

τI(l) =
λe

1 + ρ
T

ρ + cosh[λel]
sinh[λel]

,

τI(0) =
λe

1 + ρ
T

ρ cosh[λel] + 1
sinh[λel]

(66)

and
τI(0)
τI(l)

=
1 + ρ cosh[λel]
ρ + cosh[λel]

. (67)

It is seen in view of the inequality cosh[λel] > 1, that

for ρ < 1 τI(l) > τI(0),
for ρ = 1 τI(l) = τI(0),
for ρ > 1 τI(l) < τI(0).

(68)

Fig. 15 presents the distribution of the shear stress τI(x)
and of the forces TA,B(x) for different values of λe. It is seen
that, similarly as in the previous case, for the increasing
values of λe, the shear stress in the end zones increases and
the force distribution tends to its homogeneous state in the
central point portion. The critical load value at the onset of
damage process now is specified as follows

for ρ < 1 τI(l) = τ C
I ,

T C
=

τ C
I

λe
(1 + ρ)

sinh[λel]
ρ + cosh[λel]

,

for ρ > 1 τI(0) = τ C
I ,

T C
=

τ C
I

λe
(1 + ρ)

sinh[λel]
1 + ρ cosh[λel]

(69)
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Fig. 13. (a) Load–displacement response of the bi-layer structure for elastic-softening model and parameters: l = 0.3 m, ρ = 11, λe = 21 · m−1 ,
λs = 5 m−1 , h = 0.5 · 10−3 m, τ C

I = 2 MPa. Here A+B indicates elastic solution for joined plates, B indicates elastic response for plate B only, I presents
brittle interface response, IIa and IIb delamination with damage zone, III—perfectly plastic behavior; (b) Load–displacement diagrams for rigid-softening
model.
Fig. 14. The interface model (a), and lap-joint mechanical loading (b).
Fig. 15. Elastic distributions of the shear stress τI(x), (a) the forces TA(x), TB(x), (b) the critical force initiating the delamination process versus length of
specimen l for different values of λe , (c).
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Fig. 16. The interface model, (a); delamination growth in the lap-joint mechanical loading for ρ = 1, (b).
and for l → ∞ the critical load tends to T C
l =

τC
I

λe
(1 + ρ)

for ρ < 1 or T C
l =

τC
I

λe

1+ρ

ρ
for ρ > 1.

4.2. Damage growth analysis for ρ = 1

For simplicity let us consider the case of symmetric
delamination of lap joint for ρ = 1. As in the previous
case, there are consecutive stages of delamination process,
namely damage zone growth, delamination combined
with motion of damage zone and finally degradation of
damage zone. As for ρ = 1, there is symmetric distribution
of the shear stress τI relative to the central axis, it is
sufficient to provide the solution for 0 ≤ x ≤ l/2 and next
to extend it by applying the symmetry condition τI(x) =

τI(l − x).

4.2.1. Damage zone growth
The critical load value at the onset of damage growth is

now specified by (69), thus

T C
=

2τ C
I

λe

sinh[λel]
1 + cosh[λel]

=
2τ C

I

λe
tanh


λe

l
2


. (70)

Assume that for the elastic shear stress τI(x) > τ C
I two

damage process zones grow from both ends. Considering
the growth process at the left end, assume existence of
the damage zone of length dl and the elastic zone in the
central portion. From (19) the stress state is obtained in
the segment for 0 ≤ x ≤ dl after satisfying the conditions
TA = 0 for x = 0 and τI = τ C

I for x = dl:

τ
p
I (x) = −λs

T
2
sin[λs(dl − x)]

cos[λsdl]
+ τ C

I
cos[λsx]
cos[λsdl]

,

T p
A (x) =

T
2


1 −

cos[λs(dl − x)]
cos[λsdl]


+

τ C
I

λs

sin[λsx]
cos[λsdl]

.

(71)

The elastic state for dl ≤ x ≤ l/2 is determined from the
relations (12) after satisfying the conditions τ

p
I (dl) = τ C

I
and τ ′p

I (l/2) = 0. It is obtained

τ
p
I (x) = τ C

I
cosh[λe(l/2 − x)]
cosh[λe(l/2 − dl)]

,

T p
A (x) =

T
2

−
τ C
I

λe

sinh[λe(l/2 − x)]
cosh[λe(l/2 − dl)]

.

(72)

From the condition of continuity of TA for x = dl, the
relation specifying the length of damage zone is obtained,
thus

T
2

1
cos[λsdl]

=
τ C
I

λs
tan[λsdl] +

τ C
I

λe
tanh[λe(l/2 − dl)].

(73)

Let us note that for dl = 0 the critical load value (70) is
obtained from (72). The full delamination process starts
when τ

p
I (0) = 0, and from (71), (72) the required load
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Fig. 17. Progression of damage zone length for different elastic–plastic
softening values and l = 0.5 m, h = 0.5 · 10−3 m, τ C

I = 1 MPa. Lap-joint
structure.

Fig. 18. Evolution of the driving force T to increase the delamination zone
dl . For fixed parameters: l = 0.5m, ρ = 1, λs = 9 ·m−1 , h = 0.5 ·10−3 m,
τ C
I = 2 MPa and two values of λe . Here I describes brittle interface
response, IIa plastic softening behavior until delamination occurs, IIb
delamination with growing damage zone, III—elastic-perfectly plastic
model.

value and the damage zone length are obtained

TD
=

2τ C
I

λs sin[λsdp]
,

tan[λsdl] tanh

λe


l
2

− dl


=

λe

λs
.

(74)

4.2.2. Delamination growth
Referring to Fig. 16, the delamination portion length is

denoted by ld and the total damaged length by dl, with the
damaged process zone of length dp. Now the conditions:
τI(ld) = 0, τI(dl) = τ C

I and TA(dl) = 0 are applied, and for
ld ≤ x ≤ dl we have

τI(x) = τ C
I
sin[λs(x − ld)]

sin[λsdp]
,

TA(x) =
T
2

−
τ C
I

λs

cos[λs(x − ld)]
sin[λsdp]

.

(75)
Fig. 19. Example of load–displacement response of the lap-joint struc-
ture affected by the continuous delamination process for parameters:
l = 0.5 m, ρ = 1, λe = 9 · m−1 , λs = 9 · m−1 , h = 0.5 · 10−3 m,
τ C
I = 2 MPa. Here A+B indicates elastic solution for joined plates, E in-
dicates elastic response for initial loading, I presents brittle interface re-
sponse, IIa and IIb delamination with damage zone, III—elastic-perfectly
plastic response.

In the elastic zone dl ≤ x ≤ l/2 the stress state is presented
as follows

τI(x) = τ C
I
cosh[λe(l/2 − x)]
cosh[λe(l/2 − dl)]

,

TA(x) =
T
2

−
τ C
I

λe

sinh[λe(l/2 − x)]
cosh[λe(l/2 − dl)]

.

(76)

From the continuity condition of TA for x = dl, the relation
specifying the length of the process zone is obtained

cot[λsdp] =
λs

λe
tanh


λe


l
2

− dl


. (77)

As two process zonesmeet at x = l/2, their length 2dp then
is

cos[λsdp) = 0, λsdp = π/2, Dp = 2dp =
π

λs

(78)

which is a characteristic value for the bi-layer system.
The corresponding load value is specified by (74) with dl
replaced by dp. As the length of process zone dl increases,
the load value decreases and its maximum corresponds to
T C or TD.

Fig. 17 presents the progression of damage zone length
dp versus delamination part of the interface dl for constant
λe and different values of λs. The first part of the
delamination process is associated with exit zones from
the plate ends and next with partial decohesion of the
layers. Fig. 18 presents evolution of the driving force T
for increasing length dl of delamination affected interface
portion. Fig. 19 presents load-displacement responses
during the progressing delamination process for different
interface models discussed in the paper. The final process
zone degradation is discussed in detail in the next section.
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2)
up
A(l) = τ C

I
λe

4EAhA + dlK eff

t


3dl + ρ(2l − dl)


− 2K eff

t (2dl + lρ) tanh

λe

dl − l

2


4EAhAK eff

t λe
. (8

Box III.
Fig. 20. Elastic–brittle interface model (a); shear stress field for growth of delamination in lap-joint system, (b).
4.2.3. Specific case 1: elastic-perfectly brittle bond model for
ρ = 1: K eff

s = ∞

Referring to Fig. 20, for K eff
s = ∞, the damage process

zone does not exist. Then the elastic stress field (76) occurs
in the central part and the condition TA(dl) = 0 is valid.We
obtain from (76)

T C
=

2τ C
I

λe
tanh


λe


l
2

− dl


(79)

and the load decreases during the whole process.

The displacement at the end of plate A is

uD
A(l) =

T
4


2dl
EAhA

+
1

EBhB
−

2λe coth

λe

dl − l

2


K eff
t


.

(80)
4.2.4. Specific case 2: elastic-perfectly plastic model, K eff
s = 0

As the plastic zone τ
p
I = τ C

I is developed in the portion
0 ≤ x ≤ ld and T (ld) = τ C

I ld, Fig. 21, from (76) we obtain

T C
= 2τ C

I


dl +

tanh

λe
 l
2 − dl


λe


(81)

and the displacement at the endof plate A is given in Box III.

4.3. Special case 3: rigid-softening model

4.3.1. Growth of process zones
For λe → ∞ two damage process zones are initiated

after application of the increasing load T , Fig. 22. Denote
the lengths of the right and left process zones by dlp and
drp. Along the joint axis we have three segments Pl − H −

Pr, with the homogeneous stress state in the central H
segment. The stress field in the process zone is expressed
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Fig. 21. Elastic-perfectly plastic interface model (a); substrate mechanical loading and shear stress field for motion of damage zone (b).
Fig. 22. The interface model (a), the lap-joint mechanical loading (b).
in (19), thus

uI = D1 sin[λsx] + D2 cos[λsx] +
τ C
I

K ef
s

,

τI = −K ef
s (D1 sin[λsx] + D2 cos[λsx]),

TA =
K ef
s

λs
(D1 cos[λsx] − D2 sin[λsx]) + D3,

TB =
K ef
s

λs
(−D1 cos[λsx] + D2 sin[λsx]) − EB/EAD3,

(83)

where, D1,D2,D3 are the integration constants.
In order to calculate the displacement fields uB(x) and

uA(x), we start from the supported left end of plate B and
determine its displacement in the segment Pl : 0 6 x 6 dlp,
thus

uB(x) =

 dlp

0

TB(x)
2hBEB

dx (84)

and next the displacement uA(x) is determined as uA =

uI+uB. The integration constants of (83) are specified from
the boundary conditions

x = le : uI = u′

I = 0

x = l : TA = T , TB = 0

x = dlp : uI = u′

I = 0

x = 0 : TA = 0, TB = T .

(85)
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In the left damage zone Pl, 0 6 x 6 dlp we have

uI =
τ C
I

K ef
s


1 − cos[λs(dlp − x)]


,

τI = τ C
I cos[λs(dlp − x)],

TA =
τ C
I

λs
(sin[λsdlp] − sin[λs(dlp − x)]),

TB = T −
τ C
I

λs
(sin[λsdlp] − sin[λs(dlp − x)]),

(86)

and the displacement field takes the form

uB(x) =
1

2hBEB


Tx −

τ C
I

λs


sin[λsdlp]x

−
cos[λs(dlp − x)]

λs
+

cos[λsdlp]

λs


,

uA(x) =
1

2hBEB


Tx −

τ C
I

λs


sin[λsdlp]x

−
cos[λs(dlp − x)]

λs
+

cos[λsdlp]

λs



+
τ C
I

K ef
s


1 − cos[λs(dlp − x)]


.

(87)

In the homogeneous zone H, dlp 6 x 6 le we have

uI = τI = 0, TA = T
ρ

1 + ρ
, TB = T

1
1 + ρ

(88)

and displacement field is

uB(dlp) =
1

2hBEB


Tdlp −

τ C
I

λs


sin[λsdlp]d

l
p

−
1
λs

+
cos[λsdlp]

λs


,

uA(dlp) = ue
B(d

l
p) (89)

uB(x) = uB(dlp) +
T

2hBEB

x − dlp
1 + ρ

,

uA(x) = uB(x). (90)

In the right damage zone Pr, le 6 x 6 lwe have

uI =
τ C
I

K ef
s


1 − cos[λs(x − le)]


,

τI = τ C
I cos[λs(x − le)],

TA = T −
τ C
I

λs
(sin[λsdrp] − sin[λs(x − le)]),

TB =
τ C
I

λs
(sin[λsdrp] − sin[λs(x − le)]).

(91)

Finally, we have

uB(le) = uB(dlp) +
T

2hBEB

le − dlp
1 + ρ

. (92)
The force continuity conditions at the interfaces between
the damage zones Pl, Pr and the homogeneous stress zone
H provide two relations

uB(x) = uB(le) +
1

2hBEB


τ C
I

λs


sin[λsdrp](x − le)

+
cos[λs(x − le)]

λs


,

uB(le) = uB(le)

+
1

2hBEB


τ C
I

λs


sin[λsdrp]d

r
p +

cos[λsdrp]

λs


.

(93)

And finally

uA(l) = uB(l) +
τ C
I

K ef
s

(1 − cos[λsdrp]). (94)

Continuity condition at the interface between the
damage zones dlp, d

r
p and the homogeneous stress zone H

provide two relations:

TA(le) =
ρ

1 + ρ
T ⇒ TA(le) = T −

τ C
I

λs
sin[λsdrp]

=
ρ

1 + ρ
T

TA(dlp) =
τ C
I

λs
sin[λsdlp] =

ρ

1 + ρ
T .

(95)

The lengths of process zones dlp and drp are now specified
by the formulae

λs

τ C
I

1
1 + ρ

T = sin[λsdrp]

λs

τ C
I

ρ

1 + ρ
T = sin[λsdlp]

⇒ ρ =
sin[λsdlp]

sin[λsdrp]
. (96)

Thus, for ρ > 1 there is dlp > drp and for ρ < 1 there is
dlp < drp. In our analysis we consider the case ρ < 1 and
dlp < drp. The initiation of full delamination occurs when

τI(l) = τ C
I cos[λsdrp] = 0. (97)

The length of the process zone then reaches its critical
value

λsdrp =
π

2
, drp =

π

2
1
λs

(98)

and

T = TA =
τ C
I

λs
(1 + ρ)

τI(0) = τ C
I cos[λsdlp] = τ C

I


1 − ρ2.

(99)

4.3.2. Process zone propagation
For ρ < 1, the full delamination starts to grow from

the right end at constant force value expressed by (99) and
for increasing displacement of plate A at x = l. The left
process zone remains stagnant since τI(0) > 0 remains
fixed. Referring to Fig. 23, the stress state is specified by
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Fig. 23. The interface model (a), the lap-joint mechanical loading (b).
the same formulae (91) with replacement of l by lp. The
displacement field in consecutive zones is expressed by the
following formulae:

In left damage zone (PL), 0 6 x 6 dlp:

uB(x) =
1

2hBEB


Tx −

τ C
I

λs


sin[λsdlp]x

−
cos[λs(dlp − x)]

λs
+

cos[λsdlp]

λs


,

uI(x) =
τ C
I

K ef
s


1 − cos[λs(dlp − x)]


,

uA(x) = uI(x) + uB(x).

(100)

In the plate center zone (H), dlp 6 x 6 le:

ue
B(d

l
p) =

1
2hBEB


Tdlp −

τ C
I

λs


sin[λsdlp]d

l
p

−
1
λs

+
cos[λsdlp]

λs


,

ue
A(d

l
p) = ue

B(d
l
p)

(101)

ue
A(x) = ue

B(x),

ue
B(x) = ue

B(d
l
p) +

T
2hBEB

x − dlp
1 + ρ

.
(102)

In right damage zone (PR), le 6 x 6 lp:

ue
B(le) = ue

B(d
l
p) +

T
2hBEB

le − dlp
1 + ρ

, (103)

uB(x) = ue
B(le) +

1
2hBEB


τ C
I

λs


sin[λsdrp](x − le)

+
cos[λs(x − le)]

λs


,

uB(lp) = ue
B(le) +

1
2hBEB

τ C
I

λs
drp

(104)

and

uA(lp) = uB(lp) +
τ C
I

λs
. (105)
In the delaminated zone (D) lp 6 x 6 l:

uB(x) = uB(lp), uB(l) = uB(lp),
uA(x) = uA(lp) + T (x − lp),
uA(l) = uA(lp) + T (l − lp).

(106)

4.3.3. Degradation of process zones
When the left and right damage process zones join

each other at x = dlp, their total length equals lp =

dlp + drp, Fig. 24. In the consecutive damage process the
length lp is assumed to remain fixed and the displacement
discontinuity uI to increase in the zone 0 6 x 6 lp, thus

uI(x) =
τ C
I

K ef
s

(1 − cos[λs(x − dlp)])

+ u1 cos[λs(x − dlp)], (107)

where u1 is the growing displacement discontinuity at x =

dlp. The stress state in the damage process zone is now
expressed as follows for 0 6 x 6 lp

τI(x) = (τ C
I − K ef

s u1) cos[λs(x − dlp)],

TA(x) =
τ C
I − K ef

s u1

λs
(sin[λsdlp] − sin[λs(dlp − x)]),

TB(x) = T −
τ C
I − K ef

s u1

λs
(sin[λsdlp] − sin[λs(dlp − x)]).

(108)

Note that sin[λsdrp] = 1 and sin[λsdlp] = ρ, so for x = lp
we have

uI(lp) =
τ C
I

K ef
s

,

TA(lp) =
τ C
I − K ef

s u1

λs
(1 + ρ) = T , TB(lp) = 0.

(109)

The degradation process proceeds for the decreasing load
and increasing u1 until K ef

s uI = τ C
I and TA = 0. The

displacement field during the process zone degradation is

uB(x) =
1

2hBEB

τ C
I − K ef

s u1

λs


x +

cos[λs(dlp − x)]

λs

−
cos[λsdlp]

λs


,

uA(x) = uB(x) + uI(x)

(110)
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Fig. 24. The interface model (a), the lap-joint mechanical loading (b).
and the displacement of plate A at x = lp equals

uA(lp) =
1

2hAEA

1
λs


τ C
I

λs
(1 + ρ) + (τ C

I − K ef
s u1)

×


lp −


1 − ρ2

λs


ρ


. (111)

The displacement at the plate end is

uA(l) = uA(lp) +
(1 + ρ)(l − lp)

2hAEA

τ C
I − K ef

s u1

λs

=
1

2hAEA

1
λs


τ C
I

λs
(1 + ρ) + (τ C

I − K ef
s u1)

×


l + lρ − lp −

ρ

1 − ρ2

λs


. (112)

The load–displacement diagram is identical to that
presented in Fig. 14(b).

Note that

lp = dlp + drp =
β

λs
, β =

π

2
+ arcsin[ρ]. (113)

At the initial state of the degradation process, the displace-
ment u1 = 0 and then

χ l
u = λs ul

A(l) =
1

2hAEA


τ C
I

λs
(1 + ρ)

+ τ C
I


l + lρ −

β

λs
−

ρ

1 − ρ2

λs


. (114)

In the final failure state there is τ C
I = Ksu1 and

χ f
u = λs uf

A(l) =
1

2hAEA

τ C
I

λs
(1 + ρ) =

T
2hAEA

= ε
f
A, (115)

where

χ l
u = λs ul, χ f

u = λs uf
A, χl = λsl (116)

are the non-dimensional displacement and lengths mea-
sures.

The snap-back response occurs when ul
A(l) > uf

A(l) and
then from (114) it follows that

χl = λsl ≥
1

1 + ρ
(β + ρ


1 − ρ2) = χs. (117)
Fig. 25. The load displacement diagrams for joints of different lengths.

The inequality (117) specifies the length of joint for
which the snap back response and uncontrolled dynamic
failure occurs. On the other hand, for χl < χs, the
displacement controlled static failure processwill proceed.
Fig. 25 illustrates the load–displacement response for
joints of two lengths with the same strength and softening
parameters. The limit load value is the same but the post-
critical response depends on joint length. A similar analysis
of the process zone degradation was presented in Ref. [44]
for the fibre debonding problem and in Ref. [45,46] for
the plate delamination problem with account for friction
effect.

5. Discussion of analysis results

The analysis presented can be referred to laminated
or joined composite structure and to geomechanical layer
interaction of rock or soil strata systems. The specific cases
treated analytically in the paper well illustrate the effect
of material parameters K ef

t , K ef
s , τ C

I on damage growth and
delamination process. The elastic response is controlled by
the parameter λe defined by Eq. (9) as the square root of
ratio of the effective stiffness modulus of bonding layer
to the stiffness modulus of interacting plates. Similarly,
the stress distribution in the damage process zone and
its length depend essentially on the softening stiffness
parameter λs defined by (16). The alternative forms of
these parameters are

λe = (K ef
t Cp)

1
2 =


K ef
t

Sp

 1
2

=


K ef
t

2hBEB

1 + ρ

ρ

 1
2

,

λs = (K ef
s Cp)

1
2 =


K ef
s

Sp

 1
2

=


K ef
s

2hBEB

1 + ρ

ρ

 1
2

,

(118)

where, Cp denotes the plates compliance modulus and
Sp = C−1

p denotes the stiffness modulus. It was
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demonstrated that λe affects essentially the character of
stress distribution. For large value of λe the transition to
the uniform stress state occurs along a very short distance
from the stress inhomogeneity. For rigid softening model,
we have λe → ∞. The damage and delamination growth
then differ essentially from that proceeding for the elastic-
softeningmodel. The damage process zones of the constant
length dp =

π
2

1
λs

are generated at the plate ends and next
translate along the contact interface at constant load, Tl. For
the lap joint we have

Tl =
τ C
I

λs
(1 + ρ) =

τ C
I (1 + ρ)

(K eff
s Cp)

1
2

=

2Gf

Cp

 1
2
(1 + ρ). (119)

As Tl represents the limit load, it is seen that its value does
not depend on the critical stress τ C

I , but on the fracture
energy and the plate compliance modulus. The scale effect
is clearly demonstrated by specifying the average shear
stress per unit length

τ̄ C
=

Tl
l

=
τ C
I

λs
(1 + ρ)

1
l

(120)

which decreases with the length of plates.
The value of λs is also very important for specifying

the limit load. The solutions for cases λs = 0 and
λs = ∞ clearly illustrate the load dependence on this
parameter. The reference is made to experimental testing
of strength of joined composite elements by Ferraris
et al.53 and Ventrella et al.,54 where the apparent shear
strength of lap joints was determined, but the intrinsic
parameters affecting adhesive joint thickness on the shear
strength was examined in torsion, four point bending,
single and double-lap tests. In fact, the varying joint
thickness may affect the elastic and softening moduli
K eff
t , K eff

s and parameters λe, λs controlling the interface
stress distribution. The apparent joint strength measured
as the averaged shear stress referred to the joint area is
expressed by (120) for the rigid-softening model. In view
of (119) if depends on the square root of the ratio of
fracture energy and plates compliance. It is also inversely
proportional to the joint length, l, thus demonstrating the
scale effect. In the present paper it was assumed that
the joint length is larger than the process zone length,
so the process zone translation and length evolution can
occur. The finite element elastic analysis presented53,54

provides some information on the shear and peel stress
distributions, however it is not satisfactory to clarify the
mode of progressive damage and failure.

The elastic-softening model response well illustrates
the evolution of the damage process zone. In the first
example of substrate plate loading, the damaged zone
length dp decreases in the progressive delamination
process. In the second example of lap joint the length of
two zones dlp, d

r
p increases before their final degradation

stage.
Let us refer to the numerical finite element analysis

presented in papers by Alfano and Crisfield,55 Goyal
et al.56 and Turon et al.57 In Ref. [55] the interface
constitutive model was formulated assuming linear elastic
and softening responses, with numerical analysis of the
opening failure mode of two layers under transverse
loads. In Ref. [56] the delamination process of precracked
beams in opening, shear and mixed modes was studied
assuming the model with an exponential softening rule.
In Ref. [57] the material parameter selection and the
specification of the cohesive zone length was discussed for
a bilinear elastic-softening model, identical to that used
in this paper. The illustrative numerical examples of the
layered composite delamination were next presented. The
effective elastic stiffness modulus K eff

t was recommended
in Ref. [57] to be specified by the formula

hK eff
t = αE, (121)

where, h and E are the averaged thickness and elastic
modulus of bonded plates and α > 50 is the proposed
value of stiffness parameter, assuring sufficiently high
value of K eff

t . The values of K eff
t based on literature data

and resulting from (121) are in the range K eff
t = 4 (105

÷

108) N
mm3 . The length of the process zone was assumed as

constant in the numerical analysis and specified from the
Irwin formula

dcz = M
EGf

τ 2
C

(122)

whereM is the parameter varying in the range (0.2÷ 1.0)
depending on the geometric joint parameters. This formula
can be now compared with the cohesive zone length dp
specified by (98) for the rigid-softening model. In view of
(118), we have

dp =
π

2
1
λs

=
π

2
1

(K eff
s Cp)0.5

=
π

τ C
I

EAhAGf

1 + ρ

0.5
(123)

and the value of dp specifies an upper bound on the length
of process zone for an elastic-softening model.

Following the parameter data in Ref. [58] for a carbon
fibre reinforced epoxy laminate

K eff
t = 4 · 105 N

mm3
, E = 150 GPa,

Gf = 0.352
N

mm
, τ C

I = 60
N

mm2

and assuming the bonded plate thickness hA = hB =

5 mm, we obtain from (118)–(123)

λs = 82.5
1
m

, λe = 730
1
m

, K eff
s = 5113

N
mm3

,

dcz = 11.73 mm, dp = 19.03 mm.

The large value of λe indicates that there is very fast
transition from the inhomogeneous stress state in the
process zone to the uniform stress state and the solution
for the rigid-softening model well describes the damage
process. Then the developed process zone length dp =
π
2λs

remains constant during zone propagation. The similar
conclusion was reached in the numerical analysis in Ref.
[58], indicating that the constant length assumption of the
process zone is legitimate and the maximal load at failure
does not depend on the τ C

I value. Note that dp predicted by
(123) is larger than dcz predicted by the Irwin formula, as it
constitutes the upper bound on the cohesive zone length.

Referring to rockmechanics themode of localized shear
failure is fundamental in the compressive stress regime.
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The delamination process of bi-layer system can occur
when one layer deforms excessively relative to adjacent
layers under increasing stress and induces large shear
stress at the interface. The first example of substrate
loading can then provide the insight into the delamination
mode. The elastic stiffness of interface bond now depends
on the normal pressure. Assume the following parameters
following Morache et al.58

K eff
t = 20 ·

MPa
mm

, E = 70 GPa,

Gf = 0.07
N

mm
, τ C

I = 5 MPa, h = 50 mm.

Now the calculated model parameters and process zone
lengths are

λe = 2.39
1
m

, λs = 7.14
1
m

, dcz = 0.156 m,

dp = 0.219 m.

The extended analysis of delamination process of a plate
under lateral compressive stress with account for damage
and sliding friction effect was presented by Białas and
Mróz.45,46
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