BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 60, No. 2, 2012
DOI: 10.2478/v10175-012-0032-7

TOPOLOGY OPTIMIZATION AND SENSITIVITY ANALYSIS
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Abstract. The paper is devoted to the application of the swarm methods and the finite element method to optimization of the stiffeners
location in the 2-D structures (plane stress, bending plates and shells). The structures are optimized for the stress and displacement criteria.
The numerical examples demonstrate that the method based on the swarm computation is an effective technique for solving the computer
aided optimal design. The additional comparisons of the effectiveness of the particle swarm optimizer (PSO) and evolutionary algorithms

(EA) are presented.
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1. Introduction

Reinforced structures are often used in practice because they
are resistant, stiff and stable. A typical area of application
of such structures is an aircraft industry where light, stiff
and highly resistant structures are required. Many aircraft el-
ements are made as thin panels reinforced by stiffeners. The
choice of an optimal shape of the structure or of the prop-
er stiffeners arrangement in a domain of the structure de-
cides about the effectiveness of the construction or about the
effectiveness of reinforcement. Optimal properties of struc-
tures can be searched using the computer aided optimization
tools.

The stiffeners layout is usually achieved by modifying
the thickness of each element of the finite element mesh or
using the homogenization method. However, the results ob-
tained using these approaches do not give a clear stiffeners
layout. Bendsoe and Kikuchi [1] analyzed composites with
perforated microstructures by the use of the homogenization
method. As the results of the topology optimization, the gray-
scaled structures emerged. Cheng and Olhoff [2] considered
the problem of the stiffener layout using a method based on
thickness distribution to maximize the stiffness of rectangu-
lar and axisymmetric plates. Ding and Yamazaki [3] gener-
ated stiffener layout patterns by introduction a growing and
branching tree model and the topology optimization method.
Diaz and Kikuchi [4] searched for the optimal reinforcement
layout for the plates by adding a declared amount of rein-
forcing material to increase the fundamental frequency. Bo-
jezuk and Szteleblak [S] proposed the heuristic algorithm in
order to find the optimal reinforcement layout. This algo-
rithm consist of two stages — first the initial localization of
new fiber or rib is determined using information from sen-
sitivity analysis (analogous to the topological derivative ap-
proach of Sokotowski and Zochowski [6]), next — the gra-
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dient optimization method is performed to correct their po-
sitions. Another method is based on the optimization of the
layout of isogrid stiffeners applied as special triangular pat-
terns. Due to their efficiency, these isogrid members have
been applied for example in launch vehicles and spacecraft
components [7].

In the present paper, coupling FEM with a swarm algo-
rithm in optimization of statically loaded reinforced structures
is presented. The structures are optimized using the crite-
ria dependent on displacements or stresses. Recently, swarm
methods have found various applications in mechanics, and
also in structural optimization. The PSO algorithm realizes
directed motion of the particles in n-dimensional space to
search for a solution for the n-variable optimisation prob-
lem. The optimization process using PSO is based on find-
ing the better and better locations in the search-space (in
the natural environment that are for example hatching or
feeding grounds). The main advantage of the bio-inspired
method is the fact that these approach do not need any in-
formation about the gradient of the fitness function and give
a strong probability of finding the global optimum. The main
drawback of these approaches is the long time of calcula-
tions.

2. Formulation of the problem,
parameterization

Consider a 2-D structure (a plate in plane stress, a bending
plate or a shell) which is stiffened by several bars. The do-
main of the 2-D structure and the domains of the bars are
filled by a homogeneous and isotropic material of a Young’s
modulus E and a Poisson ratio v. The location and shape of
the bars can change for each iteration ¢ of the swarm process.
The stiffened structures are considered in the framework of
the theory of elasticity. The swarm process proceeds in an
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environment in which the structure fitness is described by the
minimization of the stress functional

J= [ ¢(0)de, (1)
/

where 7 is an arbitrary function of stress tensor o, or max-
imization of the structure stiffness by minimization of the
displacement functional

J = g(u)dQ, (2
/

where ¢ is an arbitrary function of displacements u.
Two different types of optimization tasks are considered:

e optimization of the location of the straight stiffeners
(Fig. 1a),

e optimization of the location and shape of curved stiffeners
(Fig. 1b).
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Fig. 1. Particle representation: a) straight stiffeners in 2-D structure
geometry, b) curved stiffeners in 2-D structure geometry

The locations and shapes of the stiffeners in the domain
of 2-D structures are controlled by particle parameters which
create a particle. In order to reduce the number of the parti-
cle parameters, the particle representations, presented in the
Fig. 1, has been introduced. The connection of the stiffen-
ers ends with the 2-D structures boundary has been assumed,
therefore the location of the stiffener in the 2-D structure do-
main is determined by two points P; - beginning and end of
the stiffener (Fig. 1a).
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In order to minimize the number of parameters the curved
stiffener is defined by means of NURBS curve (Non Uniform
Rational B-Spline) [8]. The shape of this curve is defined by
the control points Cg, k =1,2,...,L; Cx C Qop (L — num-
ber of the control points). The location of the stiffeners in the
domain of 2-D structures is controlled by particle parameters
hi,t=1,..., N and the shape of them by particle parameters
gj»J = 1,..., M (Fig. 1b). The set of the particle parameters
creates a particle

par = [hl, hg, ceey hi, vy hN,gl,gg, ...7gj, ...,g]w]7

. , 3)
himn S hz S hznax, g}nm S gj S g;naX,

where A%, pMaX _ the minimal and maximal value of the
particle parameter h, respectively; g?’in, g#* — the minimal
and maximal value of the particle parameter g, respectively.
In order to solve the formulated problems, the finite el-
ement models of the structures are considered [9]. The 2-D
structure domain Qqp is divided into triangular finite ele-
ments 25, s = 1,2, ..., R (for plane stress, bending plate or
shell) [10], according to the geometry mapped on the basis of
the particle. The edges of the triangular finite elements which
belong to the curves mapped on the basis of the particle and
playing the role of the stiffeners, create the bar elements 25,

b=R+1,R+2,..C (Fig. 2).

The geometry mapped
on the basis
of the particle

Finite element mesh

Fig. 2. Mesh of 2-D structure and bar finite elements

After the geometry discretization, the finite element analy-
sis is performed by means of MSC NASTRAN and node
displacements are calculated by solving a system of linear
algebraic equations

KU =F, 4)

where U is a column matrix of unknown displacements, F is
a known column matrix of acting forces and K is a known
global stiffness matrix of the structure which elements are
given as follows:

ks = / B!D,B,dA (5)
A

for 2-D structure elements, and

Kk, = / B D,Bydl (6)
l

for the bar elements, where Dg , Bs and Dy, By, are the known
elasticity and geometrical matrices for the 2-D structure and
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bar elements, respectively, | represents the length of the bar
element, A represents the area of the finite element.

After the finite element analysis, the values of the fitness
functions given by (1) or (2) are evaluated and the swarm
algorithm is applied.

3. Particle swarm optimizer

The particle swarm algorithms, similarly to the evolutionary
[11-13] and immune algorithms [14-16], are developed on
the basis of the mechanisms discovered in the nature. The
swarm algorithms are based on the models of the animals so-
cial behaviours: moving and living in the groups. The animals
relocate in the three-dimensional space in order to change their
stay place, the feeding ground, to find the good place for re-
production or to evading predators. We can distinguish many
species of the insects living in swarms, fishes swimming in
the shoals, birds flying in flocks or animals living in herds
(Fig. 3a, 3b).
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Fig. 3. Particles swarms:
a) fish shoal (http://www.sxc.hu/photo/1187373),
b) bird flock (http://www.sxc.hu/photo/1095384),
¢) particle swarm optimiser — block diagram

A simulation of the bird flocking was published by
Raynolds [17]. They assumed that this kind of the coordinated
motion is possible only when three basic rules are fulfilled:
collision avoidance, velocity matching of the neighbours and
flock centring. The results of the biological researches where
used by Kennedy and Eberhart [18], who proposed Particle
Swarm Optimizer — PSO. This algorithm realizes directed
motion of the particles in n-dimensional space to search for
solution for n-variable optimization problem. PSO works in
an iterative way. The location of one individual (particle) is
determined on the basis of its earlier experience and experi-
ence of whole group (swarm) (Fig. 4). Moreover, the ability
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to memorize and, in consequence, returning to the areas with
convenient properties, known earlier, enables adaptation of the
particles to the life environment. The optimization process us-
ing PSO is based on finding the better and better locations in
the search-space (in the natural environment that are for ex-
ample hatching or feeding grounds).

. particle swarm

Inequality
\ “__constraints

\_ particle

1
| particle neighbours
" swarm leader

. optimum

Fig. 4. The idea of the particle swarm

The position of the i-th particle is changed by stochastic
velocity v;, which is dependent on the particle distance from
its earlier best position and position of the swarm leader. This
approach is given by the following equations:

vij(k + 1) = wvij (k) + ¢15(k) [ (k) — hij (k)]
+¢2; (k) [Gij (k) — hij (k)]
hij(k+1) = hi(k) +vi;(k+1), i=1,2,..
7=12 ..n,

(N

7m7

®)

where

¢1;(k) = cari;(k),
m — number of the particles,
n — number of design variables (problem dimension),
w — inertia weight,
c1, co — acceleration coeflicients,
71, 9 — random numbers with uniform distribution [0,1],
h;(k) — position of the i-th particle in k-th iteration step,
v; (k) — velocity of the i-th particle in k-th iteration step,
qi(k) — the best found position of the i-th particle found so
far,
@i (k) — the best position found so far by swarm — the position
of the swarm leader,
k — iteration step.

The flowchart of the particle swarm optimizer is present-
ed in Fig. 3c. At the beginning of the algorithm the particle
swarm of assumed size is created randomly. Starting posi-
tions and velocities of the particles are created randomly. The
objective function values are evaluated for each particle. In
the next step the best positions of the particles are updated
and the swarm leader is chosen. Then the particles velocities
are modified by means of Eq. 7 and particles positions are
modified according to Eq. (8). The process is iteratively re-
peated until the stop condition is fulfilled. The stop condition
is typically expressed as the maximum number of iterations.

$2; (k) = cara;(k),
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The modified version of PSO algorithm with additional
procedure has been used in presented research. The addition-
al procedure consists of two stages. First the clones of the
swarm leader are created. The clones substitute the particles
with the worst fitness. Next the clones parameters are mutated
with the declared probability by adding random numbers with
uniform distribution from the range of the design parameters
variation

Gij(k + 1) = Gij (k) + rand [R5, BP>] | )

where rand [h}™, h***] — function which returns the ran-
dom numbers with uniform distribution from the range of the
design parameters variation [h;-n‘“, h;?“ax}.

4. Examples of swarm optimization of structures

Two numerical examples of stiffeners optimization in 2-D
structures are considered. Example 1 represents optimization
of a plate in plane stress stiffened with 2 curved ribs. Exam-
ple 2 is devoted to optimization of a shell structure stiffened
with 5 ribs. The domain of 2-D structures and domains of the
bars in each example are filled by an elastic homogeneous and
isotropic material of a Young’s modulus E = 2 % 10° MPa
and a Poisson ratio v = 0.3. The results of the examples
are obtained by use of an optimization method based on the
swarm algorithm with parameters included in Table 1. The
stiffeners in each of the numerical examples have rectangular
cross-section of dimensions d x h.

Table 1

Parameters of Particle Swarm Optimizer

number of particles 30-40
inertia weight w 0.73
acceleration coeflicient ¢ 1.47
acceleration coeflicient co 1.47
number of the clones 5
probability of mutation 50%

4.1. Example 1. The optimization task of two stiffeners lo-
cation and shape in a plate in plane stress with boundary
conditions shown in Fig. 5a is considered. The optimal posi-
tions of stiffeners are searched in order to maximize stiffness
of the plate. The function J; dependent on maximal nodal
displacement in the structure is minimized:

Ji = max4/u2 +u2, J; — min.
xT y7

(10)
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a) b)

Fig. 5. Plate in plane stress (example 1): a) geometry and boundary
conditions, b) the optimal solution, ¢) 1°* iteration, d) 339" jteration

Shapes of stiffeners are parameterized by 3-point NURBS
curves. The value of weight of each control point is 1 (no in-
fluence on distance between the control point and the NURBS
curve). Input data to the optimization program and the para-
meters of the swarm algorithm are included in Table 2 and 1,
respectively. The results of the optimization process are pre-
sented in the Fig. 5.

Table 2
Input data to the optimization program for example 1
Rectangular
Number  cross-section  Thickness
axb F N u.mber of particle of dimensions of the plate
[mm] [N] of stiffeners parameters dxh [mm]
[mm]
400 x 600 1000 2 8 10 x 20 8

4.2. Example 2. The optimization task of five stiffeners loca-
tion by the minimization of the stress functional .J; (dependent
on von Misses equivalent stresses o4) in a cylindrical shell
is considered
Jg = UequShe”, Jg — min.

1)

Qshent

The structure is stretched with continuous load ¢ and is
fixed as presented in the Fig. 6a. Input data to the optimiza-
tion program and the parameters of the swarm algorithm are
included in Table 3 and 1, respectively. The results of the
optimization process are presented in the Fig. 6.

Table 3
Input data to the optimization program for example 2

Rectangular

Number  cross-section  Thickness
axb g Nu.mber of particle of dimensions of the shell
[mm] [N/mm] of stiffeners parameters dxh [mm]

[mm]
300 x 200 450 5 10 10 x 20 10
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Fig. 6. The cylindrical shell (example 2): a) geometry and boundary
conditions, b) 1°¢ iteration , b) 186" iteration

4.3. Comparison of the effectiveness between PSO and
DEA. The main drawback of the bio-inspired approaches is
the long time of calculations. So the choose of the effective
method seems to be quite important. The comparison of the
particle swarm optimiser (PSO) and distributed evolutionary
algorithm (DEA) [19] with parameters included in Table 4
has been made. The results of the comparison obtained for
the presented above numerical examples are included in the
Table 5. The stiffeners arrangement obtained for examples 1
is consistent for both applied algorithms and different for ex-
ample 2 (Fig. 7). Fitness function value for the result obtained
using PSO is better.

Table 4
Parameters of distributed evolutionary algorithm
Number of subpopulations 2
Number of chromosomes in each subpopulation 10
Probability of Gaussian mutation 100%
Probability of simple crossover 100%

Selection method rang selection

Table 5
Results of the comparison of PSO and DEA
Example 1 Example 2
DEA PSO DEA  PSO

0.001642 0.001640 1675702 1589670
1563 339 463 186

Number of individuals in 20 40 20 30
each iteration

Number of fitness function 31260
evaluations

Fitness function value

Number of iterations

13560 9260 5580

a)

Fig. 7. Location of five stiffeners in the cylindrical shell obtained
using: a) PSO, b) DEA
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5. Conclusions

An effective tool of swarm optimization of 2-D structures
stiffened with several ribs is presented. Using this approach
the optimal arrangement of the stiffeners in geometry of 2-D
structures can be found. Implementation of the swarm algo-
rithm to this approach gives a strong probability of finding
the global optimal solutions. This approach is free from limi-
tations connected with classic gradient optimization methods
referring to the continuity of the objective function, the gra-
dient or hessian of the objective function and the substantial
probability of getting a local optimum. The swarm algorithm
performs multidirectional optimum searching by exchanging
information between particles and finding better and better
particles positions. The result presented for example 1 is con-
sistent with the one obtain by Bojczuk and Szteleblak with
application of heuristic algorithm [5], what proves the accu-
racy of the presented swarm approach. Comparison between
PSO and DEA proves good effectiveness of particle swarm
optimization method.
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