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Abstract 

 

This paper develops and experimentally verifies a practical methodology for 

identification of coexistent loads and damages. Although both factors usually coexist in 

practice, there is not much investigation on the simultaneous identification. The main 

difficulty seems to lie in a very different type of the involved unknowns: excitations vs. 

structural parameters. Previously, the authors have proposed an approach based on the 

Virtual Distortion Method (VDM) that allows the unknowns to be treated in a unified 

way and which uses a single virtual distortion to model structural damage. This article 

extends the methodology into real structures with multiple element distortions and 

deduces the corresponding physical relation among damage extent, virtual and total 

distortions. Loads and virtual distortions are reconstructed simultaneously based on the 

measurements; the damage extent and type is then recovered by a comparison of the 

virtual and actual distortions (which essentially yields the stress-strain curve). The ill-

conditioning, common in inverse problems, is effectively avoided by approximating the 

loads using load shape functions. A damaged cantilever aluminum beam is used in the 

experimental verification. Both load and damage (extent and type) are successfully 

identified. The identification is performed off-line as well as online by a repetitive 

application in a moving time window. 

 

1.  Introduction 
 

External load and structural damages are the two crucial factors in Structural Health 

Monitoring (SHM), which provide indispensable guidance on maintaining structural 

integrity, as well as the evidence for forensic engineering. In recent years, many 

investigations have been performed on either load identification or damage 

identification. However, it seems that there is yet not much investigation on their 

simultaneous identification, although they usually coexist together in practice. 
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Load identification is most often performed off-line in time domain
(1,2)

 or in frequency 

domain
(3)

. Online load identification is usually carried out using observer techniques
(4)

, 

the Inverse Structural Filter (ISF)
(5)

 or Kalman filer
(6)

. All these methods are model-

based and their identification accuracy relies on the model of the monitored structure.  

 

Response of a damaged structure is influenced also by the damage, besides the 

excitation. As opposed to local, high-frequency ultrasonic scanning, this paper considers 

only global or low-frequency damage identification methods. A part of such vibration-

based methods
(7) 

requires a pre-defined, known excitation. Other methods, like some of 

the modal or time series methods, do not need the exact time history of the excitation, 

but are applicable in special conditions only (e.g. ambient excitation). In case of 

unknown coexistent load and damage, it is generally difficult to decouple the related 

identification problems and solve either one of them independently. Load and damage 

have essentially different nature, and thus a two-step iteration procedure is often 

adopted 
(8,9,10)

: the excitations and structural parameters are updated separately in each 

iteration, so that the optimization process proceeds in an alternate manner. Zhang et 

al.
(11) 

 presents a method of simultaneous load and damage identification, which uses 

Chebyshev polynomials to parametrize the unknown force such that all the parameters 

related to the damage and excitation can be updated simultaneously in each iteration. 

Based on the Virtual Distortion Method (VDM)
(12,13)

, Zhang et al.
(14)

 proposed a method 

for simultaneous identification of load and multiple moving masses. A different 

approach for identification of coexistent load and damage is used by Zhang et al. in
 (15)

. 

The damages are modeled by virtual distortions, which are identified along with the 

unknown excitation. Then both the type and extent of the damage are recovered by 

identified relation of element strains and stresses. In 
(15)

, a simple truss element, which 

has a single distortion state, is considered. This article extends the methodology into 

real structures with multiple element distortions and deduces the corresponding physical 

relation among damage extent, virtual and total distortions. The time history of the 

excitation force and the damage are simultaneously identified off-line and, if necessary, 

online by using a moving time window. An experiment with a cantilever aluminum 

beam is performed to verify the method.  

 

2.  Virtual Distortion Method (VDM) 

 
The Virtual Distortion Method is a quick reanalysis method, applicable in both statics 

and dynamics
(12,13)

. The method introduces virtual distortion to model structural 

modifications, including damages, and physical nonlinearities like material yielding. 

The virtual distortions are additionally imposed on the involved elements of the original 

linear structure. As a result, the response of the damaged structure to an external load is 

represented by a combination of the linear responses of the intact structure to the same 

load and to certain response-coupled virtual distortions. For the sake of notational 

simplicity, this paper only considers stiffness-related damages. However, the 

methodology can be straightforwardly extended to other damage patterns like mass-

related modifications or plastic yielding of the material
(2,12,13)

. The assumption of small 

deformations (geometric linearity) is used. 
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2.1 Virtual distortion and damage 

 

Let i  denote the stiffness reduction of the ith element, that is the proportion ratio of the 

modified local stiffness matrix iK
~

 to the original local matrix Ki, 

  

 i i iK K  (1) 

 

Let f(t) be an external excitation of the damaged structure. Using (1), the equation of 

motion of the damaged structure can be expressed as:  

 

       T 1i i i i i

i

t t   Mu Cu fL K K u  (2) 

 

where Li is the transformation matrix from the global co-ordinate system to the local co-

ordinate system of the ith element, u is the nodal displacement vector and ui is the local 

nodal displacements vector of the ith element. By moving the modification terms to the 

right hand side, the equation can be equivalently stated as: 

 

        T T1i i i i i i i

i i

t t t     Mu Cu fL K u L K u  (3) 

 

which is the equation of motion of the intact structure. It can been seen that the response 

of the damaged structure equals to the response of the intact structure to the same 

external load and to certain pseudo-load, which acts in the degrees of freedom (DOFs) 

of the damaged elements and which is implicitly related to the damage and response. 

 

In the VDM, the pseudo-load turns out to be equivalent to certain virtual distortions 

imposed on the involved element of the intact structure. For a finite element, the number 

and form of its distortions can be analyzed via the eigenvalue problem of its local 

stiffness matrix Ki. The matrix Ki is positive semidefinite, and hence it has two kinds of 

eigenvectors: unit distortion vectors that correspond to positive eigenvalues and unit 

rigid motion vector that correspond to zero eigenvalues. For example, the local stiffness 

matrix of a 2D beam element has three positive eigenvalues and thus such an element 

has three distortions: axial distortion, bending distortion and shear/bending distortion. 

The matrix Ki can be expressed by its positive eigenvalues ij  and the corresponding 

eigenvectors ij : 

 

  
T

i ij ij ij

j

  K  (4) 

 

where ij is the jth unit distortion of the ith element and is equivalent to the following 

local nodal unit pseudo-load: 

 

 ij i ij ij ij   n K  (5) 
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Due to (4) and (5), the total local nodal load of the ith element can be expressed as a 

linear combination of the local unit pseudo-loads nij, 

 

 
j

ijijii tt nuK )()(   (6) 

where the combination coefficient 

 

 )()( T tt iijij u   (7) 

 

denotes the total jth distortion of the ith element. Equations (3) and (6) yield 

  

  
ji

ijiij

ji

ijiij ttt
,

T0

,

T )()()( nLfnLuCuM   (8) 

 

where  0

ij t  is the jth virtual distortion of the ith element applied on the involved 

element of the intact structure, 

 

      0 1ij i ijt t     (9) 

 

Note that virtual distortions depend on the damage and are coupled with the total 

distortion (the response). If the virtual distortion  0

ij t  and total distortion  ij t  are 

identified, the damage extent i  can be recovered via (10). 

 

2.2  Response of the damaged structure 

 

Equations (3) or (8) confirm that, using the VDM, the response  y t of a damaged 

structure at the  th sensor (linear sensor of any type, e.g. strain sensor, accelerometer, 

etc.) to external loads can be modeled by two parts: linear response of the intact 

structure to the same excitation  Ly t and the residual response to the virtual distortions 

imposed on the intact structure,  

 

  
ji

t

ijij dtDtyty
,

0

0L )()()()( 
  (10) 

 

where )(tD ij


  is the corresponding impulse response of the undamaged structure, that is 

the response of the  th sensor to the unit impulse distortion ij of the ith element. In 

practice, it often turns out that certain distortions types are practically not excited and 

can be neglected in (8) and (10), which decreases the numerical costs of the analysis. 
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3.  Load and damage identification  

 
3.1 Response of the damaged structure to unknown excitation 

 

If the excitation f(t) is unknown, with the assumption of zero initial states (the nonzero 

initial state is discussed in Section 3.3), the response of the damaged structure (10) 

expands to 

 

  
ji

t

ijij

i

t

ii dtDdftDty
,

0

0

0

f )()()()()(  
  (11) 

 

where )(f tD i  is the impulse response of the undamaged structure at the  th sensor to 

an impulsive load in the ith DOF. 

 

In practice, the data are usually obtained from measurements or simulated using a finite 

element model, and hence are discrete. Equation (11) should be thus discretized for 

practical analysis,  

 

 
f κ 0 f κ

0

 
      

 

f
y D f D κ D D Dz

κ
 (12) 

 

where the vector z includes all the time histories of the unknown loads and unknown 

virtual distortions. With a certain arrangement of the vector z , the coefficient matrix D  

is a structured block matrix, of which each block is a Toeplitz matrix that relates a 

sensor with a distortion or with a load-exposed DOF. 

 

3.2 Off-line identification of loads and virtual distortions   

 

The information about excitations and damages is reflected in the structural responses. 

Therefore, the identification can be performed minimizing the mean square distance 

between the estimated responses y  and the measured responses My , which is equivalent 

to finding the least squares solution to the following equation: 

 

 M y Dz  (13) 

 

To guarantee the uniqueness of the solution, the number of independent sensors should 

not be smaller than the total number of the load-exposed DOFs and the distortions of 

damaged elements. In practice, to limit the number of necessary sensors, the potential 

locations of unknown loads and damages should be known.  

 

The dimension of the coefficient matrix D is proportional to the number of the 

considered time steps, and so, if the sampling time is long and the discretization of time 

steps is dense, the matrix D is large and the solution of (13) is hardly possible. With a 

dense time discretization, the time histories of loads and virtual distortions can be 
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approximated using a limited number of certain basis functions to reduce the numerical 

effort. Here, load shape functions
(16)

 are used and 

 

 M y DNα  (14) 

 

Where z Nα , and the approximation coefficients α are much fewer in number than the 

unknowns z. 

 

Moreover, due to the structure of the matrix D, (13) and, to some extent, (14) are well-

known ill-conditioned problems and a proper numerical regularization technique is 

required. Equation (13) can be solved quickly by the conjugate gradient method (CGLS), 

which has excellent regularizing properties. Other possibilities include the truncated 

singular value decomposition (TSVD) or the Tikhonov method
(17,18)

. In this paper (14) 

is used, which is of much smaller dimensions than (13), which allows the TSVD to be 

straightforwardly applied. 

 

3.3 Online identification of loads and virtual distortions 

 

The main task of the identification is to solve (13) or (14), which is essentially a 

deconvolution problem. The identification accuracy and the numerical effort depends 

mainly on the coefficient matrix D or DN. When sampling time is long, both matrices 

can be huge, even if approximation is used. Moreover, both equations can be used only 

for off-line identification. Here, the technique of a moving time window is used to 

overcome these drawbacks and to enable online identification  

 

Equation (11) expresses the response of the damaged structure under the assumption of 

zero initial state. The response 
   n

y t  in the nth time window can be expressed in as: 

 

  
ji

t

ijij

i

t

ii

nn dtDdftDtyty
,

0

0

0

f)()( )()()()()()(  
  (15) 

 

where the term 
   n

y t  denotes the free vibration of the intact structure caused by the 

initial state of nth time window. The unknowns in the current time window can be 

obtained by comparing the computed response and the measured response 
 M n

y : 

 

        M n n n n
  y y z  (16) 

 

where matrix B
(n)

 is a reduced version of the matrix D or DN according to the length of 

the nth window. Equation (16) is thus much smaller and easier to solve than (13) or (14). 

The initial state and the free vibrations in each section can be obtained straightforwardly, 

given the loads and distortions in the previous section. Therefore, the online 

identification is performed by a repetitive solution of (16) in successive time windows.  
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The identification in each section utilizes the previously identified unknowns, so that it 

is prone to accumulation of error from the previous sections. In practice, the effect of 

measurement error might be large. Moreover, the signal in each section is short and so it 

is more sensitive to noise than a long signal. Therefore, the following procedures are 

suggested to increase the identification accuracy in practical applications: 

 The identification via load shape functions in each section can reduce the 

numerical cost and also improve the ill-conditioning of the inverse problem. 

Usually, only a few singular values need to be truncated to guarantee the 

required accuracy.  

 The consecutive time sections overlap, thus the identification performed in the 

prior time section yields non-vanishing time histories of the loads and distortions 

for the overlapping part of the next section. These time histories are used, along 

with the initial state, to generate the initial response 
   n

y t  in the current time 

section. In this way, there is less high-frequency components in the initial 

response. As exactly these components are significantly ill-conditioned in any 

deconvolution problem
(18)

, the numerical accuracy is considerably improved.  

 

3.4 Damage identification  

 

If the loads and virtual distortions are identified off-line using (13) or (14), or online 

using (16), the corresponding structural response can be computed along with the total 

distortions of the damaged elements (equation (7)). The damage extent can be then 

recovered via (9), that is by comparing the total and virtual distortions:  

  

  
   

 

0

ij ij

i

ij

t t
t

t

 





  (17) 

 

Notice that the numerator in (17) is proportional to the stress, while the denominator is 

the strain. Thus, the curve obtained by plotting )()( 0 tt ijij    vs. )(tij  corresponds to 

the stress-strain curve. An examination of the graph can often reveal the type of the 

damage. For instance, a linear relation suggests that the damage is constant a constant 

reduction of stiffness (e.g. related to corrosion); a bilinear function would suggest that 

the damage is variable with respect to the stress of the element and can be e.g. a 

breathing crack model
(19)

. Assumed the damage model, the damage parameters can be 

obtained by fitting the graph. 

 

4.  Experimental Verification  

 
An experiment of an aluminum cantilever beam is performed to verify the proposed 

method of identification of coexistent load and damage. 

 

4.1 The structure 

 

The experimental setup is shown in Figure 1. An aluminum beam has the length of 

136.15 cm, with the rectangular cross-section of 2.7 cm x 0.31 cm. The Young’s 
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modulus is 70 Gpa, and the density is 2700 kg/m
3
. The fixed end is mounted to a stable 

frame. The beam is slender, and thus the influence of the beam gravity is considered in 

the finite element model, as well as the presence of the piezoelectric actuator and strain 

sensors.  

 

The beam is damaged by cutting even notches near to the fixed end on the section of a 

length of 10.23 cm. The stiffness of the damaged section is reduced to 42% of the 

original value, while the mass remains almost unchanged. 

 

 
Figure 1. Experimental setup 

 

4.2 Excitation and measurements 

 

The excitation is applied using an Amplified Piezo Actuator (APA), which is fixed on 

the beam in such a way that is can be assumed to apply a pure moment load. The 

structural dynamic responses are measured by three piezoelectric patches (denoted as 

S1~S3), which are glued on the beam to measure the structural strain. The excitation 

and the responses are acquired by a LabVIEW system and stored in a PC. In addition, 

the strain and excitation signals are amplified respectively using Brüel&Kjaer charge 

amplifier and power amplifier. 

 

A sample designed excitation is shown in the top plot of Figure 2. The sampling 

frequency is 2500 Hz to guarantee that no important information is lost. The measured 

responses are shown in the bottom plot of Figure 2. 

 

4.2 Load and damage identification  

 

The intact finite element model is assembled; the damaged section is assumed to be a 

single element. A generic 2D beam element has three virtual distortions. However, a 

pure moment load is applied here, which causes mainly bending distortions, so that the 

other two distortions (axial and shear/bending) are neglected in the analysis. Therefore, 

one external load and one damage-related virtual distortions are the unknowns to be 

identified, and at least two sensors are required to obtain the unique solution. 
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Figure 2. Measured excitation and the corresponding structural responses 

 

The identification is performed using a moving time window. Each window has 400 

time steps with 200 steps overlapping. A total of 8800 time steps is analyzed within the 

total time of 3.52 s, which is divided into 43 windows. In each window the unknown 

load and virtual distortion are identified using (16) and an approximation with a basis of 

forty two shape functions. Two or three sensors are used separately; the identified loads 

are shown in Figure 3.  

 

Figure 4 shows the (scaled) strain-stress relationship of the damaged element, which is 

recovered using sensors S1 and S3. The relationship is close to a linear function, which 

suggests that the damage is a constant reduction of stiffness. The damage extent is 

estimated in each time window using (17), see Figure 5. In this way, the damage is 

monitored online. The average damage extent of all the windows   and the value   

identified off-line are listed in Table 1. 

 

As expected, the identification accuracy is better when three sensors are used, although 

the results obtained with sensors S1 and S3 are also satisfactory. The results obtained 

with sensors S1 and S2 are not as accurate as with S1 and S3, which might be related to 

the fact that S2 is much closer to S1, the damaged element and the actuator than S3. The 

problem of optimum sensor placement for SHM, which is a challenging and widely-

studied problem
(20)

, is outside the scope of this paper. 

 

5.  Conclusions 
 

An effective method for simultaneous identification of coexistent loads and damages is 

developed and experimentally verified. The methodology is based on the Virtual 

Distortion Method (VDM) and models stiffness-related damages with certain virtual 

distortions. Time histories of the virtual distortions and excitation loads are identified 

together via the measured response of the damaged structure in a deconvolution-type 

problem. The damage, including the type and extent, is then recovered by an analysis of 

the stress-strain relationship between virtual and total distortions of the damaged 

elements. Numerical efficiency of identification is increased by performing the 
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identification online in a moving time window and by approximation of loads and 

distortions with load shape functions. 
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Figure 3. Identification of external excitation 
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Figure 4. Identified (scaled) stress-strain relationship of the damaged element 
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Figure 5. Identified damage extents for each time window 

 

 

Table 1. Damage parameter: actual, identified off-line and online (the mean of the 

results in all time sections) 

Actual value 
online

2,1  
offline

2,1  
online

3,1  
offline

3,1  
online

31  
offline

31  

0.420 0.340 0.327 0.388 0.381 0.391 0.388 

Note: the subscripts denote the sensors used for identification 
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