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In the paper we demonstrate how Particle Swarm Optimization (PSO) can be employed to solve the Adaptive Impact Absorption
(AIA) problem. We consider a truss structure which is subjected to impact loads. Stiff bars can be replaced by elastoplastic fuses
which control theirs dynamical response. The point of optimization is to maximize or minimize a given objective function by
redesigning the structure.This is realized by redistributing the initial mass, finding proper fuse localizations and adjusting, in real-
time, the elastoplastic limits. Comparing to the previous results, we show that PSO is capable of achieving results at least as good as
gradient-based optimization, having at the same timemuch larger flexibility regarding the definition of the objective function.This
gives significantly broader field of potential applications. In particular, we present how PSO can be used to solve the simultaneous
optimization problem: mass redistribution and fuse positioning for a set of expected, various impacts.

1. Introduction

The idea of optimal structural remodeling, including topo-
logical optimization, as a problemofmaterial distribution has
been developed for decades (e.g., [1]). Consequently, there
exist a large number of mathematical models and numerical
tools which are capable of reliable simulation of responses
of passive structures to a predefined impact scenario and
improving the structure in the sense of finding an extreme
of some desired objective function. The majority of practical
solutions are devoted to crashworthiness analysis related to
traffic collisions.

Due to the fast developing of the, so-called, smart tech-
nologies, there has been some considerable shift towards
focusing on research related to adaptive structures. Various
kinds of, relatively inexpensive, technical solution exist which
make it possible to modify relevant structural characteristics
at themoment of impact [2]. Specially designed actuators can
be applied in real-life active structures which can adapt at
required time scales (which, for obvious reasons, are small).
The actuators can modify structures via various possible
ways. For example, a controlled delamination process can be

applied in order to detach selected structural joints which
will result in a particular response. Other possibilities include
shock absorbers based on magnetorheological (MR) fluids,
piezo-valves used to control pressure, and more; see, for
example, [3].

Consequently, existence of appropriate technologies and
mathematical solutionsmakes it feasible to seriously consider
the potential gain from using Adaptive Impact Absorption
(AIA) systems. The focus of AIA is to obtain a device which
canmodify its structure at themoment when a collision takes
place. The point of this modification is, usually, to achieve a
desired energy dissipation profile.

One of the central problems of AIA is identification of the
impact and involved masses and velocities. This means that,
firstly, an impact event and its location should be detected,
and then the AIA system should estimate what the mass and
velocity of the impacting body are. The identification should
happen on timescales which enable a real-time structural
modification which leads to optimal (in a given sense)
absorption. This is the main difference between AIA and
classical passive structural design, the ability to react to
collision conditions in real-time. Impact identification is a

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 652824, 14 pages
http://dx.doi.org/10.1155/2015/652824

http://dx.doi.org/10.1155/2015/652824


2 Mathematical Problems in Engineering

quite demanding, separate engineering problem on itself [4,
5] and will not be considered in this paper. Instead, we will
focus on the process of optimal design of structures which
can adapt by using “structural fuses.”These are elements with
elastoplastic type of response with controllable yield stress.
For example, in real application such fuse can be made up
of MR fluid where stresses are controlled by magnetic fields.
However, technical details regarding construction of these
elements are not relevant in this work.

In the field of typical passive structural design, there is
a huge amount of existing numerical methods and ready-
to-use computer codes. However, to date, the number of
existing tools for designingAIA structures is very limited.The
main reason for this is that AIA is a relatively new concept,
and also it differs in many aspects regarding the optimiza-
tion process. Naturally, the main question which must be
answered is actually the goal of optimization. This depends
on the problem being solved, involved energies, if a structure
should answer to a critical emergency impact or maybe
periodic loads, and so forth. As a measure of success one
can define minimization of accelerations, maximization of
structural stiffness, somehow smoothing structural response,
preserving structural integrity, or maximization of dissipated
energy in some chosen time interval. Generally, the required
objective function of optimization can be a very complex one.

In this paper, we consider a truss-like structure with
elastoplastic fuses which can adapt to impact by adjusting
the plasticity limit. The structural response is calculated
by means of virtual distortion methods (VDMs) [6] and
the presented results are continuation of the previous work
[7, 8], where a typical gradient-based method has been
used in order to achieve the desired optimization goal. The
main disadvantage of gradient methods is the mathematical
requirements regarding the objective function (e.g., it has
to be differentiable). As mentioned, during AIA design
process, one can take into accountmany factors: impacts with
various parameters and at different geometrical places and
complex goal definitions, for example, including costs of the
used elements. Some problems involve solvingmultiobjective
optimization (i.e., require simultaneous optimization ofmore
than one objective function), which can be a particularly
difficult task with any classic gradient-based approach.

All this makes it tempting to use other, possibly nonexact
but otherwise versatile optimization techniques, like the ones
based on the, so-called, soft computing approach, usually
some sort of evolutionary computation. Using it in the
structural design is a relatively new paradigm, which has
a tremendous impact on the field and a vast amount of
recent research is devoted to the subject. A survey can be
found in, for example, [9], and a great overview regarding
metaheuristic methods in structural design can be found in
[10].

Here we consider the applicability of particle swarm
optimization (PSO) method in the process of designing AIA
structures. PSO is one of the techniques which belongs to
the wide class of evolutionary computing. It is based on a
set of potential solutions (called “swarm”) which is gradually
improved until a certain criterion of acceptance is met.
PSO is successfully applied in a very wide field of complex

engineering and scientific optimization problems, including
mechanics, robotics, artificial intelligence, transportation,
biology, and many more, see [11, 12]. A recent survey on
PSO application in the field of electrical and electronic engi-
neering, automation control systems, communication the-
ory, operations research, mechanical engineering, fuel and
energy, medicine, chemistry, and biology is available.

Generally, optimization of truss-like structures falls into
three categories: size, shape, and topology; however even
more demanding is a simultaneous optimization where the
design variables describing these properties are integrated.
Various techniques from the field of evolutionary computa-
tion have been applied to address these problems from the
field of traditional passive design, for example, genetic algo-
rithms [13], genetic programming [14], simulated annealing
[15], or ant colony optimization [16]. However, it seems that
recently one of the most popular method is PSO, along with
its various modifications.

For example, in [17], the authors applied PSO to opti-
mize topologies of truss structures optimizing for minimum
weight under stress, deflection, and kinematic stability con-
straints. They have considered a two-stage technique, where
first topology was optimized (withmodified binary PSO) and
then size and shape (by means of “attractive” and “repulsive”
PSO). It was reported that the methodology proposed by
the authors can find superior truss structures compared with
those found with classical optimization. However, simultane-
ous optimization for all the criteria in principle should give
better results, since these design problems are not linearly
separable.

Another challenging class of structural design problems
are the ones which involve optimization with frequency
constraints. In such problems, the search space is particu-
larly highly nonlinear and nonconvex with numerous local
optima. When using any heuristic algorithms in such cases, a
need to find a balance between exploitation and exploration
arises. It is of vital importance that a method explores the
search space in a way which will enable it to find satisfying
solution, while at the same time it will not get stuck in a
local minimum. It has been shown that accordingly modified
PSO algorithmwas capable of dealing with such tasks [18, 19].
A recent comparison of nine metaheuristic algorithms for
optimal design of truss structures with frequency constraints
can be found in [20].

As in the case of frequency constraints, the classical PSO
is often modified to deal with a specific problem. It is also
incorporated together with other optimization techniques
in order to solve problems in a more efficient way. For
example, to optimize layout of truss structures, PSO has
been successfully integratedwith “nonclassical”methods, like
cellular automata [21]. It has been demonstrated that such
combination has led to better solutions and more effective
convergence than in case of using “pure” PSO.

According to our knowledge, to date, there have been
no results regarding usage of PSO in the AIA domain, and
consequently there are no standard problems or results which
we can refer to. In this work, we demonstrate how PSO can
be employed in order to find optimal mass redistribution and
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Figure 1: A simple truss structure, along with the used numbering
scheme. Here, the horizontal/vertical distance between nodes is 1m.

localization of structural fuses in truss structures with adap-
tive elastoplastic elements. Contrary to the case of passive
truss structures optimization, there are no established test
cases in the literature due to the innovative character of the
AIA research field. In the present work, we choose to compare
PSO with optimal results found by gradient methods pub-
lished previously [7, 8]. It is found that, for the considered
setups, PSO quickly (in ≈100 steps) converges to solution not
worse than the ones found bymeans of gradient optimization.
In some cases better, in the sense of the value of the objective
function, structures are found.

It is shown that such PSO approach can be applied
when considering multi-impact scenarios. In other words,
more complex objective function is used in order to evaluate
structures which are subject to a set of possible impacts (not
just one).Moreover, it is easy to incorporate solver for optimal
localization of the structural fuses (in the previous work,
it has been done by replacing the stiffest elements). Since
the considered optimization problem is a relatively simple
one (onlymass redistribution and localization of elastoplastic
elements are considered) and there is a lack of previous results
regarding PSO and AIA, in the current research we limit
ourselves to the classical PSO, without any specific improve-
ments.

Section 2 is devoted to short description of VDM used
to evaluate the structural response, in Section 2.2 we define
the optimization problem, and then in Section 2.3 we show
how it can be represented as a particle swarm. Section 3
discusses the problem of mass redistribution in a truss
structure in order that, with the same amount of material,
minimizes/maximizes some given goal function (without any
active elements). Finally, in Section 4 we show how to treat
the problem if AIA elements should be incorporated in the
structure.

2. The Model

As a basic model for our consideration we use a truss can-
tilever structure supported on one or both ends and poten-
tially equipped with structural fuses. An example of such
10-bar structure is depicted in Figure 1. This setup has been
investigated previously for various optimization goals and

constraints [22], also with PSO approach [23]. The structure
is exposed to impact loads applied on one, or more, of its
nodes. This means that at the moment 𝑡 = 0 a massless node
instantly increases its mass to 𝑚 and its velocity from 0 to
k (𝑚 denoting mass of the impacting body traveling with
the velocity k). It is assumed that throughout calculations the
node remains attached to the same bars as before the impact
(there is no separation between masses and the truss). Under
such circumstances, some selected quantities of interest, for
example, averaged displacement, are subject to optimization.
This structural model was chosen due to its simplicity (each
element is associated with only one, axial, plastic distortion
state) and already widely available research results regarding
optimal design and active adaptation solutions. However, this
does not reduce the generality of the proposed approach,
which is applicable to other types of structures, for example,
frame or plate structures [24].

The structural response is calculated by means of specifi-
cally designed impulse virtual distortion and impulse virtual
force methods (IVDM, IVFM). VDMs are fast reanalysis
methods used to compute the structural response of a mod-
ified structure in a numerically efficient way which does not
require solving full set of modified structural equations. The
formulation of VDM is flexible and can be easily adopted to
include structural modifications like damage, plastic yielding
[6], breathing cracks [25], moving masses [26], and material
damping [27]. One of the advantages of VDM over other
reanalysis methods, like the method of combined approx-
imations [28], is that it requires nonparametric model of
the unmodified structure (the influence matrix). With this
model, calculation of responses of the modified structure can
be performed faster than in other reanalysis approaches, since
only one step is needed (instead of many iterations).

The details regarding VDM are beyond scope of this
paper (more on this can be found, e.g., in [29]), since the
focus is mainly on the process of optimization. Nevertheless,
it is important to define how the adaptive elements are
modeled: in Section 2.1 we briefly discuss how the structural
response is calculated with elastoplastic constitutive model.
Then we show how particle swarm optimization method can
be applied to this optimization problem.

2.1. Modeling the Truss Structure Containing Adaptive Ele-
ments. All the details regarding the numerical simulations
of the structural response of the discussed model via virtual
distortion methods were presented in [7, 8] and also in [29].
Here, we limit ourselves to describing shortly the way the
problem is addressed. The notation and used symbols are
the same as those in the cited work: lowercase subindices
𝑖, 𝑗 refer to structural elements of the truss (bars), while
capital subindices 𝑀, 𝑁, and 𝐾 refer to the degrees of
freedom (DOF) of nodes (joints). In the two-dimensional
case discussed here, there are two DOF per node, unless a
node is fixed.

Generally, the equation of motion for elastic and elasto-
plastic structures can be stated as

𝑂
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Figure 2: Piecewise linear elastoplastic constitutive model. Figure
courtesy of Jankowski [29].

where 𝑂 is the mass matrix, 𝑢
𝑀
(𝑡) denotes displacement of

the 𝑀th DOF, and 𝑓
𝑁
(𝑡) is the external excitation load on

the 𝑁th DOF at the time 𝑡. The total strain of the 𝑖th truss
element 𝜀

𝑖
(𝑡) obeys

𝑙
𝑖
𝜀
𝑖 (
𝑡) = 𝐺𝑖𝑀

𝑢
𝑀 (

𝑡) . (2)

𝐺
𝑖𝑀

is a transformation matrix, whose elements are
related to the angles between elements and the directions of
degrees of freedom; 𝑆

𝑖𝑗
is a diagonal matrix, 𝑆

𝑖𝑖
= 𝐸
𝑖
𝐴
𝑖
/𝑙
𝑖
; 𝐸
𝑖

is Young’s modulus; 𝑙
𝑖
is the length of the element 𝑖; and 𝐴

𝑖
is

the cross section of the element 𝑖.
𝜀
𝑖
(𝑡) can be split into two parts: a purely elastic one and a

plastic one, denoted by 𝛽0
𝑖
(𝑡), so that

𝜎
𝑖 (
𝑡) = 𝐸𝑖

(𝜀
𝑖 (
𝑡) − 𝛽

0

𝑖
(𝑡)) . (3)

In the following only bilinear isotropic hardening plasticity
is considered as a relatively basic example (see Figure 2)
which requires for each element a single internal hardening
variable Ψ

𝑖
(𝑡) called the total plastic strain. The evolution

of Ψ
𝑖
(𝑡) in time is governed by the following simple strain

hardening law:

̇
Ψ
𝑖 (
𝑡) =
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𝛽
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. (4)

The yield functionΦ
𝑖
(𝜎
𝑖
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𝑖
) is defined as
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where 𝜎⋆
𝑖
, 𝛾
𝑖
, and 𝐸

𝑖
are, respectively, the initial plastic flow

stress, the hardening coefficient, and Young’s modulus of the
𝑖th truss element, and the plastic modulus 𝛾

𝑖
𝐸
𝑖
/(1 − 𝛾

𝑖
) is

determined based on a simple geometric analysis of Figure 2.
The range of admissible stresses is defined by the require-

ment that

Φ
𝑖
(𝜎
𝑖
, Ψ
𝑖
) ≤ 0. (6)

The plastic flow ( ̇
𝛽

0

𝑖
̸= 0) can take place only if the stress

point is on the yield surface defined by Φ
𝑖
= 0. This is stated

in the form of the following conditions of complementarity
and persistency: ̇

𝛽

0

𝑖
(𝑡)Φ
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𝑖
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𝑖
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(𝑡)). The yield function is used to define

the set 𝑌
𝑡
of indices of truss elements that are instantaneously

plastic at time 𝑡:

(𝑖 ∈ 𝑌
𝑡
) ≡ (Φ

𝑖 (
𝑡) = 0,

̇
Φ
𝑖 (
𝑡) = 0) . (7)

In practice, the response of the linear structure 𝜀𝐿
𝑖
(𝑡) is

known in discrete time steps every Δ𝑡, and the numerical
solution for the elastoplastic structure has to be advanced
in the same discrete time steps. The discrete strain response
of the elastoplastic structure is expressed in the following
discrete form [29]:

𝜀
𝑖 (
𝑡) = 𝜀

𝐿

𝑖
(𝑡) + ∑

𝑗

𝑡

∑

𝜏=0

𝐷

𝜅𝜅

𝑖𝑗
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0

𝑗
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where

𝜀

𝐿

𝑖
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𝐾

𝑡

∑

𝜏=0

𝐷

𝜅𝑓

𝑖𝐾
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while 𝐷𝜅𝑓
𝑖𝐾
(𝑡) and 𝐷𝜅𝜅

𝑖𝑗
(𝑡) are the discrete counterparts of the

continuous impulse response functions. 𝐷

𝜅𝜅

𝑖𝑗
(𝑡) is the

dynamic influence matrix describing the strain evolution
in the element 𝑖 in the time step 𝑡, in response to a unitary
impulse of virtual distortion generated in the time 𝜏 in the
element 𝑗. 𝐷𝜅𝑓

𝑖𝐾
(𝑡) denotes a dynamic influence matrix

containing the displacement history induced in the 𝐾th
DOF as a response to the unitary distortion impulse applied
in the 𝑖th element.

The discrete update rules for plastic distortions of instan-
taneously plastic elements can be stated as

Ψ
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𝑡) = Ψ𝑖 (

𝑡 − Δ𝑡) +







Δ𝛽

0

𝑖
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, (10)

where Δ𝛽0
𝑖
(𝑡) denotes the increment of the plastic strain, and
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0

𝑖
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0

𝑖
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0

𝑖
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TheVDMsolution is based on trial steps, where the plastic
distortion increments Δ𝛽0

𝑖
(𝑡) are determined in each time

step 𝑡 by freezing temporarily the plastic flow and performing
a purely elastic step, which yields the trial strain 𝜀tr

𝑖
(𝑡), trial

stress 𝜎tr
𝑖
(𝑡), and trial yield function Φtr

𝑖
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𝑖
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0
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the trial stress is

𝜎

tr
𝑖
(𝑡) = 𝐸𝑖

(𝜀

tr
𝑖
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𝑖
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𝑖
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0

𝑖
(𝑡 − Δ𝑡)) ,

(13)

and the corresponding trial yield function is given by

Φ

tr
𝑖
(𝑡) = Φ𝑖

(𝜎

tr
𝑖
(𝑡) , Ψ

tr
𝑖
(𝑡))

=







𝜎
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𝑖
(𝑡)







− (𝜎

⋆

𝑖
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𝛾
𝑖
𝐸
𝑖

1 − 𝛾
𝑖

Ψ
𝑖 (
𝑡 − Δ𝑡)) .

(14)

The actual plastic distortions 𝛽0
𝑗
(𝑡) can be found by solv-

ing

𝐸
𝑖
∑

𝑗∈𝑌
𝑡

(𝐷

𝜅𝜅

𝑖𝑗
(0) −

𝛿
𝑖𝑗

1 − 𝛾
𝑖

)Δ𝛽

0

𝑗
(𝑡)

= −Φ

tr
𝑖
(𝑡) sign𝜎tr

𝑖
(𝑡) .

(15)

Having the above definition, the direct problem is solved
time step by time step, that is, for 𝑡 = 0, Δ𝑡, . . . , 𝑇. The initial
conditions are assumed to be zero: 𝜀

𝑖
(0) = 0, 𝛽0

𝑖
= 0, Ψ

𝑖
(0) =

0, and 𝑌
0
= 0. At each time step 𝑡 = Δ𝑡, . . . , 𝑇, the following

computations are necessary:

(1) Trial strains, stresses, and yield functions by (12) to
(14).

(2) Temporary assumption of 𝑌
𝑡
= 𝑌
𝑡−Δ𝑡

.
(3) Plastic distortion increments Δ𝛽0

𝑖
(𝑡) by (15).

(4) The corresponding strains and stresses by (3) and (8).
(5) (a) For all the elements, verification of the yield

condition defined in (6) and its compliance with
the assumed set 𝑌

𝑡
of the instantaneously plastic

elements needs to be performed. (b) For elements
𝑖 ∈ 𝑌
𝑡
verification of the stress compliance condition

sign𝜎
𝑖
(𝑡) = sign𝜎tr

𝑖
(𝑡) = signΔ𝛽0

𝑖
(𝑡) needs to be

performed. If required, the set 𝑌
𝑡
should be updated

accordingly, and the computations should be repeated
from point (3) above.

(6) Plastic strain increments and total plastic strains by
(10) and (11).

Notice that no iteration with respect to the state variables
is required, which is a characteristic feature of the presented
approach. Points 3–5 are repeated only if the set 𝑌

𝑡
needs

to be updated in the current time step, which happens only
when an elastic element enters the plastic regime or an
instantaneously plastic element is unloaded; the proper set is
then usually found after just a single update.

The above assumptions are used to formulate and numer-
ically solve a coupled problem of material redistribution
(modifications of element cross sections 𝐴 and associated
stiffness and mass modifications). The equations are dis-
cretized in time 𝑡 = 0, 1, . . . , 𝑇 and solved by means of New-
mark scheme,𝑇 being the final time after which the construc-
tion is evaluated; that is, the value of an objective function is

calculated. Formore details regarding𝐷𝜀
𝑖𝑘
,𝐵𝜀
𝑁𝑘
, and the entire

numerical procedure the reader is encouraged to refer to [7, 8]
or [29].

Regarding the material properties used throughout the
paper, the values are consistent with the previous work and
are as follows: Young’s modulus 𝐸 = 210GPa, the density
𝜌 = 7800 kgm−3, and the initial cross section of all elements
is 100mm2.

2.2. The Optimization Problem. Consider an initial truss
structure S

𝑖
consisting of the 𝑛 bar elements with the same

cross section 𝐴
𝑖
= const, 𝑖 = 1, . . . , 𝑛, and nodes (massless)

which join the bars.The structure is exposed to impact loads;
that is, a mass 𝑚 with given velocity k is added at a node (or
multiple different nodes in case of a multiple impact event).
As a result, the initial conditions for k and 𝑚 in the node
change accordingly. During the entire analysis, the mass is
assumed to be attached to the node and to move together
with it. In the numerical model, the mass is reflected by an
appropriate modification of the mass matrix 𝑂 in (1).

Let the volume of material used forS
𝑖
be ̃𝑉. We consider

optimization problems which can be formulated as follows
(divided into two classes: “design” and “adaptation”).

(1) Design: find new element cross sections 𝐴
𝑖
such that

the corresponding material volume is equal to the
initial one ̃𝑉 and given objective function is mini-
mized/maximized.

(2) Design: it is as (1) but localization of adaptive struc-
tural elastoplastic fuses is taken into account.

(3) Adaptation: find optimal plastic limit 𝜎

∗ at the
moment of impact, which will minimize/maximize
given objective function.

In the previous work [7, 8], optimization problems (1)
and (3) were solved with the use of gradient-based method
with typical pros and cons related to such approach. The
gradient-based method requires a proper definition of the
objective function, which has to be differentiable; it is prone
to converging in a local minimum, and so forth. From the
perspective of design, it is tempting to obtain complete free-
dom regarding definition of the objective function which can
lead, for example, to handling multiple impact optimization.

2.3. The Particle Swarm Optimization. Particle swarm opti-
mization (PSO, [11]) is a metaheuristic optimization method
which iteratively tries to improve a candidate solution. As
typical methods of this sort, it does not guarantee that the
optimum is found; however, a very large space can be
searched and there are no requirements regarding the objec-
tive function. Therefore PSO can be used for irregular, noisy,
coarse problems or multiobjective optimization.

In the presented approach, the classical version of PSO
is used only in the design process (cf. Section 2.2). As will
be discussed later, during the impact phase, selection of the
optimal plastic limit 𝜎∗ is a smooth problem with a single
minimum which can be efficiently solved by gradient meth-
ods. Of course, in principle, also at this stage PSO can be used



6 Mathematical Problems in Engineering

(1) For each particle 𝑖:
(2) Initialize x with a random value, 𝜇min ≤ 𝑥𝑗 ≤ 𝜇max
(3) Let the particle’s best position pi will be equal to its initial one: pi ← x
(4) Assign to each particle its initial velocity k so that each component of the vector

is a random number V
𝑗
← (−|𝜇max − 𝜇min|, . . . , |𝜇max − 𝜇min|)

(5) Calculate the objective function for particle 𝑖 𝑓
𝑖
(pi)

(6) Update the swarm best solution b← xi if 𝑓𝑖 ≤ 𝑓(b)
(7) For each particle 𝑖:
(8) Pick random numbers 𝑟

𝑝
, 𝑟
𝑏
from the range [0, . . . , 1]

(9) For each component 𝑗:
(10) V

𝑖,𝑗
← 𝜔V

𝑖,𝑗
+ 𝜙
𝑝
𝑟
𝑝
(𝑝
𝑖,𝑗
− 𝑥
𝑖,𝑗
) + 𝜙
𝑏
𝑟
𝑏
(𝑏
𝑗
− 𝑥
𝑖,𝑗
)

(11) xi ← xi + ki
(12) If 𝑓(xi) < 𝑓(pi) then the particle’s best pi ← xi
(13) Update the swarm best solution: if 𝑓

𝑖
≤ 𝑓(b) then b← xi

(14) If a given termination criterion is not met, go to (7)

Algorithm 1: The particle swarm optimization algorithm. For the basic AIA design problem, the particles represent consecutive elements
cross sections;𝑥

𝑖,𝑗
= 𝜇
𝑗
. If, for example, the localization of structural elements is taken into account, x is extended accordingly (see Section 4.1).

as an alternative (e.g., if a more complex objective function is
required).

During the design phase, each candidate structure S
is represented as a vector of real numbers xi = (𝑥

𝑖,𝑗=1
, 𝑥
𝑖,𝑗=2

,

. . . , 𝑥
𝑖,𝑗=𝑛

)

𝑇, which is in the context of PSO entitled as a
“particle.” The process of relating x to a structure is usually
referred to as “coding” and, regarding thematerial redistribu-
tion, it will correspond to the ratio of modified cross section
̂
𝐴
𝑗
to the original one 𝐴

𝑗
of the 𝑗th element:

𝑥
𝑗
= 𝜇
𝑗
:=

̂
𝐴
𝑗

𝐴
𝑗

. (16)

We will impose limit on the cross sections, by requiring
that each component of the vector will be in range 𝜇min ≤

𝑥
𝑗
≤ 𝜇max, where 𝜇min is the minimum element cross section;

here 𝜇min = 0 which coincides with the element removal
(which is trivial to implement, unlike in the case of gradient
methods), and 𝜇max = 3𝜇

0
, where 𝜇

0
is the initial cross

section ratio 𝜇
0
:= 1. After any modification, the particle x

is normalized in a way that the volume of the corresponding
structure is equal to the volume of the initial one ̃𝑉, so that the
amount of material needed for all the structures is identical.

With each particle xi, there is an associated vector called
its velocity kj, whose elements lie in the range [−|𝜇max −
𝜇min|, |𝜇max − 𝜇min|]. Additionally, each particle 𝑖 keeps track
of its best position in the history of optimization pi, that is,
a position for which 𝑓(pi) is extreme (minimal or maximal,
depending on the desired optimization objective).

LetN be the set (the swarm) of𝑁 particles representing
𝑁 structures.ThePSO algorithm iterativelymoves all the par-
ticles xi through the search space according to their velocities
ki. Each particle is attracted to its all-time best position pi
and to the swarm all-time best solution b (updated at each
step).The degree of this attractiveness, along with the particle
“intention” to follow its velocity, is defined by the parameters
𝜙
𝑝
, 𝜙
𝑏
, and 𝜔, respectively. The PSO algorithm for finding

optimal solution, in the sense in the sense of minimizing
some utility function 𝑓(x), is presented in Algorithm 1.

The definition of the minimized objective function 𝑓(x)
of course depends on the desired optimization goal. For
example, in order to maximize structural stiffness, it can be
equal to the deviation of node position from their initial
location. The next section describes an example of such
optimization.

One of the issues of fundamental importance when using
PSO is the proper selection of the control parameters 𝜔, 𝜙

𝑝
,

and 𝜙
𝑏
and the population size 𝑁. Since PSO is intrinsically

flexible and indeterministic, it is impossible to give a formal
prescription for values of these parameters which would
give the best results in a general case. Although there exists
some research concerning procedures of how to adjust these
values [30], possibly during the optimization process [31],
often they are selected by means of a trial-and-error method.
In such procedure, 𝜔, 𝜙

𝑝
, 𝜙
𝑏
, and 𝑁 are chosen arbitrarily

in a way which reflects the nature of underlying objective
function. One should keep in mind that, generally speaking,
𝜔 controls the tendency to explore the entire search space,
𝜙
𝑝
the tendency to explore in the vicinity of local extrema,

and 𝜙
𝑏
the convergence rate to the best solution found so

far. 𝑁 is responsible for the diversity of potential solutions
(which is also associated with the demand for computational
resources).

It is clear that the PSO control parameters can be very
different for various problems and it may be difficult to find
satisfactory balance between exploration and convergence. In
order to select values for our AIA model, we have checked
how the PSObehaves for various parameter sets (≈30 sets) for
the scenario discussed in Section 3.1. We have looked at the
convergence rates and the ability to find the globally optimal
solution for various, random initial conditions (keeping in
mind that𝑁 should not be too large in order to constrain the
computational time). This procedure led us to the following
values which are used for all the calculations presented in the
paper: 𝜔 = 0.8, 𝜙

𝑝
= 𝜙
𝑏
= 0.5, and𝑁 = 25.
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m1, �1

(a)

m1, �1

(b)

Figure 3: (a) Original structure: the two leftmost nodes are fixed and the node where impacting mass𝑚
1
= 1 kg with the velocity V

1
= 5m/s

is marked with the arrow. (b) Remodeled structure whichmaximizes the stiffness (at the impact node at 𝑡 = 8ms). Here and in the subsequent
figures, diamonds denote fixed points, filled circles represent the nodes, and a square marks the node where the impact takes place.The width
of the lines representing elements is proportional to their cross section.

0

2

4

6

0 1 2 3 4 5 6 7 8

Ve
rt

ic
al

 d
isp

la
ce

m
en

t (
m

m
)

Time (ms)

−2

−4

−6

−8

−10

uy1 original
uy1 remodeled

(a)

1

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15 20 25 30
PSO steps

Overall best
Current population best

Optimal solution

Th
e o

bj
ec

tiv
e f

un
ct

io
n 

(×
10

3
)

(b)

Figure 4: (a) Vertical deflections on the node at which the impact takes place for the original and the PSO remodeled structure. (b)
Convergence of the PSO method to the optimal solution found by means of the gradient optimization (the horizontal line).

3. Remodeling without AIA Structural Fuses

3.1. Designing for a Given Impact Event. As the first example
of structural PSO optimization, we consider the simple truss
structure depicted in Figure 3(a), where two nodes are fixed
(BCs require that the velocity is always 0) and there is
one impacting mass at the node labeled with a square and
an arrow. Identical setup was analyzed in [32] and direct
comparison with the gradient method can be made.

As the objective function we choose

𝑓 (x) = ∑

𝑡=0,...,𝑇

(𝑢
𝑦1
− 𝑢
𝑦1,𝑡=0

)

2

, (17)

where the analyzed time period is 𝑇 = 1ms after the impact,
𝑢
𝑦1

is the vertical displacement of the node at which the
impact takes place, at the discrete time 𝑡, and 𝑢

𝑦1,𝑡=0
= 1 is

the node’s initial position. The result of such optimization is

presented in Figure 3(b), and deflections for the original and
the remodeled structures are shown in Figure 4(a).

From Figure 4(b), one can see that the PSO solution
quickly converges to the best solution found by the gradient
method (the horizontal line, value taken from [32]). The
detailed values are presented in Table 1. In this, relatively
simple, case there is one solution to which all the tried initial
PSO populations have converged. This can be interpreted as
the fact that it is likely that there are no local minimums in
this case.

Let us consider another example: a more complex struc-
ture with two impacting masses at the same moment. Identi-
cal setup has been analyzed in [7].The objective function will
be analogous to the previous one:

𝑓 (x) = ∑

𝑡=0,...,𝑇

((𝑢
𝑦1
− 𝑢
𝑦1,𝑡=0

)

2

+ (𝑢
𝑦2
− 𝑢
𝑦2,𝑡=0

)

2

) , (18)



8 Mathematical Problems in Engineering

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 10 20 30 40 50 60 70
PSO steps

(A)
(B)

(C)
(G)

Th
e o

bj
ec

tiv
e f

un
ct

io
n 

(×
10

3
)

(a)

0

0.2

0.4

 0  0.2  0.4  0.6  0.8  1

Ve
rt

ic
al

 d
isp

la
ce

m
en

t (
m

m
)

Time (ms)

−0.2

−0.4

−0.6

−0.8

−1

−1.2

−1.4

−1.6

uy1 original
uy2 original

uy1 PSO (A)
uy2 PSO (A)

(b)

Figure 5: (a) Convergence of PSO for various initial populations: (A), (B), and (C); (G) represents the optimum as found by the gradient
method [7]. (b) Response of the original structure and the one which is a result of PSO (A).

Table 1: Cross sections (mm2) of the 10-element truss structure
(Figure 1): original; optimized for maximum stiffness by the gra-
dient method; stiffest by PSO; simultaneously optimized for max-
imum energy dissipation with a single adaptive element; compare
Section 4.1 (∗ marks the optimal localization of the active element
in this case).

Elem. Orig. Grad. PSO PSO-AIA
1 110 233.3 233.9 122∗

2 110 103.6 103.1 0.0
3 110 205.1 204.4 70.9
4 110 0.0 0.0 306.6
5 110 142.8 142.2 45.9
6 110 95.7 96.8 189.7
7 110 0.0 0.0 0
8 110 69.1 69.9 306.6
9 110 154.3 153.6 0
10 110 87.0 86.5 0

where 𝑢
𝑦1
and 𝑢
𝑦2
denote the vertical location of the nodes at

which the impacting masses are loaded, 𝑇 = 1ms.
It is understood that the exact optimization path in

PSO depends on the initial swarm. Therefore various initial
conditions can lead to different solutions, if there is more
than one local minimum. This can be clearly seen in Figures
5 and 6, where PSO converges to distinct structures which
give very similar values of the objective function. It should
be noted that some of these solutions are actually better (i.e.,
give smaller value of 𝑓) than the one found by the gradient
method in [7].

There is no denying the fact that the outcome of such
optimization is practically unacceptable. For example, solu-
tion (B) will fail if the velocity of the left impacting mass
would have, even very small, nonzero horizontal component.

(O)

(A)

(B)

(C)

(G)

Figure 6: Original truss-beam structure (O) with two impacting
masses,𝑚

1
= 0.1 kg, V

1
= 5m/s (the leftnodemarkedwith a square),

𝑚
2
= 2 kg, V

1
= 5m/s (the right one). (A), (B), and (C) denote

final states of PSO for various initial conditions; (G) represents the
solution obtained with the gradient optimization in [7]. Here, the
total width is 1.1m; the height is 0.1m.

The exact final result of PSO, as any other optimization
method, will strongly depend on the chosen objective func-
tion, including the integration time 𝑇. PSO starts with a
swarm of completely random structures and as it happened it
converged to configurations giving smaller𝑓which is defined
by (18). On the other hand, in the previous work, the starting
point of the gradient method was always a structure with
equal cross section for all the bars.

The example is presented here in order to show that in the
entire search space of the problem, there exists better solution
than the one which is found by the gradient method. This is
not really surprising, bearing in mind the complexity of the
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objective function and its dependence on the large number
of variables. If one would like to obtain a solution which
can be applied in practice, one would have, for example,
exploited the potential problem symmetry or define a specific
set of initial conditions for PSO (possibly, along with any
kind of constraints during the optimization process). Also,
performing optimization for a large set of expected impacts
is desired. These issues are discussed in more detail in the
following sections.

Regarding comparison of computational requirements
for PSO and gradient methods, it should be noted that in
the previous work the latter converged after ≈100 steps. For
𝑁 = 25, this is roughly equivalent to 5 PSO steps. Looking
at the convergence rates in Figures 4(b) or 5(a) one can see
that there exists computational overhead when comparing to
the gradient-based approach (here by the factor ≈5). This is
usually the price one has to pay when PSO is applied. How-
ever, it is worth mentioning that PSO algorithms are trivial
to parallelize, and it is easy to implement them on widely
available multiprocessor platforms.

3.2. Designing for Multiple Impact Events. One of the limi-
tations of the gradient-based optimization in the discussed
structural design process is the difficulty of definition of
a differentiable objective function which would evaluate a
structure for multiple various impacts. This can be easily
achieved with PSO. Consider a scenario in which a structure
can be potentially loaded with an impact characterized by
4-tuples, 𝑛, 𝑚, V, and 𝑝, where 𝑛 is the node number at
which the impacting mass 𝑚 with the velocity V is applied;
the probability of such event is 𝑝. Let I be the set of all 𝑁

𝐼

expected impacts (i.e., such 4-tuples); Σ
𝑖=0,...,𝑁

𝐼

𝑝
𝑖
= 1. Then

the objective functionwhich takes into account the possibility
of multiple impacts can be defined as

𝑓


(x) = ∑

𝑖=0,...,𝑁
𝐼

𝑝
𝑖

𝑁
𝐼

(

𝑓 (x | {𝑛
𝑖
, 𝑚
𝑖
, V
𝑖
})

𝑓 (xo | {𝑛𝑖, 𝑚𝑖, V𝑖})
)

𝑘

, (19)

where 𝑓(x | {𝑛
𝑖
, 𝑚
𝑖
, V
𝑖
}) denotes the calculated objective

function for the structure corresponding to the particle x,
provided that the impact is at the node 𝑛

𝑖
with given mass

𝑚
𝑖
and velocity V

𝑖
. xo is the optimal structure designed for

the impact {𝑛
𝑖
, 𝑚
𝑖
, V
𝑖
} and 𝑘 controls the penalty for deviation

from 𝑓(xo) (we use 𝑘 = 2).
The normalization with respect to xo requires precalcu-

lation of the optimal value for a single impact. This assures
that the input from any impact to the total objective function
𝑓

 is proportional only to the probability 𝑝
𝑖
(and not, e.g., to

the impacting mass, where smaller mass would lead to much
smaller deflections).This procedure is particularly important
when expected impacts significantly differ in kinetic energy.

As an example, let us consider the structure presented
in Figure 7, where an impact is expected at any node in the
upper part, except the ones which are fixed. The impacting
mass/velocity pairs are drawn from the set {2 kg, 5m/s},
{0.5 kg, 10m/s}. All the events are assumed to be equiprob-
able. The objective function for each single impact 𝑓(x |

{𝑛
𝑖
, 𝑚
𝑖
, V
𝑖
}) is the same as that in (17); that is, the deflections

(O)

(1)

(2)

(3)

(X)

Figure 7: (O) Original structure which is a subject to multiple
possible loads. (1)–(3) A sample optimum PSO remodeling for a
single impact at the marked nodes,𝑚 = 2 kg, V = 5m/s (1), and𝑚 =

0.5 kg, V = 10m/s (2, 3). (X) A PSO remodeled structure optimized
for multiple impact classes, xO. The triangles in (X) represent places
of potential impacts.

at the impacting node are minimized. For example, (1) is
optimized for a single impact with 𝑚 = 2 kg, V = 5m/s,
at the node marked with a square. Note that, according to
the limits on cross section stated in Section 2.3, the bars
on the leftmost side could not exceed 𝜇max = 3𝜇

0
. During

the optimization process, these elements reached 𝜇max. The
remaining elements have virtually no influence on 𝑓 for this
impact and, consequently, the remaining mass is randomly
distributed among these bars.

In case of themultiple impact optimization, using𝑓, PSO
converged to a final solution depicted in Figure 7(X), and the
final value of 𝑓(xO) = 4.032. This should be interpreted as
that the final structure performs, on average, two times worse
(for 𝑘 = 2) than the one optimized for a given impact. Ideally,
𝑓

 would be equal to unity, which would mean that the
structure is perfectly optimized for all the possible impacts
(of course, usually it is impossible).

4. Adaptation to Impact Loads

Up to this moment, we have discussed the process of rede-
signing structures in order to maximize stiffness. As men-
tioned in Introduction, an essential part of any AIA system is
responsiveness at the moment of an impact. In our scenario
this can be realized when some elements act as structural
fuses, that is, have properly adjusted plastic limit; see (3). It
is reasonable to assume that the dissipated plastic-like energy
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Figure 8: Absorbed plastic energy (in J) as a function of the impact-
ing mass and velocity for a truss structure as in Figure 3, where
element number 1 has 𝜎 = const = 106.

𝐸pl in some given time 𝑇 = 1ms should be maximized (as in
[8]):

𝐸pl = ∑

𝑡=1,...,𝑇

∑

𝑖=1,...,𝑁
𝐴

𝜎
𝑖 (
𝑡) Δ𝛽

0

𝑖
(𝑡) 𝑙𝑖

𝐴
𝑖
, (20)

where 𝑖 = 1, . . . , 𝑁
𝐴
denotes the active elements.

As a basic example consider the structure from
Figure 3(a), where element number 1, connecting nodes 1
and 2, is replaced by an elastoplastic one. Setting the elastop-
lastic limit to the constant value 𝜎∗ = 106 Pa leads to energy
absorption which depends on the impacting mass and its
velocity. Such dependence is plotted in Figure 8.

Assuming that a structural geometry is given, along
with the location of the active elements, the AIA problem
at the moment of impact is twofold: identification of the
impacting mass and velocity and finding the plasticity limits
𝜎

∗ for all the active elements. As stated in Introduction,
impact identification with simultaneous mass and velocity
identification is a difficult task on itself and is beyond the
scope of this paper. For given 𝑚 and V, the dependence of
optimal 𝜎∗ can be calculated for the truss structure with 10
elements (Figure 3); it is depicted in Figure 9.

Naturally, using active elements with real-time 𝜎∗ adjust-
ment will give some benefit only if the dissipated energy is
significantly larger than in case of some constant 𝜎∗ chosen
during the design process. The potential gain is shown in
Figure 9(b) where one can clearly see that, in the given range
of impacting masses, active response can dissipate 7-8 times
more energy than the passive elastoplastic construction.
Remarkably, for the considered structure and location of the
active element, the optimal plasticity limit dependsmostly on
the impacting mass and not the velocity.

Using PSO at the moment of impact in order to adjust
𝜎

∗ is, in principle, possible; however it would be somehow
extravagant, at least if the objective function like the one

defined in (20) is considered. Having information about the
impacting 𝑚 and V, a gradient-based real-time method can
be applied without any problems. Another practical solution
would be to calculate the optimal plastic limits offline and
then use them in a tabulated form during a real impact.

In this AIA problem, PSO can bring on two other major
improvements. Firstly, in the previous work, the location of
structural fuses was rather guessed than selected on some
formal basis.The reason for such procedure was due to prob-
lems with the proper definition of objective function which
would take position of the active elements into account.
PSO can be deployed to find optimal location of active
elements for a given structure. However, the second potential
gain is the possibility of solving a problem of simultaneous
material redistribution and structural fuses location. In the
next subsection we will look at an example of the latter.

4.1. Using PSO for Simultaneous Material Redistribution and
Structural Fuses Location. Let us again consider the truss
structure from Figure 3. This time, the goal will be to
maximize the dissipated energy 𝐸pl by using AIA fuse which
should be located in place of one of the elastic elements. From
the PSO point of view, this will be realized by modifying
representation of the structure as a particle x. Let the new,
extended representation x be x = (x y), where y is
yet another vector with the length equal to number of the
elements (i.e., equal to the length of x). The range of possible
values as the elements of y is ⟨0, . . . , 1⟩ (instead of 𝜇min and
𝜇max as in the algorithmdescription, Section 2.3). Now, let the
active AIA element be located at the position corresponding
to themaximal𝑦

𝑖
(or the onewith the smallest 𝑖, if there exists

more than one maximal 𝑦
𝑖
). If more than one of the active

elements is expected, one can localize them in 𝑖
1
, 𝑖
2
, . . . places,

so that 𝑦
𝑖
1

≤ 𝑦
𝑖
2

≤ ⋅ ⋅ ⋅ ≤ 𝑦
𝑖 ̸=𝑖
1
̸=𝑖
2
̸=⋅⋅⋅
.

The extended particle representation x is used to cal-
culate the objective function for the structure with the
material distribution defined by x and the AIA elements
location by y. Note that this, quite versatile, way of coding
can be used in order to achieve any desired goals of the
structural optimization during the design process. Of course,
the cost of AIA element (and consequently their total number
in any structure) can be straightforwardly incorporated.
PSO provides a surprisingly efficient mechanism for finding
optimal solution of problems defined in a complex and
noncontinuous way.

Assume that one of the elements of the 10-element
examples from Figure 3 ((a)/(b) i.e., original/stiff) is replaced
by a single adaptive element. By means of a brute-force
method, we can trivially check how much plastic-like energy
is dissipated for the given impact parameters (𝑚

1
= 1 kg, V

1
=

5m/s, i.e., with energy 25 J) for all the possible locations of the
adaptive element. It turns out that the structure remodeled for
maximum stiffness can give only slightly better results. In the
case of original structure, maximum 𝐸pl = 7.14 J is observed
when the adaptive element is at the link number 1. For the
remodeled structure,maximum𝐸pl = 8.42 J is obtainedwhen
the link number 8 is adaptive; see Table 2.

Using PSOmakes it possible to simultaneously search for
optimal cross section of the elements and the localization of
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Figure 9: (a)The optimal elastoplastic limit 𝜎∗ leading to the largest plastic-like energy dissipation (20), as a function of the impacting mass
and velocity. (b) The potential gain in using the optimal 𝜎∗ over the constant one 𝜎∗ = 106 Pa.

Table 2: Plastic-like energy 𝐸pl (in J) dissipation for optimal stress
yield 𝜎

∗ (in MPa) for various locations of the adaptive element
(instead of the elastic one) for different 10-element trusses: original
(Figure 3(a)), remodeled for maximal stiffness (Figure 3(b)), and
optimized by PSO (Figure 10(A)).𝐸pl(𝑡) is shown in Figure 11 for the
cases marked with boldface.

El. Original Stiff PSO
𝜎

∗
𝐸pl 𝜎

∗
𝐸pl 𝜎

∗
𝐸pl

1 133 7.14 49 7.17 133 14.10
2 37 3.85 65 6.14 — —
3 133 7.10 75 5.87 178 10.20
4 75 5.17 931 0.05 34 10.82
5 60 2.82 70 4.97 21 0.57
6 100 2.58 178 7.81 75 9.45
7 1 0.82 — — — —
8 87 2.16 191 8.42 32 13.49
9 37 2.25 100 3.76 — —
10 12 2.38 70 4.76 — —

the adaptive dissipators. Figure 10 depicts a sample outcome
of such optimization, and one can see that the structure differs
significantly from the one optimized for stiffness only. The
gain regarding the dissipated energy is significant in this case,
maximal 𝐸pl = 14 J.

We should note that, in the previous work, the location
of adaptive elements was chosen rather on reasonable pre-
sumptions than on optimization outcome.Moreover, this was
done on structures optimized, in the first stage, formaximum
stiffness. In order to address this problem with gradient opti-
mization, one can simply consider brute-force calculations
for all possible loca-tions of active elements. However, in
case of complex structures with many structural fuses, this

(A)

(B)

Figure 10: Structure from Figure 3 remodeled for maximal energy
dissipation 𝐸pl = 14.10 J. The location of the active element, as
found by PSO, is marked with the dashed line. (B) An alternative
solution giving slightly smaller dissipation 𝐸pl = 13.7 J, however,
with a different absorption characteristic; compare Figure 11.

approach will quickly become computationally intractable,
while still the issue of simultaneous mass redistribution and
fuses localization is not taken into account.

As stated above, initially the swarm consists of completely
random particles (i.e., structures), and it is possible that
for larger structures PSO will evolve towards a “bizarre”
result, for example, Figure 6. Such outcome formally gives
near-optimal value of the objective function; however, the
common sense indicates that such solution is rather imprac-
tical. Figure 12 depicts two results of PSO optimization for
maximal plastic-like energy absorption for the 29-element
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Figure 11: Absorption of plastic-like energy after an impact at
𝑡 = 0 for various structures and localization of the adaptive element;
compare Figure 10 and Table 2.

(A)

(B)

Figure 12: Schematic representation of the outcome of PSO opti-
mization for the structure as in Figure 7 with two adaptive elements.
(A) An example of a nonsymmetric “bizarre” result giving 𝐸pl =

19.9 J. (B) Result under the assumption of symmetry which is taken
into account in the particle coding procedure, 𝐸pl = 25.4 J.

structure supported on both sides, as in Figure 7. Simultane-
ous optimization for mass redistribution and localization of
two adaptive elements (with the same 𝜎∗, for simplicity) for
the set of 10 possible impacts was performed ({2 kg, 5m/s} or
{0.5 kg, 10m/s} at each of the 5 nodes marked with a square).
In other words, the objective function is to maximize

𝐸pl =
1

10

∑

𝑛
𝑖
=1,...,10

𝐸pl | 𝑛𝑖, (21)

where 𝑛
𝑖
numbers the possible impacts and 𝐸pl | 𝑛𝑖 is calcu-

lated for the impact 𝑛
𝑖
, 1ms after the event,𝜎∗ being optimally

adjusted at the impact moment for maximizing the energy
absorption.

The structure depicted in Figure 12(A) is characterized
by the objective function 𝐸pl = 19.9 J. One expects that for
the problem defined in the way described above the outcome
should be a symmetric structure since all the nodes have
equal probability of being loaded with the same conditions.
Nevertheless, PSO evolved from random initial condition

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (ms)

Figure 12(A)
Figure 12(B)

Pl
as

tic
 en

er
gy

E
pl

(J
)

Figure 13: Absorption of energy 𝐸pl by the two structures depicted
in Figure 12. The impact takes place at the leftmost node marked
with a triangle,𝑚 = 0.5 kg, V = 10m/s.

to this clearly nonsymmetrical configuration with two fuses
located next to each other.

Generally, larger problems require searching a huge
parameter space and it is not surprising that the swarm gets
stuck in a local minimumwhich clearly is not a suitable solu-
tion. In PSO it is easy to incorporate particle coding which
exploits symmetry and any other features expected regarding
the outcome of optimization.The benefit is twofold: the result
more suited to expectations and reduced search space. An
example of PSO result with a coding which retains structural
symmetry is shown in Figure 12(B), in this case 𝐸pl = 25.4 J.
This is a superior value to that for case (A); moreover, the
symmetric solution has better absorption characteristics in
the sense that is closer to a linear one; see Figure 13.

Finally, note that the structure presented in Figure 7(X)
evolved from random swarm towards a symmetric config-
uration (although not perfectly symmetric) which reflects
the boundary conditions. In principle, by appropriate mod-
ification of the swarm size and PSO control parameters,
similar results can be achieved for more complex structures
with fuses. For evenmore demanding, multimodal problems,
a specific modification of PSO should be employed, for
example, [33].

5. Conclusions and Outlook

We have used one of the versatile, metaheuristic optimiza-
tion techniques, the particle swarm optimization, in the
numerical process of designing structures which are able
to actively adapt to impacts. AIA systems form a relatively
new branch of mathematical problems in engineering with
many subtopics open to research. Up to now, the considered
AIA truss structures have been optimized only by classical
gradient-based approaches. One of the drawbacks of such
methods is the need of “mathematically proper” definition
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of continuous objective functions. This makes it difficult to
design structures which can, for example, adapt to a set of
possible impacts.

We have shown that in the context of AIA design, PSO
can

(i) efficiently reproduce results previously obtained by
means of the gradient optimization (Section 3.1),

(ii) easily provide alternative solutionswith similar values
of the objective function (Section 3.1),

(iii) be used to find out optimal structures where the
objective function is constructed from multiple various
impact responses and therefore obtain results which
are optimized for a given set of expected impacts
(Section 3.2),

(iv) be used to search the space for location of the struc-
tural fuses (unlike the gradient methods); this can
be even done simultaneously with mass redistribution
and the outcome of such optimization can be com-
pletely different compared with the previous results
obtained with gradient methods (Section 4.1).

As mentioned in Section 1, generally such structural
optimization should simultaneously solve for size, shape, and
topology. Incorporating AIA adds here yet another variable,
namely, solving for location of the structural fuses. Following
the presented preliminary research, the future work will be
focused on simultaneous optimization which will include
also topology, not only adaptive element localization and
mass redistribution. Additionally, more complex impact sce-
narios will be considered; for example, various angles of
the velocity vector of the impacting mass will be taken into
account.
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