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1. Introduction

The paper is a continuation of [1] where the model of test metrically-
rigid bodies was analyzed on the classical and quantum levels. Here, we
consider the concept of an infinitesimal affinely-rigid body, thus in addi-
tion to gyroscopic degrees of freedom, the deformative ones are taken into
account. Strictly speaking, we investigate in some details two kinds of two-
dimensional problems, namely motion of structured material points on the
sphere and pseudosphere (Lobachevsky space). Next, we formulate the two-
dimensional situation on the quantum level, which is also of some physical
interest. Obviously, it may have some direct physical applications when we
deal with the dynamics of graphenes, fullerenes and nanotubes [2–4]. Our
results may be physically applicable in mechanics of media with microstruc-
ture. We mean micromorphic media which are continua of infinitesimal
affinely-rigid bodies. Namely, surfaces of such bodies will behave as two-
dimensional continua with the effective microstructure induced by the usual
three-dimensional microstructure. There are also other possibilities like con-
tinua with the layered molecular structure or surface defects. The classical
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curved space results might be applicable in geophysical or ecological prob-
lems. Realize, e.g., catastrophes like those of tankers and their consequences
like the resulting motion of two-dimensional pollution “spots” on the oceanic
surface, or the sliding motion of continental plates [5].

We follow the standard procedure of quantization in Riemannian mani-
folds, i.e., we use the L2-Hilbert space of wave functions in the sense of the
usual Riemannian measure (volume element). The classical kinetic energy
is replaced by the corresponding quantum expression based on the Laplace–
Beltrami operator. The separation of variables is performed and then the
corresponding one-dimensional Schrödinger equations are solved using the
Sommerfeld polynomial method [6, 7].

2. Classical description

Let (M, g) be an n-dimensional Riemann space, where M is a manifold
and g is a metric tensor defined on it. It is clear that in the general case, there
is no concept of extended affinely- or metrically-rigid bodies in Riemannian
manifolds, because it is rather typical that their isometry and affine groups
are trivial. However, we can consider infinitesimal objects of this kind, so
small that one can consider them as injected into the tangent spaces. Strictly
speaking, such objects are structured material points, i.e., material points
with attached linear bases describing internal degrees of freedom. Let us
recall that the degrees of freedom were represented by the spatial coordinates
xi (i = 1, . . . , n) and the components eiA of the attached co-moving basis eA
(A = 1, . . . , n) [1]. In the metrically-rigid case, eA are assumed orthonormal,

gije
i
Ae

j
B = δAB , (1)

if they are general, our system is an infinitesimal affinely-rigid body (a homo-
geneous deformable gyroscope). The equations of motion in the metrically-
rigid case are noneffective in practical calculations, because the quantities
eiA are not independent generalized coordinates. The way out is to fix some
orthonormal field of frames EA, usually somehow distinguished by the ge-
ometry of (M, g). Then, we take the following expansion:

eA(t) = EB(x(t))R
B
A(t) ,

where R(t) is a time-dependent orthogonal matrix, i.e.

δCDR
C
AR

D
B = δAB .

There are some standard methods for parameterizing R(t) like Euler angles,
rotation vector, etc. In the affinely-rigid case, when no constraints on eA are
imposed, there are no essential reasons to use the prescribed reference frame
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EA any longer. But we are interested in problems in which finite rotations
interact with extra imposed infinitesimal deformations. It is more convenient
and easier to perform calculations if we still use prescribed anholonomic
orthonormal frames EA. In a general case of affine motion, i.e., the one
without constraints (1), the expression for the total kinetic energy has the
form [1]

T = Ttr + Tint =
m

2
gij
dxi

dt

dxj

dt
+

1

2
gij
DeiA
Dt

DejB
Dt

JAB . (2)

Obviously, it remains also true when (1) is imposed. In this formula, the
descriptors “tr” and “int” refer obviously to the translational and internal
parts, m denotes the mass, and JAB = JBA are co-moving components of
the tensor of inertia. If we take the expansion

eA(t) = EB(x(t))φ
B
A(t) ,

where φ(t) ∈ GL(n,R) is a general nonsingular matrix then, we obtain for
the internal part of kinetic energy the following expression

Tint =
1
2δMNφ

M
Kφ

N
LΩ̂

K
AΩ̂

L
BJ

AB . (3)

The affine velocity Ω̂ in the co-moving representation is defined by

DeB
Dt

:= eAΩ̂
A
B ,

then

Ω̂A
B =

(
φ−1

)A
FΓ

F
DCφ

D
Bφ

C
Gv

G +
(
φ−1

)A
C
dφCB
dt

, (4)

where ΓFDC are the anholonomic components of the Levi-Civita affine con-
nection with respect to EA and the symbols

vG = eGi
dxi

dt

are the co-moving components of the translational velocity.
In the general case of affine motion, the formula (4) may be written in

an abbreviated form
Ω̂ = Ω̂dr + Ω̂rl ,

where

Ω̂dr
A
B = φ−1A

FΓ
F
DCφ

D
Bφ

C
Gv

G , (5)

Ω̂rl
A
B = φ−1A

C
dφCB
dt

. (6)



846 A. Martens

The labels “dr” and “rl” refer respectively to “drift” (or “drive”) and “relative”.
The reason is that φ refers to affine rotations with respect to the just passed
prescribed reference frame E; the first term describes the time rate of affine
rotations contained in the field E itself. When gyroscopic constraints are
imposed, all these Ω̂-objects become skew-symmetric angular velocities. To
stress this, sometimes, but not always, we shall then use the symbols ω̂, ω̂dr

and ω̂rl.
One of analytical advantages following from the prescribed reference

frame E is the possibility of using the polar and two-polar decomposi-
tions [8, 9]

φ = UA = BU = LDR−1 ,

where U , L, R are orthogonal, A, B are symmetric, D is diagonal, and
obviously,

B = UAU−1 .

As usual, U , L, R denote fictitious gyroscopic degrees of freedom ex-
tracted from φ ∈ GL(n,R). The corresponding “co-moving” angular veloci-
ties are given by the expressions

ω̂rl = U−1dU

dt
, χ̂rl = L−1dL

dt
, ϑ̂rl = R−1dR

dt
.

Obviously, the “spatial” representation may be used

ωrl =
dU

dt
U−1, χrl =

dL

dt
L−1, ϑrl =

dR

dt
R−1.

However, in calculations appearing in practical problems, the “co-moving”
objects are more convenient. Of course, in the two-dimensional world, when
n = 2, these representations coincide.

After some calculations, one can show that the kinetic energy of internal
motion Tint may be expressed in the following way in terms of the polar
decomposition:

Tint = −
1

2
Tr
(
AJAω̂2

)
+Tr

(
AJ

dA

dt
ω̂

)
+

1

2
Tr

(
J

(
dA

dt

)2
)
, (7)

where
ω̂ = ω̂dr + ω̂rl = ω̂dr + U−1dU

dt
, (8)

and obviously ω̂dr is the restriction of Ω̂dr (5) to the U -rigid motion

ω̂dr
A
B =

(
U−1

)A
FΓ

F
DCU

D
BU

C
Ev

E . (9)



Test Affinely-rigid Bodies in Riemannian Spaces and Their Quantization 847

The two-polar decomposition becomes analytically useful in doubly-iso-
tropic dynamical problems, i.e., the isotropic ones both in the physical and
micromaterial spaces. This double isotropy imposes certain restrictions both
on the kinetic and potential energies. What concerns the very kinetic energy,
the inertial tensor must be isotropic J = I ·idn (idn denotes the n×n identity
matrix, I is a scalar constant). Then one can show that (7) becomes

Tint = −
I

2
Tr
(
D2χ̂ 2

)
− I

2
Tr
(
D2ϑ̂

2
)
+ ITr

(
Dχ̂Dϑ̂

)
+
I

2
Tr

((
dD

dt

)2
)
,

(10)
where now

ϑ̂ = R−1dR

dt
, (11)

χ̂ = χ̂dr + χ̂rl = χ̂dr + L−1dL

dt
, (12)

χ̂dr
A
B =

(
L−1

)A
FΓ

F
DCL

D
BL

C
Ev

E . (13)

The last formula is quite analogous to (9). Just like there, χ̂ contains the
“drive” term built of the connection coefficients. It is only the L-rotation
that is coupled in this way to spatial geometry; the R-rotation is geometry-
independent.

We conclude that (10) is structurally identical with the corresponding
formula for extended affine bodies [9] with the proviso, however, that χ̂
contains the “drive” term. The expression for ϑ̂ is free of such a correc-
tion. Everything that has to do with (M,Γ, g)-geometry is absorbed by the
χ̂-term.

3. Special two-dimensional cases

Let us now consider some instructive special examples, namely, the two-
dimensional test affinely-rigid body moving in constant-curvature spaces
like the spherical space S2(0, R) and pseudo-spherical Lobachevsky space
H2,2,+(0, R). If no gyroscopic constraints are imposed and the internal mo-
tion is affine, then, of course, there are four internal degrees of freedom;
together with translational motion one obtains six degrees of freedom. We
use the same, just as in [1], parametrization of these worlds, i.e., (r, ϕ) co-
ordinates. We consider highly symmetric systems, when the internal inertia
is isotropic, so we can use the two-polar decomposition. When expressed in
terms of the two-polar decomposition, i.e.,

φ = LDR−1 ∈ GL(2,R) ,
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then φ is parameterized by generalized coordinates α, β, λ, µ, where

L(α) =

[
cosα − sinα
sinα cosα

]
, R(β) =

[
cosβ − sinβ
sinβ cosβ

]
,

D(λ, µ) =

[
λ 0
0 µ

]
.

From now on, all angular velocities become one-dimensional objects, denoted
by scalar factors χ, ϑ, more precisely, they are equal to χε and ϑε, where

ε :=

[
0 −1
1 0

]
, i.e.,

χ̂ = L−1dL

dt
= χ

[
0 −1
1 0

]
, ϑ̂ = R−1dR

dt
= ϑ

[
0 −1
1 0

]
,

and χ is given by the following expressions:

(i) sphere:

χ = χrl + χdr =
dα

dt
+ cos

r

R

dϕ

dt
,

(ii) pseudosphere:

χ = χrl + χdr =
dα

dt
+ cosh

r

R

dϕ

dt
,

but ϑ has no “drive” term, i.e.,

ϑ =
dβ

dt
.

The internal kinetic energy is given by

Tint =
I

2

((
dλ

dt

)2

+

(
dµ

dt

)2
)
+
I
(
λ2 + µ2

)
2

χ2 +
I
(
λ2 + µ2

)
2

ϑ2 − 2Iλµχϑ ,

and the translational part of the kinetic energy Ttr has the form [1]:

(i) sphere:

Ttr =
m

2

((
dr

dt

)2

+R2 sin2
r

R

(
dϕ

dt

)2
)
,
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(ii) pseudosphere:

Ttr =
m

2

((
dr

dt

)2

+R2 sinh2
r

R

(
dϕ

dt

)2
)
.

It turns out that to avoid some embarrassing cross-terms, it is convenient
to introduce the “mixed” coordinates

x :=
1√
2
(λ− µ) , y :=

1√
2
(λ+ µ) , γ := α+ β , δ := α− β .

The inverse rules read that

λ =
1√
2
(x+ y) , µ =

1√
2
(y − x) , α =

1

2
(γ + δ) , β =

1

2
(γ − δ) .

3.1. Spherical case

Let us order our generalized coordinates qi, i = 1, 6, as follows:

r, ϕ, γ, δ, x, y .

As usual in analytical mechanics, the kinetic energy may be identified with
some Riemannian structure on the configuration space

T =
m

2
Gij(q)

dqi

dt

dqj

dt
,

where for the above ordering of variables, the matrix [Gij ] of the metric
tensor G consists of three blocks subsequently placed along the diagonal
(looking from the top to bottom):

— the 1× 1 block M1, i.e.,
M1 = [1] ,

— the 3× 3 block M2 given as follows:

M2 =


R2 sin2 r

R + I
m

(
x2 + y2

)
cos2 r

R
I
mx

2 cos r
R

I
my

2 cos r
R

I
mx

2 cos r
R

I
mx

2 0

I
my

2 cos r
R 0 I

my
2

 ,

— the 2× 2 isotropic block M3, i.e.,

M3 =
I

m
I2 =

[
I
m 0
0 I

m

]
,
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where, obviously, I2 denotes the 2× 2 identity matrix. Explicitly, the block
matrix [Gij ] is given as follows:

[Gij ] =

 M1 0 0
0 M2 0
0 0 M3

 .
For the system with deformative degrees of freedom as above, the geode-

tic model is not physical because it admits unlimited expansion and contrac-
tion. Therefore, some potential must be assumed. Just as in the gyroscopic
case, we restrict ourselves to some special class of potentials, assuming in
particular that all angles ϕ, α, β (equivalently ϕ, γ, δ) are cyclic variables.
Let us assume that the potential energy separates explicitly with respect to
a cyclic variables, i.e.,

V (r, x, y) = Vr(r) + Vx(x) + Vy(y) .

The r-geodetic model with Vr(r) = 0 is obviously well formulated. But in
d’Alembert models, the (x, y)-geodetic case (Vx(x) = 0, Vy(y) = 0) would
be quite not physical because of admitting unlimited expansion and con-
traction of the body. This is not the case in affine models where the “elastic
vibrations” may be encoded in the very kinetic energy [10].

We consider a special case, when the translational part of the potential
energy V (r) has the Bertrand structure [1]:

(a) oscillatory potentials:

Vr(r) =
ξ

2
R2tan2

r

R
, (14)

(b) Kepler–Coulomb potentials:

Vr(r) = −
Υ

R
cot

r

R
. (15)

Of course, with the spherical topology also the geodetic problem belongs
here:

(c) Vr(r) = 0, i.e., (in a sense) the special case of (a) or (b) when ξ = 0,
Υ = 0.

The mentioned Bertrand models lead to completely integrable and maxi-
mally degenerate (hyperintegrable) problems. But even for the simplest, i.e.,
geodetic, models with the internal degrees of freedom the situation drasti-
cally changes. There exist interesting and practically applicable integrable
models, but as a rule interaction with internal degrees of freedom reduces
or completely removes degeneracy [1, 11–13].
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Let us tell a few words about the motion on the plane of deformation
variables x, y. There exist “universaly separable” potentials and they have
the form

V (x, y) =
A

x2
+
B

y2
+ C

(
x2 + y2

)
,

where A,B,C are constants. By an appropriate choice of A,B,C (more
generally, some arbitrary one-variable functions might be used instead of
them), one can obtain the potential with a local minimum at the reference
configuration and in a certain neighbourhood of this configuration some
phenomenological conditions, known from elasticity theory, will be satisfied.
Thus, we consider the following model of potential

V (x, y) =
κ
y2

+
κ
2

(
x2 + y2

)
, κ > 0 , (16)

where κ is a constant. The first term prevents any kind of collapse of the
two-dimensional body: to the point or to the straight line. The second term
of the “harmonic oscillator” type prevents the unlimited expansion.

Just as in the flat-space problems, there exist reasonably-looking mod-
els separable in other coordinates in the space of deformation invariants,
moreover, separable simultaneously in several systems of coordinates in this
space, thus, probably degenerate (hyperintegrable) ones.

An interesting class of separable models is obtained when one uses the
polar coordinates (%, ε) in the space of deformation invariants

x = % sin ε , y = % cos ε . (17)

Then, the kinetic energy

T =
m

2
Gij(q)

dqi

dt

dqj

dt

with coordinates ordered like(
q1, q2, q3, q4, q5, q6

)
= (r, ϕ, γ, δ, %, ε)

has the block matrix of the metric components

[Gij ] =

 K1 0 0
0 K2 0
0 0 K3

 ,
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where

K1 = [1] ,

K2 =


R2 sin2 r

R + I
m%

2 cos2 r
R

I
m%

2 sin2 ε cos r
R

I
m%

2 cos2 ε cos r
R

I
m%

2 sin2 ε cos r
R

I
m%

2 sin2 ε 0

I
m%

2 cos2 ε cos r
R 0 I

m%
2 cos2 ε

 ,

K3 =

[
I
m 0
0 I

m%
2

]
=

I

m

[
1 0
0 %2

]
. (18)

As previously, the system is separable (thus, completely integrable) for
potentials independent of (ϕ, α, β). It is easily seen that such problems with
cyclic variables (ϕ, α, β) are separable for deformation potentials of the form

V (%, ε) = V%(%) +
Vε(ε)

%2
, (19)

i.e., for the total potentials, we have that

V (r, %, ε) = Vr(r) + V%(%) +
Vε(ε)

%2
. (20)

The potentials of the form (19), (20) are very convenient from the point
of view of nonlinear macroscopic elasticity. Being compatible with the very
nature of deformative degrees of freedom,s they are also interesting in the
theory of infinitesimal objects. Strictly speaking, we consider the following
model of potential:

V (%, ε) =
κ

%2 cos2 ε
+

κ
2
%2 , κ > 0 . (21)

Again, the first term prevents any kind of collapse of the body and the second
term of the “harmonic oscillator” type prevents the unlimited expansion. The
natural state (no deformation) minimizes the potential energy; it is a stable
equilibrium. Extension in one direction is accompanied by contraction in
the orthogonal one.

3.2. Pseudospherical case

Let us now consider a deformable top moving in the Lobachevsky space.
All symbols concerning internal degrees of freedom are just those used in
spherical geometry. The metric tensor G underlying the kinetic energy ex-
pression, i.e.,
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T =
m

2
Gij(q)

dqi

dt

dqj

dt
,

has the form analogous to the spherical case with the trigonometric functions
simply replaced by the hyperbolic ones without any change of sign. Thus,
the matrix [Gij ] consists of three blocks M1,M2,M3, where

M1 = [1] ,

M2 =


R2 sinh2 r

R + I
m

(
x2+y2

)
cosh2 r

R
I
mx

2 cosh r
R

I
my

2 cosh r
R

I
mx

2 cosh r
R

I
mx

2 0

I
my

2 cosh r
R 0 I

my
2

 ,

M3 =
I

m
I2 =

[
I
m 0
0 I

m

]
.

Again, we assume that the potential energy does not depend on the an-
gles (ϕ, α, β), i.e. they are cyclic variables for the total Hamiltonian. Sim-
ilarly, when the (x, y)-deformation invariants are used, the most natural
separable potentials have the explicitly separated form

V (r, x, y) = Vr(r) + Vx(x) + Vy(y) ,

where Vr(r) is a Bertrand-type potential [1], i.e.

(a) the “harmonic oscillator”-type potential:

V (r) =
ξ

2
R2tanh2

r

R
, ξ > 0 , (22)

(b) the “attractive Kepler–Coulomb”-type one

V (r) = −Υ
R
coth

r

R
, Υ > 0 , (23)

and V (x, y) is given by (16).
Exactly as in the theory of deformable gyroscope, in the spherical space,

it is convenient and practically useful to parameterize deformation invariants
with the use of polar variables %, ε (see (17)). The only formal difference is
that the trigonometric functions of r/R (but not those of ε!) are replaced
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by the hyperbolic ones without the change of sign, thus, K2 (18) takes on
the form

K2=


R2 sinh2 r

R+ I
m%

2 cosh2 r
R

I
m%

2 sin2 ε cosh r
R

I
m%

2 cos2 ε cosh r
R

I
m%

2 sin2 ε cosh r
R

I
m%

2 sin2 ε 0

I
m%

2 cos2 ε cosh r
R 0 I

m%
2 cos2 ε

 .

4. The quantized problems

After all above classical preliminaries, we can formulate the quantized
version of our two-dimensional models. Before doing this, we remain briefly
within the traditional Schrödinger framework, i.e., with wave mechanics on
differential manifolds [14].

Let Q be a configuration space, i.e., a differential manifold of dimen-
sion f (f = dimQ is the number of classical degrees of freedom). If it is
endowed with some positive volume measure µ, then the wave functions may
be considered as complex scalar fields Ψ : Q→ C. The corresponding scalar
product is given by

〈Ψ1|Ψ2〉 =
∫
Ψ1(q)Ψ2(q)dµ(q)

and our Hilbert space is meant as L2(Q,µ). Usually, µ comes from some
Riemannian structure (Q,G) and then

dµ(q) =
√
|det[Gij ]|dq1 . . . dqf .

For simplicity, the square-root expression will be denoted by
√
|G|.

Quantum operator of the kinetic energy is given by

T̂ = −~2

2
∆ ,

where ∆ denotes the Laplace–Beltrami operator corresponding to G,

∆ =
1√
|G|

∑
i,j

∂i
√
|G|Gij∂j = Gij∇i∇j ,

and ∇ is the Levi-Civita covariant differentiation in the G-sense.
When the problem is non-geodetic and based on some potential V (q),

then the corresponding quantum Hamiltonian is given by

Ĥ = T̂ + V̂ ,
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where V̂ denotes the operator multiplying wave functions by the potential V ,(
V̂ Ψ
)
(q) = V (q)Ψ(q) ,

usually we do not distinguish them graphically. Below, we return to our
two-dimensional models.

A basis of solutions of the stationary Schrödinger equation

ĤΨ = EΨ

has the form:

(i) x, y-coordinates:

Ψ(r, ϕ, γ, δ, x, y) = fr(r)fϕ(ϕ)fγ(γ)fδ(δ)fx(x)fy(y) .

It is convenient to use the new variable θ = r/R for our calculations, then
we put

Ψ(θ, ϕ, γ, δ, x, y) = fθ(θ)fx(x)fy(y)e
isϕeijγeiuδ ,

where s, j, u are integers.

(ii) %, ε-coordinates:

Ψ(r, ϕ, γ, δ, %, ε) = fr(r)fϕ(ϕ)fγ(γ)fδ(δ)f%(%)fε(ε) .

For θ = r/R, we have

Ψ(θ, ϕ, γ, δ, %, ε) = fθ(θ)f%(%)fε(ε)e
isϕeijγeiuδ .

4.1. Spherical case

After some calculations, we obtain for the Laplace–Beltrami operator
the expression written below. Depending on the considered coordinates, it
has the following form:

(i) x, y-coordinates:

∆ =
∂2

∂r2
+

cot r
R

R

∂

∂r
+

1

R2 sin2 r
R

∂2

∂ϕ2
+

(
m

Ix2
+

cot2 r
R

R2

)
∂2

∂γ2

+

(
m

Iy2
+

cot2 r
R

R2

)
∂2

∂δ2
−

2 cos r
R

R2 sin2 r
R

∂2

∂ϕ∂γ
−

2 cos r
R

R2 sin2 r
R

∂2

∂ϕ∂δ

+
2 cot2 r

R

R2

∂2

∂δ∂γ
+
m

I

∂2

∂x2
+
m

Ix

∂

∂x
+
m

I

∂2

∂y2
+
m

Iy

∂

∂y
.
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(ii) %, ε-coordinates:

∆ =
∂2

∂r2
+

cot r
R

R

∂

∂r
+

1

R2 sin2 r
R

∂2

∂ϕ2
+

(
m

I%2 sin2 ε
+

cot2 r
R

R2

)
∂2

∂γ2

+

(
m

I%2 cos2 ε
+

cot2 r
R

R2

)
∂2

∂δ2
−

2 cos r
R

R2 sin2 r
R

∂2

∂ϕ∂γ
−

2 cos r
R

R2 sin2 r
R

∂2

∂ϕ∂δ

+
2 cot2 r

R

R2

∂2

∂δ∂γ
+
m

I

∂2

∂%2
+
2m

I%

∂

∂%
+
m

I%2
∂2

∂ε2
+
m(cos2 ε−sin2 ε)
I%2 sin ε cos ε

∂

∂ε
.

Hence, the stationary Schrödinger equation with an arbitrary potential V
leads after the standard separation procedure to the following system of one-
dimensional eigenequations:

(i) x, y-coordinates:

d2fx(x)

dx2
+

1

x

dfx(x)

dx
−
(
(k + l)2

4x2
− 2I

~2
(Ex(x)− Vx(x))

)
fx(x) = 0 ,

d2fy(y)

dy2
+

1

y

dfy(y)

dy
−
(
(k − l)2

4y2
− 2I

~2
(Ey(y)− Vy(y))

)
fy(y) = 0 ,

d2fθ(θ)

dθ2
+

cot θ

R

dfθ(θ)

dθ

−
(
(s− k cos θ)2

R2 sin2 θ
− 2m

~2
(E − Ex(x)− Ey(y)− Vθ(θ))

)
fθ(θ) = 0 , (24)

where E, Ex(x), Ey(y) are fixed values of energies. The relationship between
(γ, δ) and (α, β) implies that k = j + u and l = j − u.
(ii) %, ε-coordinates:

d2f%(%)

d%2
+

2

%

df%(%)

d%
−
(
2I

~2
(C − V%(%)−

A

%2

)
f%(%) = 0 ,

d2fε(ε)

dε2
+ 2 cot 2ε

dfε(ε)

dε

−
(
k2 + 2kl cos 2ε+ l2

sin2 2ε
− 2I

~2
(A− Vε(ε)

)
fε(ε) = 0 ,

d2fθ(θ)

dθ2
+

cot θ

R

dfθ(θ)

dθ

−
(
(s− k cos θ)2

R2 sin2 θ
− 2m

~2
(E − C − Vθ(θ))

)
fθ(θ) = 0 , (25)

where A,C are separation constants and E is a fixed value of energy.
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It is natural to expect that for Bertrand potentials discussed in [1] and for
potentials given by equations (16), (21), the resulting Schrödinger equations
should be rigorously solvable in terms of some standard special functions.
The most convenient way of solving them is to use the Sommerfeld polyno-
mial method [10, 12, 15, 16]. In this method, the solutions are expressed
by the usual or confluent Riemann P -functions. They are deeply related
to the hypergeometric functions (respectively, usual F or confluent F1). If
the usual convergence demands are imposed, then the hypergeometric func-
tions become polynomials and our solutions are expressed by elementary
functions. At the same time, the energy levels and separation constants are
expressed by the eigenvalues of the corresponding operators. There exists
some special class of potentials to which the Sommerfeld polynomial method
is applicable. The restriction to solutions expressible in terms of Riemann
P -functions is reasonable, because this class of functions is well investigated
and many special functions used in physics may be expressed by them.

4.2. Examples

The one-dimensional eigenequations may be solved only when the explicit
form of potential is specified. Here, we consider a special case, when the
translational part of the potential energy V (r) (V (θ)) has the Bertrand
structure, i.e., oscillatory potential (14) and internal part is given by (16),
(21) for (x, y)- and (%, ε)-deformation invariants, respectively.

Applying the Sommerfeld polynomial method, we obtain the energy lev-
els as follows:

(i) x, y-coordinates:

Ex(x) =
~Ω̃
2

(4nx + 2 + |k + l|) , (26)

Ey(y) =
~Ω̃
2

(
4ny + 2 +

√
(k − l)2 + 16κI

~2

)
, (27)

and finally

E =
1

2
~Ω

(2nr+1+|s−k|+
√

(s+k)2+
ξmR4

~2

)2

−4k2− 4ξmR4

~2
−1


+
1

2
~Ω̃

(
4n+4+|k+l|+

√
(k−l)2+ 16κI

~2

)
, (28)
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where Ω = ~ω/4mR2, ω =
√
ξ/m, Ω̃ =

√
κ/I, nr, n = 0, 1, . . . The energy

in (28) depends on an integer combination of the quantum numbers, i.e.,
n = nx + ny. After some calculations, we obtain the wave functions in the
form:

fx(x) = xχκ
1
4
+χ

2 e−
κ
2
x2F1

(
−nx; 1 + χ;κx2

)
, (29)

fy(y) = yικ
1
4
+ ι

2 e−
κ
2
y2F1

(
−ny; 1 + ι;κy2

)
, (30)

fr(r) =
(
cos

r

R

)ζ (
sin

r

R

)ν
F
(
−nr, nr + 1 + ζ + ν; 1 + ζ; cos2

r

R

)
, (31)

where

χ =
1

2

√
(k − l)2 + 16κI

~2
, κ =

√
κI
~2

, ι =
1

2
|k + l| ,

ζ =

√
(s+ k)2 +

ξmR4

~2
, ν = |s− k| .

(ii) %, ε-coordinates:

Here, the models (14), (21) may be also rigorously solved on the quantum
level. We obtain the following expressions for the spectrum of eigenvalues
of the constants C, A

C =
1

2
~Ω̃

(
4n% + 2 +

√
1 +

8I

~2
A

)
, (32)

A =
~2

8I

(4nε + 2 + |k + l|+
√
(k − l)2 + 16κI

~2

)2

− 1

 . (33)

Finally, we obtain the energy spectrum in the following form:

E =
1

2
~Ω

(2nr+1+|s−k|+
√
(s+k)2+

ξmR4

~2

)2

−4k2 − 4ξmR4

~2
−1


+
1

2
~Ω̃

(
4n+4+|k+l|+

√
(k − l)2 + 16κI

~2

)
. (34)

The energy in (34) depends on an integer combination of the quantum num-
bers, i.e., n = n% + nε. The functions f%(%), fε(ε) have the form:

f%(%) = %pκ
1+2p

4 e−
κ
2
%2F1

(
−n%; 1 + p;κ%2

)
, (35)

fε(ε) = (cos 2ε)χ (sin 2ε)ι F (−n%, n% + 1 + χ+ ι; 1 + χ; cos 2ε) , (36)
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where

p =
1

2

(
1 +

√
1 +

8I

~2
A

)
and fr(r) is given by (31).

4.3. Pseudospherical case

Let us now consider a deformable top moving in the Lobachevsky space.
One can easily show that the Laplace–Beltrami operators and one-dimen-
sional eigenequations take on the form exactly as in the theory of deformable
gyroscope in the spherical space. The only formal difference is that the
trigonometric functions of r/R (θ), (but not those of ε!), are replaced by the
hyperbolic ones without the change of sign, thus,

(i) x, y-coordinates:

∆ =
∂2

∂r2
+

coth r
R

R

∂

∂r
+

1

R2 sinh2 r
R

∂2

∂ϕ2
+

(
m

Ix2
+

coth2 r
R

R2

)
∂2

∂γ2

+

(
m

Iy2
+

coth2 r
R

R2

)
∂2

∂δ2
−

2 cosh r
R

R2 sinh2 r
R

∂2

∂ϕ∂γ
−

2 cosh r
R

R2 sinh2 r
R

∂2

∂ϕ∂δ

+
2 coth2 r

R

R2

∂2

∂δ∂γ
+
m

I

∂2

∂x2
+
m

Ix

∂

∂x
+
m

I

∂2

∂y2
+
m

Iy

∂

∂y
,

and then

d2fx(x)

dx2
+

1

x

dfx(x)

dx
−
(
(k + l)2

4x2
− 2I

~2
(Ex(x)− Vx(x))

)
fx(x) = 0 ,

d2fy(y)

dy2
+

1

y

dfy(y)

dy
−
(
(k − l)2

4y2
− 2I

~2
(Ey(y)− Vy(y))

)
fy(y) = 0 ,

d2fθ(θ)

dθ2
+

coth θ

R

dfθ(θ)

dθ

−
(
(s−k cosh θ)2

R2 sinh2 θ
− 2m

~2
(E−Ex(x)−Ey(y)−Vθ(θ))

)
fθ(θ) = 0 . (37)
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(ii) %, ε-coordinates:

∆ =
∂2

∂r2
+

coth r
R

R

∂

∂r
+

1

R2 sinh2 r
R

∂2

∂ϕ2
+

(
m

I%2 sin2 ε
+

coth2 r
R

R2

)
∂2

∂γ2

+

(
m

I%2 cos2 ε
+

coth2 r
R

R2

)
∂2

∂δ2
−

2 cosh r
R

R2 sinh2 r
R

∂2

∂ϕ∂γ
−

2 cosh r
R

R2 sinh2 r
R

∂2

∂ϕ∂δ

+
2 coth2 r

R

R2

∂2

∂δ∂γ
+
m

I

∂2

∂%2
+

2m

I%

∂

∂%
+

m

I%2
∂2

∂ε2
+
m
(
cos2 ε− sin2 ε

)
I%2 sin ε cos ε

∂

∂ε
,

and then

d2f%(%)

d%2
+

2

%

df%(%)

d%
−
(
2I

~2

(
C − V%(%)−

A

%2

))
f%(%) = 0 ,

d2fε(ε)

dε2
+ 2 coth 2ε

dfε(ε)

dε

−
(
k2 + 2kl cos 2ε+ l2

sin2 2ε
− 2I

~2
(A− Vε(ε))

)
fε(ε) = 0 ,

d2fθ(θ)

dθ2
+
coth θ

R

dfθ
dθ
−
(
(s−k cosh θ)2

R2 sinh2 θ
− 2m

~2
(E−C−Vθ(θ))

)
fθ = 0 . (38)

4.4. Examples

Again, translational part of the potential energy has the Bertrand struc-
ture, i.e., the “harmonic oscillator”-type potential (22) and internal part is
given by (16), (21) for (x, y)- and (%, ε)-deformation invariants, respectively.

We find the energy levels in the form:

(i) x, y-coordinates:

E =
1

2
~Ω

(2nr+1+|s−k|+
√
(s+k)2+

ξmR4

~2

)2

+4k2− 4ξmR4

~2
−1


+
1

2
~Ω̃

(
4n+ 4 + |k + l|+

√
(k − l)2 + 16κI

~2

)
, (39)

and Ex(x), Ey(y) are given by (26) and (27), respectively. The energy
in (39) depends on an integer combination of the quantum numbers, i.e.,
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n = nx + ny. After some calculations, we obtain the wave functions fx(x),
fy(y) given by (29), (30) and fr(r) is as follows:

fr(r) =
(
cosh

r

R

)ζ (
sinh

r

R

)ν
F
(
−nr, nr + 1 + ζ + ν; 1 + ζ; cosh2

r

R

)
.

(40)

(ii) %, ε-coordinates:

Here, the expression for the energy levels E is as follows:

E =
1

2
~Ω

(2nr+1+|s−k|+
√

(s+k)2+
ξmR4

~2

)2

+4k2− 4ξmR4

~2
−1


+
1

2
~Ω̃

(
4n+ 4 + |k + l|+

√
(k − l)2 + 16κI

~2

)
. (41)

The corresponding spectrum of eigenvalues of the constants C, A is given
by (32), (33), respectively. The energy in (41) depends on an integer com-
bination of the quantum numbers, i.e., n = n% + nε. The functions f%(%),
fε(ε) and fr(r) are given by (35), (36), (40), respectively.

5. Conclusions

There exist deformation potentials given by the formula

V =
κ
y2

+
κ
2

(
x2 + y2

)
=

κ
%2 cos2 ε

+
κ
2
%2 , κ > 0 ,

which could lead to the Schrödinger equation separable simultaneously in
two mentioned above coordinate systems. As we know from analytical me-
chanics, this simultaneous separability usually has to do with hidden sym-
metries and degeneracy of the problem. The considered systems are one-fold
degenerate. On the quantum level, this fact is reflected by the existence of
five quantum numbers labeling the energy levels. They cannot be combined
into a single quantum number, i.e., there is no total quantum degeneracy
(hyperintegrability) with respect to them.
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