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Abstract. We consider a class of viscoelastic rate type models that in particular
includes: (i) Oldroyd-B fluid model with three parameters, (ii) nonlinear fluid
model derived in Rajagopal K. R., Srinivasa A. R. [2000] with three parameters,
and (iii) nonlinear model with five parameters. We are interested in observing
how well are these models capable to capture the experimental data for asphalt
performed by J. Murali Krishnan, Indian Institute of Technology, Madras using
dynamic shear rheometer. We find out that the model (i) is not able to capture
the experimentally observed overshoot for the torque, while we obtain overshoots
for the models (ii) and (iii). Also, there are very small significant differences in the
results established for models (ii) and (iii).

Introduction

In this paper we look for a mathematical model that would be able to describe the behavior of
asphalt. The asphalt is a very complicated geomaterial and no suitable model to describe its disparate
behavior exists at this moment. Many details about this material can be found in Krishnan J. M.,

Rajagopal K. R. [2003]. We consider three different rate-type fluid models and we investigate how well
are these models capable to capture experiment with overshoot performed by J. Murali Krishnan.

Experimental data

We start with describing the experiment with asphalt performed by J. Murali Krishnan at Indian
Institute of Technology Madras, Krishnan, J. M. [2007]. The experiment was performed using a dynamic
shear rheometer which consists of two circular plates. A spherical sample of asphalt is placed between
the plates and is squeezed into a disc. The lower plate is fixed and does not move, the upper plate starts
to rotate at t = 0 s with a constant angular velocity ω0 and the corresponding torque is recorded for
times 0 s≤ t ≤ T = 15 s. The data set consists of the following: The height of the specimen is h = 1
mm and is maintained during the measurement. The radius of the plate is R = 4 mm. The experiment
is conducted at a temperature of 35 ◦C at three different angular velocities. The measured torque is
plotted against time in Figure 1.
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Figure 1. Experimental data: torque vs. time at constant temperature 35 ◦C.
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Viscoelastic models

We are modeling the asphalt as an incompressible homogenous continuum with constant density ρ.
Then the balance of mass reduces to

div v = 0, (1)

where v is the velocity. Balance of linear momentum is given as

ρv̇ = div T, (2)

and in the absence of internal couples, the balance of angular momentum implies that the stress tensor
T is a symmetric tensor. Since we consider only isothermal processes, the balance of energy combined
with the second law of thermodynamics reduces to the reduced thermodynamical inequality

0 ≤ ξ = T ·D − ρψ̇, (3)

where ψ is the Helmholtz free energy and ξ is the rate of entropy production. These three balance
equations and the reduced thermodynamical inequality have to be satisfied for all three viscoelastic
models that we present in this paper. All considered models are the rate-type models, which means
that the response between the stress tensor T and the symmetric part of the velocity gradient D is
characterized through the differential equation. First we introduce the standard Oldroyd-B model, then
two nonlinear models.

Oldroyd-B

Oldroyd-B is a standard linear model for viscoelastic fluids, Oldroyd J. G. [1950]. One of the possible
way, how to derive this model, is the generalization of the model that we get by considering viscous fluid
containing elastic springs with beads on its ends. The Oldroyd-B is in the following form

T = −pI + 2ηD +GA,

A + τ
▽

A = 2τD,
(4)

where the upper convected Oldroyd derivative is defined as

▽

A= Ȧ− LA − ALT,

where L = ∇v. This model contains three parameters: τ relaxation time, η viscosity and G shear
modulus.

Nonlinear models

The nonlinear model was developed by Rajagopal K. R., Srinivasa A. R. [2000] using a framework for
developing nonlinear models based on two notions: natural configuration and the principle of maximum
entropy production.

The natural configuration κp(t) is a configuration that the body occupying the current configuration
κt attains on removal of external stimuli. More details about the concept of natural configuration can
be found in Rajagopal K. R., Srinivasa A. R. [2004a]. Now we define some kinematics quantities and
they are shown in Figure 2. The configuration κR denotes the reference (initial) configuration, the
infinitesimal line is mapped from the reference into the current configuration κt through the deformation
gradient FκR

. Infinitesimal line from the natural configuration κp(t) that at time t corresponds to κt is
mapped to infinitesimal line in κt through Fκp(t)

. Mapping G works between κR and κp(t). The whole
process is separated into purely elastic non-dissipative process Fκp(t)

and the dissipative G.
Using Fκp(t)

we can define the left Cauchy-Green tensor, the rate of deformation and its symmetric
part

B = Fκp(t)
FT

κp(t)
, Lp = ĠG−1, Dp =

1

2

(

Lp + LT
p

)

.

Now one can compute the Oldroyd derivative of B and obtain

▽

B= −2Fκp(t)
DpF

T
κp(t)

. (5)
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Figure 2. Natural configuration.

The derivation of the model in Rajagopal K. R., Srinivasa A. R. [2000] is based on specifying the
constitutive equations for two scalar quantities, namely Helmholtz free energy ψ and the rate of entropy
production ξ. Helmholtz free energy is described by the nonlinear neo-Hookean elastic response

ψ =
µ

2ρ
(trB− 3) . (6)

The rate of entropy production ξ indicates how the body dissipates energy

ξ = ǫ0(D · D) + ǫ1(Dp ·BDp), (7)

where ǫ0, ǫ1 > 0 in (7) are material coefficients. The first term in (7) represents the dissipation of
Newtonian fluid, the second term corresponds to the dissipation due to interaction of viscous and elastic
parts of fluid. Inserting (6) into the reduced thermodynamical inequality (3) we get

ξ = (T − µB) ·D + µB · Dp.

Now, we use the principle of maximum rate of entropy production, more details can be found
in Rajagopal K. R., Srinivasa A. R. [2004b]. So, we maximize ξ(D,Dp) among the values of D and
Dp fulfilling the constraints of incompressibility trD = trDp = 0 and the reduced thermodynamical
inequality (3). For this purpose we use the method of Lagrange multipliers and get

2
1 + λ1

λ1

ǫ0D = T − µB +
λ2

λ1

I,

2
1 + λ1

λ1

ǫ1BDp = µB +
λ3

λ1

I,

where λ1, λ2, λ3 are Lagrange multipliers. Using isotropy of neo-Hookean law, i.e. Fκp(t)
= FT

κp(t)
, doing

some algebraic manipulations and using (5) we arrive to the nonlinear model with three parameters (for
details see Rajagopal K. R., Srinivasa A. R. [2000]) that we summarize below.

Nonlinear model with three parameters

The stress tensor is in the form
T = −pI + ǫ0D + µB,

where B satisfies the following differential equation

▽

B= −2
µ

ǫ1
(B − λI) (8)

with

λ =
3

tr (B−1)
=

6 detB

(trB)
2 − tr (B2)

=
6

(trB)
2 − tr (B2)

.

The first equality is valid due to Cayley-Hamilton theorem, the other due to incompressibility. This
model contains three parameters: ǫ0, ǫ1 are the viscous coefficients, µ is the elastic coefficient.
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Nonlinear model with five parameters

In order to have a model that might be more suitable to describe the behavior of the asphalt, we
modify the above derivation by considering the rate of entropy production ξ in the more general form,
namely

ξ = ǫ0(D ·D)α + ǫ1(Dp · BDp)
β , α > 0, β > 0.5.

Proceeding as in derivation of nonlinear model with three parameters, we obtain

T = −pI + αχǫ0 (D · D)
α−1

D + µB

satisfying √
trB − 3λ

▽

B= −2(B− λI)
√
X, (9)

where X is a solution of the algebraic equation

β2ǫ21χ
2X2β−1 = µ2 (trB− 3λ) , χ =

ǫ0
ǫ1

(D ·D)
α

+Xβ

α
ǫ0
ǫ1

(D · D)
α

+ βXβ
. (10)

This model contains five parameters: ǫ0, ǫ1 viscous coefficients, µ elastic coefficient, α > 0, β > 0.5. For
α < 1 this model provides shear thinning, for α > 1 shear thickening, and for α = β = 1 reduces to the
previous model.

Simulation of the experiment

We simulate the experiment in the cylindrical coordinates r, ϕ, z because of the geometry of the
experiment. The flow is axially symmetric, that is why all variables do not depend on ϕ. For simplicity
we assume the velocity to be given by

v =

(

0,
ω(t)rz

h
, 0

)

,

where ω(t) = H0ω and H0 is the Heaviside Function. Furthermore we neglect the term ∂ω
∂t

, ω(t) = ω =
const. The initial conditions for the models are following (the material is relaxed at the beginning):

A(t = 0) = 0 for Oldroyd-B, (11)

B(t = 0) = 0 for nonlinear models.

After we solve the model, we compute the component of the stress tensor Tϕz, and from that we get by
integrating the torque M on the upper plate

M(t) =

∫

upper plate

rTϕz dS =

∫ R

0

2πr2Tϕz(r, z = h) dr. (12)

Oldroyd-B

Assume that the solution is in this form

p = p(t, r, z), v =
(

0,
ωrz

h
, 0
)

, A =





Arr Arϕ Arz

Arϕ Aϕϕ Aϕz

Arz Aϕz Azz



 (t, r, z).

Substitute it into the governing equations (4) and using the simplification and the initial conditions (11),
we get

∂p

∂r
= −GAϕϕ

r
,

∂p

∂z
= 0,

Arr = Arϕ = Arz = Azz = 0,
∂Aϕϕ

∂t
= −1

τ
Aϕϕ +

2rω

h
Aϕz,

∂Aϕz

∂t
= −1

τ
Aϕz +

rω

h
· .
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Since we are interested in torque (12), we need to know Aϕz to compute Tϕz. We have

Aϕz =
τrω

h

(

1 − e−t/τ
)

⇒ Tϕz =
ωr

h

(

η + τG(1 − e−t/τ )
)

⇒M =
πωR4

2h

(

η + τG(1 − e−t/τ )
)

.

From this formula we can immediately see that this model is not able to capture the overshoot of the
torque at the beginning of the experiment. The most convenient parameters τ, η,G are found using least
square method (Matlab function fit). The result is in Figure 3. The maximum relative error is 3.6%,
the average relative error is 2.8%. The maximum relative error gmax and average relative error gaverage
are computed as

gmax = max
0≤t≤T

∣

∣

∣

∣

1 − M(t)

E(t)

∣

∣

∣

∣

, gaverage =
1

T

∫ T

0

∣

∣

∣

∣

1 − M(t)

E(t)

∣

∣

∣

∣

,

where E(t) are the experimental data and M(t) is the computed torque.

Nonlinear model with three parameters

Again assuming the solution in the following form

p = p(t, r, z), v =
(

0,
ωrz

h
, 0
)

, B =





Brr Brϕ Brz

Brϕ Bϕϕ Bϕz

Brz Bϕz Bzz



 (t, r, z) (13)

and substituting into the governing equations (8) and using the simplification and the initial conditions
(11), we get

∂p

∂r
= µ

(

∂Bzz

∂r
+
Bzz

r
− Bϕϕ

r

)

,
∂p

∂z
= µ

∂Bzz

∂z
,

Brϕ = Brz = 0, Brr = Bzz ,

∂Bϕϕ

∂t
= −2µ

ǫ1
Bϕϕ +

2rω

h
Bϕz +

2µ

ǫ1
λ,

∂Bϕz

∂t
= −2µ

ǫ1
Bϕz +

rω

h
Bzz ,

∂Bzz

∂t
= −2µ

ǫ1
Bzz +

2µ

ǫ1
λ, λ =

3

2BϕϕBzz −B2
ϕz +B2

zz

.

Since we are again interested in knowing Bϕz, we solve only the last four equations. These equations
can not be solved analytically. First we substitute λ, then we get the set of three equations. We solve it
using Runge-Kutta method of the fourth order (Matlab function ode45) and compute

Tϕz(ǫ0, ǫ1, µ, r, t) = ǫ0rω/(2h) + µBϕz(µ/ǫ1, r, t).
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Figure 3. Fitting of Oldroyd-B at temperature
35 ◦C, ω = 0.5 rad.s−1.
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Figure 4. Fitting of the nonlinear model with three
parameters at temperature 35 ◦C, ω = 0.5 rad.s−1.
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Using the composite Simpson’s rule in four nodes we integrate it and get the torque

M(ǫ0, ǫ1, µ, t) =

∫ R

0

2πr2Tϕz(ǫ0, ǫ1, µ, r, t) dr.

We introduce the scalar function

g(ǫ0, ǫ1, µ) =

∫ T

0

|e(t) −M(ǫ0, ǫ1, µ, t)| dt

and find ǫ0, ǫ1, µ, so that they minimize g (Matlab function fminsearch). The result is in the Figure 4.
One can see that this model is better in capturing the overshoot of the torque at the beginning of the
experiment, but still the result is not perfect. The maximum relative error is 8.7%, the average relative
error is 1.1%.

Nonlinear model with five parameters

Again we assume the same form of solution as in the previous case (13) and substitute it into the
governing equations (9), use the simplification and the initial conditions (11). Since we are interested in
computing Bϕz, we need only the following seven equations

∂Brr

∂t
= −2

√
XBrr + 2

√
Xλ,

∂Brϕ

∂t
= −2

√
XBrϕ +

rω

h
Brz,

∂Brz

∂t
= −2

√
XBrz,

∂Bϕϕ

∂t
= −2

√
XBϕϕ +

2rω

h
Bϕz + 2

√
Xλ,

∂Bϕz

∂t
= −2

√
XBϕz +

rω

h
Bzz,

∂Bzz

∂t
= −2

√
XBzz + 2

√
Xλ,

λ =
3

BϕϕBzz −B2
ϕz −B2

rz +BrrBzz −B2
rϕ +BrrBϕϕ

,

where X is the solution of (10) with D ·D = ω2r2/(2h2). We proceed similarly as in the previous case,
but in addition at each time step we have to solve the algebraic equation (10). From the knowledge of
the component Tϕz we compute the torque on the upper plate and find the best parameters ǫ0, ǫ1, µ, α, β.
The result is depicted in Figure 5. This model fits the experiment almost perfectly, the maximum relative
error is 4.1%, and the average relative error is only 0.2%!

However, the above approach fits only one experiment. Since we would like to capture all three sets
of experimental data (as drawn in Figure 1) with one set of parameters, we do the following test. We
fit two experiments with the angular velocities ω = 0.25 rad.s−1 and ω = 0.125 rad.s−1 which results in
finding five model parameters. Then with these five parameters we aim to fit the experimental data for
ω = 0.5 rad.s−1. To do this we employ new scalar function g as a relative error of the experiment

g = (g2
1 + g2

2)
1/2, gi =

(

∫ T

0

∣

∣

∣

∣

1 − Mi(t)

Ei(t)

∣

∣

∣

∣

2
)1/2

,

where g1 and g2 are the relative errors of each experiments, g is the global relative error. The result is
in the Figure 6. The average relative error of two fitted experiments is 1.6%, the average relative error
of the predicted experiment is 9.9%. If we do the test with the nonlinear model with three parameters
(8) we get almost the same result.

Conclusion

We found out that these two nonlinear models (8) and (9) seem to describe the response of asphalt
better than the Oldroyd-B model. We also found that though model (9) has as many as five mate-
rial parameters compared to three in the case of model (8), their predictive capability for the class of
experiments, that we are trying to describe, is nearly the same.
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Figure 5. Fitting of the nonlinear model with
five parameters at temperature 35 ◦C,
ω = 0.5 rad.s−1.
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Figure 6. Predicting of the experiment
for 35 ◦C, ω = 0.5 rad.s−1.
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