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Sound Energy Field in a System of Coupled Rooms
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The paper presents a theoretical basis of calculations of the sound intensity in enclosed spaces and shows
results of numerical visualization of the active intensity in a room with absorptive walls formed by two coupled
rectangular subrooms. The study was focused on the low-frequency range, therefore to describe the active and
reactive intensities, the modal theory of room acoustics was applied. Space distribution of eigenfunctions, modal
frequencies and modal damping coe�cients were calculated numerically using the forced oscillator method (FOM)
and the �nite di�erence time-domain (FDTD) method. Based on theoretical and numerical results, the computer
program has been developed to simulate the active intensity vector �eld when the room is excited by a harmonic
point source. Calculation data have shown that the active intensity was extremely sensitive to position of the source
since at a �xed source frequency, di�erent source locations always generate di�erent distributions of characteristic
objects of the active sound �eld such as energy vortices and stagnation points. Because of complex room shape,
the vortex centers are in most cases positioned irregularly inside the room. Almost regular arrangement of vortices
was found only in the case when the source frequency was tuned to the frequencies of modes which were strongly
localized in one of the subrooms.
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1. Introduction

The sound intensity has gained much attention in the
past because this quantity is very useful for analyzing
the energy properties of a sound �eld in both open and
enclosed spaces. The concept of the sound �eld energy
streamlines has been introduced into acoustics for the
�rst time by Waterhouse et al. [1]. Local properties of
energy streamlines at singular points of two- and three-
dimensional sound �elds, such as vortices and stagnation
points, have been examined by Chien and Waterhouse
[2] and Zhe [3]. The concept of complex sound intensity
has been developed by Mann et al. [4] and treated in
Fahy's book [5]. New instantaneous intensimetric quan-
tities in general stationary �elds called the radiating and
oscillating intensities have been presented and measured
by Stanzial and Prodi [6].
The energy-related quantities of a sound �eld in en-

closed spaces have been also studied, although for a long
time the main interest of room acoustics was directed
to the analysis of sound pressure �eld in enclosures. In
[7], Waterhouse has demonstrated existence of energy
vortices in rooms on theoretical grounds. The connec-
tion between the mean energy velocity, the reverberation
time and the angular momentum density has been stud-
ied by Stanzial and Schi�rer [8]. Statistical properties
of the sound intensity in reverberant rooms subjected
to pure-tone excitation have been examined by Jacobsen
and Molares [9]. In recent papers of the present author
[10�12], space distributions of energy density and sound
intensity in a steady-state acoustic �eld inside coupled
rooms and irregular enclosures were analyzed using the
modal expansion method supported by computer imple-
mentations. In turn, the special acoustic properties of
coupled-room systems such as the mode degeneration due

to modi�cation of the coupling area, con�nement of an
acoustic energy in a part of room system called the local-
ization of modes, and a considerable di�erence between
a rate of sound decay in early and late stages of the re-
verberant process, known as a double sloped decay were
investigated by the present author in [13] and [14].
This paper is organized as follows. Section 1 contains

a brief review of the papers devoted to energy proper-
ties of a sound �eld in both open and enclosed spaces.
Section 2, in turn, shows a theoretical basis of sound in-
tensity calculations in enclosures with absorptive walls.
This section summarizes theoretical �ndings of the au-
thor formerly presented in [11]. Subsection 3.1 reveals
details about geometry of coupled room system under
consideration. Subsection 3.2 shortly outlines the nu-
merical method and provides an analysis of visualized
distributions of the active sound intensity. Calculations
are aimed at examination of the impact of sound source
parameters on a structure of the active intensity �eld
and locations of vortices and stagnation points. Finally,
Section 4 summarizes and concludes the paper.

2. Theoretical basis of sound intensity

calculations

In order to calculate distribution of the sound inten-
sity vector �eld in enclosures, knowledge of distributions
of the sound pressure and the acoustic particle veloc-
ity is needed. Traditionally, in the low-frequency range,
the classical modal analysis is used to describe acoustic
quantities in a room with walls covered with materials
characterized by low sound absorption. When the room
is excited by a pure-tone point source, the sound pressure
in steady-state can be expanded in terms of rigid-walled
modes determined by eigenfunctions ϕm and the modal
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angular frequencies ωm, and the associated damping co-
e�cient rm for each of these modes [11]

p(r, t) =

∞∑
m=0

(αm + iβm)ϕm(r)ϕm(r0)e
iωt, (1)

where the modal factors αm and βm given by

αm =

√
8πρcP0(ω

2 − ω2
m)c2

(ω2 − ω2
m)2 + 4r2mω

2
, (2)

βm =
2
√
8πρcP0ωrmc

2

(ω2 − ω2
m)2 + 4r2mω

2
(3)

are the real and imaginary parts of the amplitude term, ω
is the source angular frequency, c is the sound speed, ρ is
the air density, P0 is the source power, while r = (x, y, z)
and r0 = (x0, y0, z0) determine the observation and the
source point, respectively. The modal damping coe�-
cient is given by

rm =
ρc2

2

∫
S

ϕ2
m(r)

Z
ds, (4)

where Z is the wall impedance and S is the surface area
of room walls. Equation (1) shows that in steady-state,
distribution of the sound pressure is as follows

p(r, t) = P (r)e i [ϕ(r)+ωt], (5)

where P is the pressure amplitude and ϕ is the spatial de-
pendent phase function. Further, by applying the Euler's
equation of motion, the corresponding particle velocity u
can be calculated as

u(r, t) =
1

ρω
[−P (r)∇ϕ(r) + i∇P (r)] e i [ϕ(r)+ωt] =

1

ρω

∞∑
m=0

(−βm + iαm)ϕm(r0)∇ϕm(r)e iωt. (6)

In terms of these quantities, the complex sound intensity
vector Ic is expressed as

Ic =
1

2
pu∗ = I + iQ, (7)

where the asterisk in the superscript denotes the complex
conjugate and I and Q are the active and the reactive
sound intensity, respectively. Substituting Eqs. (1), (5)
and (6) into Eq. (7) yields the following expressions for
sound intensity components

I = −P
2(r)∇ϕ(r)

2ρω
=

1

2ρω

∞∑
m=0

∞∑
n=0

(αnβm − αmβn)

×ϕm(r0)ϕn(r0)ϕm(r)∇ϕn(r), (8)

Q = −P (r)∇P (r)
2ρω

= −c
2

ω
∇wp =

− 1

2ρω

∞∑
m=0

∞∑
n=0

(αmαn + βmβn)

×ϕm(r0)ϕn(r0)ϕm(r)∇ϕn(r), (9)

where wp = P 2/4ρc2 is the potential energy density.
Equation (9) con�rms that the reactive intensity vector
Q is always irrotational. On the contrary, the active in-
tensity I represents a rotational vector �eld because the
curl of right-hand side of Eq. (8) is non-zero and equals

∇× I =
1

ρω
P (r)∇ϕ(r)×∇P (r) = ω

c2
I ×Q

wp
=

1

2ρω

∞∑
m=0

∞∑
n=0

(αnβm − αmβn)ϕm(r0)ϕn(r0)

×∇ϕm(r)×∇ϕn(r), (10)

thus, when a room is excited by a harmonic sound source,
there is a circulating energy �ow in a steady-state sound
�eld.

3. Results of computer simulation

The main objective of computer simulation presented
in the following was to examine a �ow of acoustic en-
ergy in harmonic, steady-state sound �eld generated by
a point source in a system of coupled rooms. In other
words, the simulation was aimed at visualization of di-
rection and magnitude of the active intensity and deter-
mination of the curl of this vector in order to identify
the rotating energy �ow in the sound �eld. These vec-
tor quantities can be calculated from Eqs. (8) and (9)
for the known source and room parameters such as the
source frequency, position, and power, and for natural
frequencies and mode shapes. When shape of a room be-
comes complicated, the modal characteristics of the room
are determined by the use of numerical methods.

Fig. 1. The analyzed room system containing two cou-
pled subrooms A and B. Points indicate positions of a
source, whereas dashed lines denote distance between
the source and the �oor.

3.1. Room system description

The computer simulation was carried out for the room
system shown schematically in Fig. 1. The enclosure con-
sists of two rectangular subrooms having the same height.
The subrooms are connected to each other via an open-
ing, so that the acoustic energy can be transmitted be-
tween them. The subrooms dimensions assumed in the
numerical model are the following: l1 = 5 m, l2 = 4
m, w1 = 8 m, w2 = 6 m and h = 3 m. The opening
between subrooms has the height h, the width w of 1.6
m and the thickness l of 1 m. It was assumed that the
absorbing material was uniformly distributed on the sub-
rooms' walls and the room system was slightly damped,
i.e., the wall impedance was such that |Z|/ρc � 1 and
Re(Z)� Im(Z).
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3.2. Numerical method

The �rst step towards determining the active inten-
sity I consisted in computation of eigenfunctions ϕm and
modal frequencies ωm. Since the analyzed room is ir-
regularly shaped, the functions ϕm were calculated nu-
merically using the forced oscillator method (FOM) and
the �nite di�erence time-domain (FDTD) method. The
FOM is based on the rule that the response of linear sys-
tem to a harmonic excitation is large when the driving
frequency is close to the modal frequency. In this method
the eigenvalue problem for enclosure with rigid walls is
solved by making use of analytical solution of the inho-
mogeneous wave equation

∇2f(r, t)− 1

c2
∂2f(r, t)

∂t2
= q(r) cos(ωt), (11)

which satis�es the Neumann boundary condition and ho-
mogeneous initial conditions

f(r, t)t=0 = [∂f(r, t)/∂t]t=0 = 0. (12)

It can be easily found that solution to this problem has
the form

f(r, t) = c2
∞∑

m=0

ϕm(r)

∫
V

q(r)ϕm(r)dv

×cos(ωt)− cos(ωmt)

ω2 − ω2
m

, (13)

where V is the room volume. When the driving frequency
ω is close to the modal frequency ωm, then for su�ciently
large time τ only the term connected with the mode num-
ber m contributes the sum in Eq. (13), so one can write
f(r, τ) ≈ aϕm(r), where a is a constant. The eigenfunc-
tion ϕm is determined after a normalization procedure
which results in elimination of the constant. Finally, the
use of formula

ωm = c

[
−
∫
V

ϕm(r)∇2ϕm(r)dv

]1/2
, (14)

derived directly from the eigenvalue equation ∇2ϕm +
(ωm/c)

2ϕm = 0, enables to calculate ωm. In the FDTD
algorithm, uniform grids with spacing ∆s = 0.1 m were
used and in order to ensure a stability of a numerical
scheme, the time step ∆t was set to 10−4 s yielding the
Courant number Cr = c∆t/∆s of 0.343.
By means of the numerical method described above 150

modes with frequencies fm = ωm/2π ranging from 0 Hz
to 170 Hz were found. Subsequently, when mode shapes
were known the damping coe�cients rm were calculated
from Eq. (4) assuming that |Z|/ρc = 100. The modal
factors αm and βm were determined for the source power
P0 of 10−3 W.

3.3. Distributions of active sound intensity

Graphs in Fig. 2 show example vector �elds I obtained
on the observation plane situated at a constant height
from the �oor. They illustrate changes in the active in-
tensity distributions when the point sound source with a
constant frequency is located at di�erent positions in the

room space. As can be seen, distributions of active inten-
sity streamlines on the observation plane are very com-
plex and characteristic objects in the vector �eld I are
irregularly located vortices. This type of vortices form
such patterns of �ow where sound energy gyrates around
closed paths. Note that vortices of the active intensity
are particulary visible in the subroom where the source is
located and this proves that the circulating �ow of sound
energy, which is evident in the steady-state, is highly in-
�uenced by the source position.

Fig. 2. Distribution of the active sound intensity I on
the observation plane z = 1.5 m for di�erent source
positions (x0, y0, z0) (in meters): (a) (2,2,1); (b) (2,6,1);
(c) (8,2,1); (d) (8,4,1). The source frequency is set to
75 Hz.

Another singular point of the intensity I �eld is the
stagnation point which represents the point where there
is separation of the vortex region from the region where
the intensity vectors form open lines. The pressure is zero
at vortex centers, while at stagnation points the real com-
ponent of the particle velocity vanishes. Thus, according
to Eqs. (6), (8) and (9), the active intensity I is zero,
both at vortex centers and stagnation points, whereas
the reactive intensity Q is zero at vortex centers. The
�rst property is clearly visible in Fig. 3 where distribu-
tions of the magnitude |I| for considered source positions
are shown. The plots have a form of �lled contour maps,
where black and white colors denote zero and maximum
values of |I|, respectively. In order to better di�erenti-
ate between vortex and stagnation points, in Fig. 4 their
positions are indicated by easily distinguishable symbols.
They are intentionally located on mapped distributions
of |∇ × I| to show what is the circulation of the active
intensity at vortex centers because by virtue of Eq. (10),
at stagnation points the quantity ∇ × I is always equal
to zero. The graphs in Fig. 4 highlights the fact that at
a vortex center the magnitude of circulation of I reaches
a value very close to a local maximum although the pres-
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Fig. 3. Distribution of |I| on the observation plane z
= 1.5 m for di�erent source positions (x0, y0, z0) (in me-
ters): (a) (2,2,1); (b) (2,6,1); (c) (8,2,1); (d) (8,4,1). The
source frequency is set to 75 Hz. Black and white colors
denote zero and maximum values of |I|, respectively.

Fig. 4. Distribution of |∇×I| on the observation plane
z = 1.5 m for di�erent source positions (x0, y0, z0) (in
meters): (a) (2,2,1); (b) (2,6,1); (c) (8,2,1); d) (8,4,1).
The source frequency is set to 75 Hz. Black and white
colors denote zero and maximum values of |∇ × I|, re-
spectively. Black points indicate centers of vortices,
whereas white crosses represent positions of stagnation
points.

sure vanishes in this point. According to Eqs. (6) and
(10), the curl of I is proportional to the vector product
of real and imaginary parts of velocity amplitude

∇× I = −ρω [U r ×U i], (15)

where U r = −P∇ϕ/ρω and U i = ∇P/ρω. Since at the
vortex center there cannot be an in�nite amount of en-
ergy, U r is �nite at this point. On the other hand, the

Fig. 5. Distributions of (a) the active sound intensity
I and (b) the pressure amplitude P on the observation
plane z = 1.5 m for the source frequency of 103.4 Hz and
the source position: x0 = 2 m, y0 = 3 m, z0 = 1 m.
Black and white colors denote zero and maximum values
of P , respectively.

pressure amplitude P should be zero at the vortex center,
thus the magnitude |∇ϕ| tends to in�nity at this point.
This means that the pressure phase ϕ is discontinuous at
the vortex center.
The simulation results in Figs. 2�4 demonstrate that

excitation of irregular enclosure by a harmonic sound
source is associated with a formation of energy vortices
which are irregularly located inside the room space. How-
ever, there are speci�c source frequencies for which the
active intensity I vector �eld is characterized by almost
regular distribution of vortices. This is the case when
the source frequency is tuned to the natural frequency of
modes which are localized in one of the subrooms. The
example of such a situation is shown in Fig. 5a where a
distribution of the active intensity I for the source fre-
quency of 103.4 Hz is visualized. This frequency corre-
sponds to the natural frequency of 43rd eigenmode which
is strongly localized in the subroom A. In this case the
modal localization also results in excitation of an intense
standing wave that is clearly visible in the distribution
of the sound pressure amplitude (Fig. 5b).

4. Conclusions

The paper reports numerical investigation into the pre-
diction of energetic properties of a steady-state sound
�eld generated inside two coupled subrooms by a har-
monic sound source. Visualized distributions of energetic
sound �eld have shown that characteristic objects in the
active intensity vector �eld are energy vortices and stag-
nation points and positions of these objects are very sen-
sitive to the location of a sound source. Calculations
revealed also that, according to the theory, the active in-
tensity should be zero, both at the vortex centers and
stagnation points, whereas the reactive intensity should
be zero at stagnation points. It was found that the mag-
nitude of curl of the active intensity reaches a value very
close to a local maximum at the vortex center. Vortices
and stagnation points are usually located irregularly in-
side the room because of a complex room geometry. How-
ever, the almost regular arrangement of vortices can be
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obtained when the source frequency is tuned to the nat-
ural frequency of mode which is strongly localized in one
of the subrooms.
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