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This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural
global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which
can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local
dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is
sensitive to local parameters.Then the parameters of the structure can be optimized accurately using the combined structural global
frequencies and structural local frequencies.The effectiveness and accuracy of the proposed method are verified by the experiment
of a space truss.

1. Introduction

Structural Health Monitoring (SHM) [1] is a hot research in
civil engineering. Structural parameter estimation, such as
model updating and damage identification [2, 3], is an impor-
tant theoretical base for providing reliable model, structural
damage detection, forecasting, and its safety assessment.

In SHM, many researches have investigated parameter
estimation like model updating, damage detection and local-
ization, and so forth. The structural parameters are usually
optimized using natural frequency and mode shape [4],
flexibilitymatrix [5], responses in time-domain or frequency-
domain [6], and so forth. Among the dynamic informa-
tion, natural frequency reflects the most basic dynamic
performance of the structure, and it can be identified easily,
accurately, robustly, and reliably. So the methods based on
mode arewidely used for parameters estimation. In 2000, Yun
and Bahng [7] monitor the local stiffness modifications using
natural frequencies and mode shapes. In 2007, Jaishi and Ren
[8] update the parameters of the finite element model based
on eigenvalue and strain energy residuals. In 2011, An andOu
[9] detect local damages of a truss structure using local mode.

Usually, the identified low order natural frequencies
are not enough for estimating the structural parameters in
civil engineering. Aiming at solving this problem, adding
mass on structure is an effective way to increase dynamic
information. In 1992,Nalitolela et al. [10] addmass or stiffness
on the structure for model updating, where the mode of the
perturbed structures is used. In 1993, Nalitolela et al. [11]
further improve their method by adding imaged stiffness on
the beam. In 2001, Cha and Pillis [12] use the orthogonal
conditions of the system’s eigenvalue problem for identifying
damage by adding known masses on the structure. In 2011
Dinh et al. [13] use the state-space transformation of the
system’s eigenvalue problem to improve the method.

However, with structures in civil engineering being more
and more huge and complexity, the accurate parameter esti-
mation of structure has becoming more and more difficult,
which requires the proper dynamic measurements, as well
as the efficient exploitation of the measurements. Therefore,
this paper combined both the structural global frequencies
and structural local frequencies for parameter estimation,
and the method of adding mass is employed to make the
local structure have Local Primary Frequency (LPF) [14],
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Figure 1: A truss experimental model.

which not only increases the useful measured information
but also improves its sensitivity to the local parameters. The
experiment of a space truss is performed for the verification
of the proposed method.

2. SHM by Combined Global and Local Mode

Structures in civil engineering are large scale, complex, and
insensitive to the damage, and hence the accurate estima-
tion of their structural parameters requires the utilization
of a great quantity of their dynamic information. Modal
information including frequency and vibration mode is most
commonly used in Structural Health Monitoring (SHM). In
this paper, structural global frequencies are used together
with local frequencies to estimate physical parameters of the
structures.

2.1. Structural Global Frequency. Generally, structural global
modes reflect the overall dynamic characteristics of the
structure, and thereby they have certain relationwith physical
quantities related to the integrity, such as the elastic modulus
and the density. For global modes, usually only low-order
modes can be obtained in practice from the global measure-
ments. However low-order modes are usually insensitive to
the variation of structural local parameters. For instance, the
first-order mode of a large-scale structure generally changes
little due to the cause that only one structural element is
damaged.

In civil engineering area, the modes of the large-scale
structures are often identified by the methods like Eigensys-
tem Realization Algorithm (ERA), Stochastic Subspace Iden-
tification method (SSI), and so on, using the free responses
or random responses. Then the parameter estimation is
performed based on the identified modes. At present, these
methods based on identified modes [1–4, 8, 9] have been
intensively investigated and so they are not introduced in
detail here.

2.2. Structural Local Frequency. As well known, structural
local frequency is a type of mode that can reflect local
dynamic characteristics of the local structure and is sensitive

to the variation of local parameters. Generally speaking,
structural local frequency refers to a high-order structural
mode. Compared with the obtained structural global fre-
quency, structural local mode mainly displays local dynamic
characteristics of the structure. Thus, using local structural
frequency, the structural local parameters can be evaluated
more accurately.

First, Local Primary Frequency (LPF) is illustrated in the
following subsection, which refers to one natural frequency
corresponding to the vibration of the local structure under
certain excitations.

2.2.1. Local Primary Frequency (LPF). The acceleration fre-
quency response of the structure𝐻(𝜔) can be expressed as

𝐻(𝜔) =

𝑛
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𝑟=1

(𝑗𝜔)
2
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where 𝑗 is imaginary unit, 𝜁
𝑟
is the 𝑟th damping ratio,𝜔
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𝑟th natural frequency, 𝜑
𝑟
is the 𝑟th normalized mode shape,

𝐵 is load position matrix, and 𝐶 is observation matrix.
Substitute 𝜔 = 𝜔
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frequency response𝐻(𝜔
𝑟
) has the approximate expression as

follows:

𝐻(𝜔
𝑟
) ≈
𝑗𝐶𝜑
𝑟
𝜑
𝑇

𝑟
𝐵

2𝜁
𝑟

. (2)

It can be seen from (2) that, apart from themodal parameters
of the structure, the measured response of the structure
mainly depends on the excitation and the sensor positions.
Therefore, to obtain the structural local frequencies of the
structure, the sensors and excitation are required to be placed
locally.

Usually, more than one natural frequency is likely to be
excited even under local excitation. Among these natural
frequencies, there are not only structural local frequencies,
but the frequencies which represent the structural global
information are also included. In practice, it is difficult to
accurately separate high-sensitivity local frequencies from
these frequencies. In this way, Local Primary Frequency
(LPF) is defined: under local excitation, if the structure
mainly vibrates in local positions with one main natural
frequency, then the natural frequency is defined as LPF. The
LPF is highly sensitive to the corresponding local parameters,
which is a crucial factor in the proposedmethod of the struc-
tural parameter estimation. Obtainment of LPF is analyzed in
Section 2.2.3, and before that the related sensitivity analysis is
discussed.

2.2.2. Sensitivity Analysis. Let a linear structure have 𝑛
degrees of freedom (Dofs), and denote by 𝐾

0
and 𝑀

0
,

respectively, the stiffness matrix and mass matrix of the
theoretical FEM model structure. Assume the structure has
𝑚 parameters to be estimated, which are only related to the
stiffness.The parametermodification coefficients are denoted
by 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
, which are, respectively, the ratio of the

actual modified stiffness matrix 𝐾𝑑
𝑖
to the stiffness matrix
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Figure 2: The element numbers of truss model.

of theoretical FEM model 𝐾
𝑖
. The stiffness matrix of real

structure𝐾 is expressed as

𝐾
𝑑

= ∑𝜇
𝑖
𝐾
𝑖
, 𝐾

𝑖
= 𝑁
𝑇

𝑖
𝐾
𝑖,𝑠
𝑁
𝑖
, (3)

where 𝐾
𝑖
is the 𝑖th extended substructure stiffness matrix of

theoretical FEM model, 𝐾
𝑖,𝑠
is the corresponding substruc-

ture matrix in local coordinate system, 𝑁
𝑖
is the localization

matrix linking the global Dofs to the 𝑖th local substructural
Dofs.

Via the relation of the natural frequency to the sub-
structure stiffness matrix, the sensitivity of the 𝑟th natural
frequency 𝜔

𝑟
to the 𝑖th parameter modification coefficient 𝜇

𝑖

can be stated as

𝜕𝜔
𝑟

𝜕𝜇
𝑖

=
𝜑
𝑇

𝑟
𝐾
𝑖
𝜑
𝑟

2𝜔
𝑟

=
𝜑
𝑇

𝑟,𝑖
𝐾
𝑖,𝑠
𝜑
𝑟,𝑖

2𝜔
𝑟

, (4)

where 𝜑
𝑟,𝑖
= 𝑁
𝑖
𝜑
𝑟
is the 𝑟th mass-normalized mode shape

related to the 𝑖th parameter. Then, the sum of the relative
sensitivity of all the parameters can be computed as follows
[15]
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2.2.3. Adding Masses and LPF. Generally, the response of
local substructure doesn’t have LPF. Hence, masses are added

artificially on local structure to cause the local structure have
a LPF and make it mainly vibrate at the LPF. As a part of
the local structure, the added mass can increase the vibration
energy of the local structure and restrain the vibration energy
dispersion from local structure to global structure. As a result,
the local structure may vibrate with one natural frequency,
that is, the defined Local Primary Frequency.

Comparing (2) and (4), it can be seen that the expression
of the frequency response is similar on the structure to the
expression of the relative sensitivity. Therefore, it can be
inferred that there is a certain correlation between the ampli-
tude of the frequency response and the sensitivity: the larger
the amplitude is, the higher the corresponding sensitivity
may be.That is because, under local excitation, the structural
frequency response shows the maximum amplitude at the
position of the caused LPF. Moreover, this indicates that
LPF is more sensitive to local parameters than other natural
frequencies.

In addition, as shown in (5), the sum of the relative
sensitivity of a natural frequency to all parameters is a
constant value of 0.5. Hence, if the relative sensitivity of LPF
according to the concerned local parameter is higher, then the
LPFwill have lower sensitivity to other parameters.Therefore,
the accuracy of the parameter estimation can be improved
using LPF to optimization.

2.3. The Objective Function. The modification of the con-
cerned parameters is taken as the optimization variables,
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Figure 3: The out-plane frequency responses of the truss after adding masses.

and the objective function 𝑓(𝜇) is built via combing the
information of both global structural frequencies and LPF:

𝑓 (𝜇) = ∑
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where 𝜇 is the variable to be identified; 𝜔
𝑔,𝑖

is the identified
𝑖th low-order natural frequency of the global structure, while
𝜔
𝑔,𝑖
(𝜇) is the corresponding frequency of the theoretical FEM

model; 𝜔
𝑠,𝑗

is the measured LPF of the 𝑗th local parameter,
while𝜔

𝑠,𝑗
(𝜇) is the corresponding LPF of the theoretical FEM

model.

3. Truss Experiment

An experiment of a space truss model is performed here to
introduce and test the proposed method by combining the
global and local frequency.

3.1. Truss Model. A supported steel 20-span space truss is
shown in Figure 1. It is 8m long with the height of 0.9m,
width of 0.56m, and consists of 312 members and 108 nodes.

Table 1: Three types of members in truss structure.

Types Member A Member B Member C
Number 80 198 34
Tubes

Outside diameter (mm) 30 20 14
Thick (mm) 8 3 3

Bolt
Types M20 M16 M10
Length (mm) 100 90 60

Young’s modulus is 2.06Gpa, and the density is 7850Kg/m3.
The members, steel tubes, are connected by bolted spherical
joints (bottom right in Figure 1). The members are classified
into three types according to their radius, which are listed in
Table 1.

The theoretical Finite Element (FE) model is built, where
each member is defined as an element. Then the FE model
has 312 elements with 108 nodes and 638 degrees of freedom.
Figure 2 shows the element numbers of the truss model. The
element cross-sections and initial moments are calculated
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Figure 4: The in-plane frequency response after adding masses.

from the geometric dimensioning according to the steel tube.
The nodes are rigid. The weight of the spherical joints and
bolts is considered by certain mass points located on the
nodes. Each mass point has the value of 2.83 kg.

3.2. Numerical Analysis of LPF. In order to investigate the
influence of the added mass on LPF, the bottom element
number 104 of the FE model is taken as an example, marked
by a black circle in Figure 2, and the analysis is performed
numerically. The mass is added in the middle of member
number 104 and the impulse excitation is also applied in
the middle of the member. After the mass addition, the
in-plane frequency response of the member and the out-
plane frequency response are compared, respectively (here,
the in-plane refers to the one corresponding to the outer
contour of the truss). Figures 3 and 4, respectively, show the
corresponding in-plane and out-plane frequency responses
in 6 groups of different added masses (mass = 0.00, 0.15,
0.40, 0.55, 0.80, and 1.30 kg). Figures 3 and 4 both provide
similar phenomenon. The increase in mass causes the peaks
of the frequency response change frommultifrequencies into
a single frequency (the caused LPF). But with the increase in

mass, the value of LPF is reduced. When the value of LPF
reduction reaches a certain degree, the frequency response
will appear multipeaks. Then if the added mass value is con-
tinuing to increase, the peaks of frequency response return to
a single peak again.The comparison between Figures 3 and 4
indicates that, under the same additional mass, the in-plane
LPF is larger than the out-plane LPF. The member section
is a circle and member stiffness is identical in all directions,
and further the whole truss owns larger in-plane stiffness at
boundary of themember; therefore, with the same additional
mass value, the in-plane local characteristics of the member
are more significant. Hence, the in-plane response of the
member is used for the estimation in the test of experiment.

For each in-plane frequency response shown in
Figure 4(c), the sensitivity analysis of the natural frequencies
corresponding to the peaks is computed, respectively, which
are shown in Figure 5.When nomass is added, the frequency
response in Figure 3(c) shows three peaks at the respective
frequency of 315.4Hz, 321.9Hz, and 328.0Hz. The relative
sensitivities of the corresponding three natural frequencies
are illustrated in Figure 5(a): around 0.08, 0.06, and 0.05,
respectively. It shows that the three relative sensitivities
are far larger than the sensitivities of the rest 311 members.
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Figure 5: The relative sensitivities of the excited frequencies in 6 cases of adding mass.

Equation (5) shows that the sum of all the relative sensitivities
is 0.5, so it can be inferred that the influence of the number
104 member on the three order frequencies only accounts
for 0.08/0.5 = 16%, 0.06/0.5 = 12%, and 0.05/0.5 = 10%,
respectively. When the added mass is 0.15 kg, the two natural
frequencies corresponding to the peaks of the frequency
response have the relative sensitivities of 0.13 and 0.11, respec-
tively, as exhibited in Figure 5(b). When the added mass is
0.40 kg, there is only one peak and the relative sensitivity
of the corresponding natural frequency is 0.33, as shown in
Figure 5(c). Apparently, the more the peaks of the excited

response, the lower the sensitivity of the corresponding
natural frequency. When the added mass is 0.55 kg, due to
the change of modal order, the frequency response shows
two peaks and the relative sensitivities of the corresponding
frequencies are decreased to 0.1 and 0.18, respectively, as
shown in Figure 5(d). As the mass keeps on increasing, the
frequency response changes from multiple peaks to a single
peak and the corresponding sensitivities show a significant
increase. When the mass is 0.8 and 1.3 kg, the sensitivities
of the corresponding frequencies are, respectively, 0.28 and
0.43, as displayed in Figures 5(e) and 5(f).
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Figure 6: Accelerations placement.
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The above numerical analysis among the relation of the
adding mass, LPF, and the sensitivity provides the evidence
for the following experiment performance.

3.3. Model Updating of the Space Truss Experimentally

3.3.1. Modal Test of the Global Truss. Accelerometers are
located on the bottom nodes of the truss, shown in Figure 6.
Ambient excitation is applied on the structure, and the
modal shapes and frequencies are identified via the caused
random responses, shown in Figure 7 and Table 2. Figure 7
and Table 2, respectively, compare the modal shapes and

Table 2: The errors of lower order natural frequencies of global
structure.

Order Experimental Theoretical Error
1 18.4 23.27 26.47%
2 27.6 34.41 24.67%
3 36.8 52.58 42.89%
4 53.3 76.97 44.41%

frequencies which are obtained from the experimental model
and FEMmodel. Table 2 shows that the errors between them
are rather obvious, around 30%, which indicates that the
theoretical FEMmodel is quite coarse.

3.3.2. Local Dynamic Test. Since member B in Table 1
includes most of the members, the local dynamic test is
performed on the group of member B, which are further clas-
sified into four kinds according to their lengths and positions
(Figure 8). In order to increase the local dynamic character-
istic, masses are added in the middle of the members. Due
to that the weight of one accelerometer and its connector is
340 g, so in the experiment the accelerometer also can play
the role of additional mass, and the value of added mass
is adjusted by the number of the located accelerometers.
For long member, its local stiffness is relatively small, and
one additional mass is enough; that is, one accelerometer
is located. For short member, its local stiffness is big, and
moremasses (accelerometers) are needed.The location of the
accelerometers or additional masses is shown in Figure 9.

Members-IV is first taken as an example to illustrate
and experimentally verify that local characteristic can be
increased via adding mass on the corresponding member.
Three cases are discussed; that is, two, three, and four masses
(accelerometers) are, respectively, added on middle of the
number 251 member. In each case, a hammer excitation is
applied on the middle of the member, and the corresponding
responses of accelerometers are measured; then the spectral
analysis is performed. The obtained power spectra in the
three cases are shown in Figure 10. The bigger the additional
mass value is, themore obvious the caused local characteristic
will be. In the cases of two or three additional masses,
the power spectra of the global structure have multiple
peaks. So it is hard to judge which natural frequencies
belong to the local structure and which frequencies reflect
the characteristic of the global structure; that is to say, the
local characteristic is not obvious. While in the case of four
additional masses the power spectra only have one peak,
it shows that the energy of the local excitation is mostly
absorbed by the additional masses. In this case, the excited
vibration mainly reflects the distortion of the local member,
so the frequency corresponding to the peak in the power
spectra is the LPF of the local member.

In order to compare themeasured LPF and that of the the-
oretical model, 58 members are picked up to test, which are,
respectively, 14 members fromMembers-I, 16 members from
Members-II, 20members fromMembers-III, and 8members
from Members-IV. The accelerometers (masses) are located
on these members, respectively, according to Figure 9,
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(a) Members-I (b) Members-II

(c) Members-III (d) Members-IV

Figure 8: Four kinds of elements.

Table 3: The errors of local primary frequencies of 4 kinds of
elements.

Types Identified (Hz) Theoretical (Hz) Error
Members-I 138.67 151.24 9.06%
Members-II 140.63 155.57 10.62%
Members-III 166.02 176.28 6.18%
Members-IV 164.06 186.52 13.69%

and the respective hammer excitation is applied in the
middle. The identified LPFs are shown in Figure 11. Take
Members-I as an example; the 14 members show nearly iden-
tical LPF; see Figure 11(a). The main reason is summarized as
follows: thesemembers have the samematerial and geometric
parameters in the global structure. For these members, each
member and its surrounding nodes are connected in a
similar way; also, the connection way between one member
and other members is similar. Restraining stiffness of the
global structure on the two ends of the member is also
very approximate to each other and the local excitation was
in the same position and direction for the 14 members.
Furthermore, the local characteristics of the members are

amplified by the added masses.Therefore, with all the similar
or identical conditions mentioned above, the LPFs of the
members are similar to each other, although themembers are
at different positions in the global structure.

Table 3 compares the measured LPF and that of the
theoretical FEmodel, where onemember is chosen from each
kind of members, respectively. It shows that the identified
value from the experiment has obvious deviation from the
theoretical value, which indicates that the theoretical model
has significant error compared to the actual structure.

3.3.3. The Selection of Updating Parameters. In practice,
actual Young’s modulus of the steel, physical dimension, and
the density have little error from the theoretical values. Then
in this truss model, the factor of the errors of FEM model is
mainly due to the nodemodel, and so the parameters of node
model are estimated in the model updating.

First the fine model of the bolted spherical joint, bolt,
and the steel pipe are built considering their actual way
of connection, shown in Figure 12. The local reinforcement
of the spherical joint (𝑟 = 4 cm) to the ends of the tube
is considered by a reinforcement parameter 𝑘 which is the
ratio of the spherical joint stiffness to the pipe stiffness,
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(a) Members-I (b) Members-II

(c) Members-III (d) Members-IV

Figure 9: The placements of additional masses.
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Figure 11: The identified local primary frequencies.
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Figure 12: Fine modeling of the element.

and the definite value of 𝑘 needs to be optimized. In addition,
the local weakening caused by bolt is considered. Denote by
𝑙 the weakening length, and 𝑙 needs to be optimized. The
stiffness in the weakening range takes the value of the bolt.
In addition, there are some screw holes in the spherical joint
which connect with bolts and nuts, so it is hard to determine
the joint weight accurately, which needs to be updated. Above
all, reinforcement parameter 𝑘, weakening length 𝑙, and the
joint weight𝑚 are taken as the model updating parameters.

According to the model in Figure 12, a member is divided
into 9 elements including 2 spherical joint elements, 2 bolt

elements, and 5 pipe elements. Then the whole FE model will
have 2606 nodes with 2918 elements and 15614 degrees of
freedom (Dofs). Certainly the FE model is complicated and
the computational work will be very huge. Therefore, model
reduction is used. For each member, the fine model has 9
elements and 60Dofs.ThroughGuyan reduction, the 60Dofs
are condensed into 12 Dofs on the two ends of the member,
and thus the dimensions for the condensed member stiffness
andmassmatrix are both 12.Then the condensed stiffness and
mass matrix are used to assemble the parameter matrix of the
whole FEmodel, except for thememberwith additionalmass,
that is, the member to be updated, of which its fine model
with 60 Dofs is directly used without reduction. In this way,
the consideration is balanced on the computational work, the
relative accurate connection, and the accuracy of the local
member analysis.

3.3.4.Model Updating. After building the fine FEM, the iden-
tified 4 modes (see Figure 7) and 58 LPFs (see Figure 11) are
used to optimize the joint mass 𝑚, reinforcement parameter
𝑘
𝑖
, and weakening length 𝑙

𝑖
of the four kinds of members

via the objective function (6). The optimized joint mass 𝑚
equals 3.33 kg, and the optimized parameters 𝑘

𝑖
, 𝑙
𝑖
are shown



Mathematical Problems in Engineering 11

0.4

0.2

0

0.5

0

−0.5

0.5

0

−0.5

0.5

0

−0.5

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

The 1st modal shape

The 2nd modal shape

The 3rd modal shape

The 4th modal shape

Length (m)

Length (m)

Length (m)

Length (m)

Experiment
FEM

Figure 13: The comparison of modes of global structure.

Figure 14: The damaged element.

Damage

5.1 30.1

60.1

1
.7
8 2

7.9

Figure 15: The actual damage of the damaged element (cm).

1.5

1.2

0.9

0.6

0.3

0.0

50 100 150 200

Po
w

er
 sp

ec
tr

a (
1
0
−
7
)

Frequency (Hz)

12th

Figure 16: The power spetra of measured responses.

180

140

100

60

20

2 4 6 8 10 12 14

Case

Fr
eq

ue
nc

y 
(H

z)

12th

Figure 17: The local primary frequencies of the 14 elements.

Table 4: The model updating of the node parameters.

Type 𝑙 (cm) 𝑘

Members-I 4.5 3.2
Members-II 2.9 4
Members-III 6.7 1.6
Members-IV 2.7 8

Table 5: The errors of lower order natural frequencies of global
structure.

Order Identified Theoretical Error
1 18.4 18.82 2.28%
2 27.6 27.25 −1.25%
3 36.8 38.63 4.97%
4 53.3 50.34 −5.55%

Table 6: The errors of local primary frequencies.

Types Identified Estimated Error
Members-I 166.02 162.81 −1.93%
Members-II 140.63 138.99 −1.17%
Members-III 138.67 138.24 −0.31%
Members-IV 164.06 167.55 2.13%

in Table 4. Substitute the modified parameters into the FE
model; the natural frequencies and modes of the FEM are
computed and compared with the values identified from the
measurements, respectively, shown in Table 5 and Figure 13.
Table 6 lists some typical cases of the comparison of the LPFs
between the identified values from the measurements and
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the estimated values of the updated FE model. In all the
comparisons, the biggest error is 5.55%, which shows that
the updated FE model reflects the actual truss structure on
both global dynamic behavior and local characteristic and the
model is updated effectively and accurately.

3.4. Damage Identification. The type ofMembers-I is selected
for introducing and verifying the method of damage identifi-
cation using LPF.There are 14members, and the 12thmember
is damaged (as shown in Figure 14). The damage dimensions
of the 12th member are displayed in Figure 15, and the reduc-
tion of its flexural rigidity is 49%. So the actual damage extent
of the member is 0.51, which is to be identified using LPF.

Two masses are placed in the middle of the member in
the experiment; see Figure 14. The local dynamic test on
Members-I, that is, 14 members, is preformed, respectively.
The power spectra of the response are illustrated in Figure 16
and the identified LPFs are shown in Figure 17. As can be
seen from Figure 17, 13 undamaged members show similar
LPF: 140.49Hz on average, while the 12th member (the
damaged one) shows slightly lower LPF: 124.02Hz. This not
only indirectly indicates that the 12th member is damaged,
but also confirms that LPF is sensitive to the damage of the
local member.

The damage extent of the 12thmember is optimized using
the updated FEM model. In the optimization, only one fre-
quency (the LPF, 124.02Hz) is used for optimizing objective
function (6) with the assumption that all the rest parameters
are undamaged. The optimization is performed quickly and
accurately. The identified damage extent of 12th member is
0.577, which is approximate to the actual value 0.51.

4. Conclusion

This paper proposed a method for SHM using the com-
bined structural global frequency and local frequency. An
experiment of a space truss is conducted for verification of
the proposed method. The obtained main conclusions are as
follows.

(1) Structural global frequencies reflect the global
dynamic characteristics of the structure, but they are
insensitive to local modification of large structure,
while structural local frequencies reflect local
dynamic characteristics of the structure and they
are sensitive to the variation of local parameters. So,
the combination of the two kinds of frequencies can
improve the accuracy of parameters estimation in
SHM.

(2) In truss model, adding mass is an effective way to
make the local structure have LPF, by which the local
damage can be identified fast and accurately. The
relation analysis among the adding masses, LPF, and
the relative sensitivity is discussed as the evidence
to obtain the LPF. However, when large value of
additional mass is required, some challenges are
encountered in actual operation and mass installa-
tion, which are subjects of an ongoing research.
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