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Mixed boundary-value problem for periodic baffles in acoustic medium is solved
with help of the method developed earlier in electrostatics. The nice feature of
the method is that the resulting matrices are relatively easy for computations and
that the results satisfy exactly the energy conservation law. Illustrative numerical
examples present the wave-beam steering (in the far-field) in a baffle system that
may be considered as a model of one-dimensional ultrasonic transducer array.
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1. Introduction

A typical one-dimensional ultrasonic array transducer consists of alternate
sets of acoustically different materials: piezoelectric, which responds to the in-
cident waves by electric signal, and acoustically isolating material (like epoxy)
between them (Seo, Yen, 2007; Yen et al., 2000). By controlling the phase
and amplitude of the excitation signals of different elements the beam generated
by the array can be dynamically steered in the region of interest and focused at
a given point. The phased arrays are widely and successfully used in medical ultra-
sonic diagnostics nowadays (Thomenius, 1996; Trots et al., 2008; 2009; Zemp
et al., 2003). Their properties, including flexible control and signal processing,
high inspection speed and fast imaging capabilities, give rise to their advantages
over conventional ultrasonic transducers. The nondestructive evaluation and test-
ing is another area where the ultrasonic phased arrays has been receiving great
attention recently (Drinkwater, Wilcox, 2006; Kramb, 2007).



662 Y. Tasinkevych, E. Danicki

There are different approaches to the linear phased array modeling described
in the literature. The beam profile modeling is based on the intuitive represen-
tation of an array as a set of simple point sources (Ahmad et al., 2005; Wooh,
Shi, 1998). In the point spread function modeling (Chiao, Thomas, 1994; Ling-
vall et al., 2003) the ability of a phased array to visualize a point reflector (by
means of certain imaging algorithm) is modeled. For this purpose the ultrasonic
data from the array due to a point reflector at a particular spatial position are
simulated first. Then the image of the reflector is plotted using the appropriate
imaging algorithm applied to the simulated data.

Both these methods must apply certain model of the individual array ele-
ment (they are typically piezoelectric beams separated by epoxy layers). There
are different methods of modeling the array elements, including finite element
analysis (Lerch, 1990; Yaralioglu et al., 2005) or Huygens principle (McNab
et al., 1990; Wooh, Shi, 1999). In the later case, usually the integration of a se-
ries of point or line sources is performed to obtain the element directivity function
due to the finite size of the array element. The above approaches to the modeling
of array transducer assume that the individual elements respond to the incident
wave pressure independent on each other yielding the electric signal proportional
to the incident wave amplitude.

However, since piezoelectric materials are closer to hard, and epoxy is closer to
soft acoustic materials, the Bragg scattering occurs when the incident wave scat-
ters from the array. This phenomenon must somehow distort the local acoustic
pressure on piezoelectric elements of the array affecting its electric response. In
this paper an approach for modelling the ultrasonic linear array transducer is
proposed, which is based on the rigorous full-wave analysis of the corresponding
boundary-value problem for wave excitation or scattering. The considered system
consists of periodic acoustically hard strips (baffles) where the normal acoustic
vibration vanishes (Erbas, Abrahams, 2007), and between them are acousti-
cally soft domains where the acoustic pressure vanishes (or it is given constant
in the excitation problem). This is a mixed (Dirichlet–Neumann) boundary-value
problem that we deal with: the given pressure between baffles models the wave-
beam generation, and the pressure exerted by the incident and scattered waves
on the acoustically hard baffles models the response signal from the individual
piezoelectric element of the array transducer. A similar system of baffles mod-
eling the phased array transducer was considered for example in (Kuhnicke,
2007). An efficient method developed in electrostatics (Danicki, 2004) is found
suitable for rigorous solution of the above-mentioned problem for planar periodic
baffles. Similar electrostatic method can be applied for analyzing finite (ape-
riodic) system of baffles, as well (Boersma, Danicki, 1993; Danicki, 1996;
Tasinkevych, 2004). Moreover, the method results in the small system of equa-
tions to be solved numerically, and yields the results which satisfy exactly the
energy conservation law (with machine accuracy (Danicki, 1999; 2002)), in both
the generation and scattering cases.
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2. The boundary-value problems for periodic strips

2.1. Surface harmonic impedance of acoustic half-space

Two-dimensional harmonic wave-field ej(ωt−ξx−ηz) is considered independent
of y in the acoustic media governed by equations for acoustic potential ϕ, pressure
p and particle velocity v (t – time, x, y, z – spatial coordinates oriented as in
Fig. 1, ω, ξ, η – angular temporal and spatial frequencies):

∇2ϕ + k2ϕ = 0,

v = −∇ϕ, p = jωρaϕ,
(1)

where k = ω/c. Standard notations are applied: c is the sound velocity and ρa is
mass density of the media.
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Fig. 1. Periodic system of rigid baffles.

We pay special attention to the wave-field at the plane z = 0. Assuming
known pressure there of the form pe−jξx where p is its amplitude, the resulting
z-component of the particle velocity vz|z=0+ on the upper side of this plane
(denoted by v to shorten notations), can be easily evaluated. Thus, neglecting
the exponential term exp(jωt− jξx) we obtain:

v = vz = −ϕ,z = η/(ωρa)p = Gp, G(ξ) = η/(ωρa),

η =
√

k2 − ξ2 = −j
√

ξ2 − k2,
(2)

where G is the surface harmonic admittance of acoustic half-space. In the above,
the relationship between ϕ and p from Eq. (1) has been used. Note, in Eq. (2)
η is chosen in order to satisfy the radiation condition of the acoustic field at
z → ∞. In the presented method of analysis, we will need the x-derivative of
pressure p(x) at z = 0, which is in somewhat symbolic notation q = p,x = −jξp.
Substituting q into Eq. (2) we obtain in spectral domain:

v = (jG/ξ)p,x = g(ξ)q,

g(ξ) =
j

ωρa

η

ξ
.

(3)
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The function g(ξ) will replace the Eq. (1) in all the analysis which follows for
the pressure and velocity on the plane z = 0+. Note that for large values of its
argument the following asymptotic equality holds:

g(ξ → ±∞) = g∞Sξ, (4)

where g∞ = 1/(ωρa) is the acoustic admittance divided by k, and Sξ = 1 for
ξ ≥ 0 and −1 otherwise, for arbitrary real ξ. Inside the media, the acoustic
potential ϕ generated by the given pressure distribution p at z = 0 is

ϕ(x, z) = −j
p

ωρa
e−jξx−jηz. (5)

2.2. Boundary conditions at the baffle plane

2.2.1. Sound generation – given pressure between baffles

A periodic system of the acoustically hard baffles distributed along x-axis with
period Λ on the boundary z = 0 of the acoustic medium spanning for z > 0 is
considered (see Fig. 1). The z-component of particle velocity on baffles vanishes,
and in the slot between baffles, a harmonic pressure of amplitude pl (constant
over an entire slot) excites the wave-field in the medium; lΛ describes the position
of the given l-th slot center along x-axis.

For Λ−w wide baffles centered at = lΛ+Λ/2 (l – any integer) the boundary
conditions at z = 0 are:

q = 0, x ∈ (−w/2, w/2) + lΛ between strips,

v = 0, x 6∈ (−w/2, w/2) + lΛ on strips,

p(lΛ) = pl, in the middle between strips,

(6)

where pl are given values. They are constant in given slots between baffles due
to the condition q = 0 there. The solutions to the boundary-value problem of
interest are functions p(x) and v(x) at z = 0 plane, which will be searched in the
form of Bloch series, natural for the considered periodic system. The field inside
the medium, z > 0, can be evaluated from Eq. (5).

2.2.2. Sound detection – the scattering by baffles

The plane incident wave of the form ej(ωt−ξIx+ηIz) is assumed, yielding the
following wave-field at z = 0: (pI , vI)e−jξIx, where pI and vI are the pressure
and velocity (z-component) amplitudes of the incident field, respectively. It is
convenient for the further analysis to rewrite the wavenumber component ξI as
follows: ξI = r + IK, where K = 2π/Λ is spatial wavenumber of the baffle ar-
ray, r ∈ (0,K) is a reduced wavenumber from the first Brillouin zone, I is an
arbitrary integer. This yields at z = 0: vI(r)e−j(r+IK)x, pI(r)e−j(r+IK)x. The re-
lation between pI and vI involves the harmonic admittance −G, Eq. (2), because
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the incident wave, although propagating in the upper half-space of the medium,
satisfies the radiation condition at z → −∞:

vI = −G(r + IK)pI ,

vI = −g(r + IK)qI ,

qI = −j(r + IK)pI .

(7)

In the case of any non-planar incident wave, its spatial Fourier expansion on the
plane z = 0 should be applied instead, resulting in certain function vI(r); the
whole domain of r ∈ (0,K), as well as numerous values of I must be included in
the analysis of such non-plane incident wave. In the presented analysis however,
and for the sake of presentation simplicity, we consider only the plane incident
wave where r depends on the angle of incidence.

The boundary conditions for full acoustic wave-field are the same as in the
previous case, Eqs. (6), except that pl = 0 is applied. The total force on a
baffle exerted by the incident and scattered waves, models the response of the
piezoelectric transducer element to the incident acoustic wave.

3. Application of electrostatic methods

In periodic systems with period Λ = 2π/K, the wave-field can be represented
by the Bloch series like

p(x) =
∞∑

n=−∞
pne−j(r+nK)x, r ∈ (0,K) (8)

(for example of acoustic pressure p) where r is an arbitrary wave-number con-
strained to one Brillouin zone for the sake of uniqueness of the representation.
In the already developed electrostatic techniques, the Bloch components pn are
expanded again using the method introduced by Blotekjœr, Ingebrigtsen, and
Skeie (Blotekja et al., 1973), referred to as the BIS expansion method, into the
finite series of Legendre polynomials Pk(·) = P

(0)
k (·), which expansion, possess-

ing crucial property to the considered boundary-value problem (Erdelyi et al.,
1953):

∞∑
n=−∞

SnPn(cos∆)e−jnKx = 0 for |x| < w/2,

∞∑
n=−∞

Pn(cos∆)e−jnKx = 0 for |x| > w/2,

(9)

where ∆ = πw/Λ, will help us to satisfy the boundary conditions (the above
functions are periodic). For (Λ − w)-wide strips centered at x = lΛ + Λ/2,
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the corresponding field expansion at z = 0 applied in the solution to both the
boundary-value problems formulated above will be:

q =
∞∑

n=−∞
qne−j(r+nK)x,

qn =
∑
m

αmSn−mPn−m(cos∆),

v =
∞∑

n=−∞
vne−j(r+nK)x,

vn =
∑
m

βmPn−m(cos∆).

(10)

The boundary conditions (6) are fulfilled on the strength of Eqs. (9). Now, we need
only to check if the applied wave-field solution satisfies the wave equation inside
the media, which equation is represented at the plane z = 0 by the harmonic
admittance G(r + nK) or more convenient, by its version g, Eq. (3).

Only this part of the wave-field (q, v) which satisfies radiation condition at
z → ∞ are involved in Eq. (3). Hence, if it is to be applied here, the incident
wave-field must be subtracted from the field at z = 0. This yields the relation
for the nth Bloch component having wave-number r + nK (δij is the Kronecker
delta):

(vn − vIδnI) = g(r + nK)(qn − qIδnI), r ∈ (0,K), (11)

which must be satisfied for all n, particularly for large |n| À |I| where
g(r ±NK) = ±g∞ (12)

(formally, N = ∞, but in the applied approximation, N is assumed large but finite
– this is the only approximation applied in the method). This is only possible if
(Blotekja et al., 1973):

βm = g∞αm (13)

which substituted into the earlier equation and accounting for the last of Eqs. (7)
yields:

∑
m

αm[g(r + nK)Sn−m − g∞]Pn−m(cos∆) = 2g(r + nK)qIδnI . (14)

Under condition (12), the equations for αm outside the limits n ∈ [−N,N ] and
m ∈ [−N, N +1] (moreover it must be N > |I|) are satisfied automatically, what
can be checked by inspection (Blotekja et al., 1973). Hence, Eq. (14) yields
the system of 2N + 1 equations for 2(N + 1) unknowns.

It can be now explained what is the source of advantage of the presented
method over other methods applied in scattering theory for similar problems.
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The boundary conditions are satisfied exactly by the proposed solution, Eqs. (10),
but certain departure is made concerning the equation of motion which is rep-
resented here by the harmonic admittance G or g, Eqs. (2)–(3). This departure
relies on the approximation that g(r +nK) ≡ g∞ for r +nK greater that certain
large but finite value (far above the domain of existence of propagating modes in
the media). In fact, g(x) → g∞ like 1/x2 and indeed this approximation can be
applied in general, but this is the approximation, the only one in the analysis. In
the consequence of it, the wave-field on the baffle plane is represented in finite
Fourier series multiplied by the square-root singular function at the baffle edges
(Blotekja et al., 1973). The larger the BIS expansions are, Eqs. (10), that is
the larger the applied N is, the better approximation is achieved.

In fact usually, for K ≈ k, N can be chosen quite small. The resulting system
of equations (14) appended by the one resulting from the last boundary condi-
tions in Eqs. (6), can be easily solved. This last equation can be evaluated by
integration of q = p,x, Eq. (10), using the Dougall identity (Erdelyi et al., 1953):

P−ν(− cos∆) = −sin νπ

π

∞∑
n=−∞

SnPn(cos∆)
ν − n

(15)

(in somewhat transformed form, using identities Pn(−x) = (−1)nPn(x) and
P−n−1 = Pn), yielding (Danicki, 2004):

pr(lΛ) = j
∑

n

qne−jrlΛ

r + nK
= −j

∑
m

π(−1)mαme−jrlΛ

K sinπr/K
P−r/K−m(− cos∆), (16)

which, being constant between neighboring baffles, is evaluated at x = lΛ; note
the dependence on r indicating its spectral-domain origin.

The solution we seek, must satisfy the condition that the pressure at differ-
ent slots between baffles takes different (given) values pl, dependent on l. This
requires integration of the above equation over r ∈ (0,K), which is the inverse
Fourier transform of discrete function pl = pr(lΛ) defined by (note that the har-
monic term exp(−jrlΛ) is already included in the pr evaluated above):

1
K

K∫

0

pr(lΛ) dr = pl. (17)

This finally yields the last condition for αm dependent on r (pl are given):
∑
m

(−1)mαmP−r/K−m(− cos ∆) = j
K

π
pl e

jrlΛ sinπr/K; (18)

simple substitution into Eq. (16) verifies that Eq. (17) is satisfied. This is the
last equation that must be appended to the system (14) in order to obtain equal
number of equations and unknowns. Now, we can evaluate αm dependent on
given pI or pl, and finally, we can evaluate the wave-field at z = 0 and elsewhere
in the media z > 0 using expansion (10) and (5).
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4. Numerical examples

4.1. Sound beam-forming by chosen pressure between baffles

In contrast to the earlier papers (Crombie et al., 1997; Jensen, Svendsen,
1992; Selfridge et al., 1980), the applied method of analysis yields spatial
spectrum of the acoustic pressure at the baffle plane. Taking the advantage of this,
the radiation pattern can be simply evaluated from the inverse Fourier transform
(as already defined in Eq. (17) on the baffle plane) of p(ξ), dependent on the
wave-number ξ = r + nK, Eq. (1). The unified representation p(ξ) includes all
Bloch orders and is defined by (n is the integer part of ξ: n = E(ξ); note that
E(−1.5) = −2):

p(ξ) =
qn(ξ − nK)

−jξ
, n = E(ξ). (19)

At the level z above the baffle plane z = 0, the acoustic pressure behaves accord-
ing to Eq. (5), thus introducing spatial angular variables: x = R sin θ, z = R cos θ,
and η given in Eq. (2), the pressure in angular coordinates is:

pR(θ) =

∞∫

−∞
p(ξ)e−jRξ sin θe−jRη cos θ dξ/K. (20)

At large distance R → ∞, we may drop this part of the integral represent-
ing the localized field at the baffle plane, which depends on imaginary valued
η, Eq. (2). This is made by constraining ϑ to the domain (−π/2, π/2) in the
transformed integration where ξ = k sinϑ, η = k cosϑ:

pR(θ) =

π/2∫

−π/2

(k/K)p(k sinϑ) cos ϑe−jkR cos(ϑ−θ) dϑ, (21)

which integral can be easily evaluated by the stationary phase method (Fedo-
ryuk, 1997; Felsen, Marcuvitz, 1973) (the stationary point of interest here
is θ = ϑ):

pR(θ) = p(k sin θ) cos θ
k

K

√
j2π

kR
e−jRk. (22)

This is an alternate method of evaluation of angular radiation characteristics to
the one presented in (Crombie et al., 1997; Jensen, Svendsen, 1992; Self-
ridge et al., 1980). It can be however, evaluated in more efficient method ex-
plained below.

Solving Eqs. (11)–(18), we obtain nth Bloch order of the acoustic pressure,
pn = jqn/(r+nK) for given r, Eq. (10). This is the wave pressure radiated into the
half-space z > 0 at the direction described by the corresponding wave-numbers
(ξn = r + nK, ηn =

√
k2 − (r + nK)2) provided that ηn is real. Hence, only
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limited values of n contribute to the angular radiation pattern at θ = atan(ξn/ηn)
(there are multiple directions for small K). Repeating this for all allowed r ∈
(0,K) in Eq. (8) (followed by evaluation of αm from Eq. (7)–(18) and qn from
Eq. (10) in the manner presented above), the angular radiation pattern can be
fully reconstructed.

The angular radiation pattern concerns the acoustic amplitude a which is
related to the acoustic power by Π = |a|2/2. It is easier to evaluate first the
normal component of the acoustic Poynting vector Πz using the solutions for
acoustic pressure p and normal velocity v at z = 0. For given r and Bloch order
n′ for which η is real, it is

Π(n′)
z = Re{vnp∗n}/2, Πz =

∑

n′
Π(n′)

z , (23)

where Πz is the total power radiated from the baffle plane into the body. Having
Π

(n)
z , it is easy to guess the absolute value of the Poynting vector Π(n) for given

Bloch order by taking into account the wave propagation direction described by
its wave-vector (ξn, ηn):

Π(n) =
k

ηn
Π(n)

z , a(θn) =
√

2Π(n), (24)

ηn =
√

k2 − ξ2
n and θn = acos((ηn/k). The radiation pattern a(θ) evaluated this

way exploits the results already obtained in evaluation of the acoustic field at the
baffle plane.

Noticing that v = 0 outside the domain of given constant pressure pl = p0 (the
current discussion concerns the pressure in only one slot, l = 0; the generalization
is straightforward), the delivered power is:

P = Re{vp∗}/2 = Re

w/2∫

−w/2

p∗l v(x) dx/2 ⇒ p∗l

Λ/2∫

−Λ/2

v(x) dx/2. (25)

The last integral can be evaluated using the Dougall identity (Erdelyi et al.,
1953) which can be derived from Eq. (16) by applying identities mentioned below
Eq. (15):

1
2

Λ/2∫

−Λ/2

v(x) dx = g∞
π

K

∑
m

αmP−m−r/K(− cos∆). (26)

One can check by computations that the evaluated delivered (P ) and outgoing
(Πz) acoustic powers agree nicely (up to six digits; similar accuracy takes place
in the scattering problem discussed further below).

In the numerical examples presented in Fig. 2 both the pressure on the baffle
plane p(x) and the radiation pattern |p(θ)| are presented, computed for several
values of slot width w and for the baffle period Λ = 0.7λ, Figs. 2a,b, and Λ = λ,
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Figs. 2c,d. Note that the pressure built-up on baffles can significantly modify
the radiation pattern and it is even able to extinguish the radiation at certain
directions θ. In the above examples we applied the given pressure in one slot only:
pl = δl0. In Fig. 3 the radiation pattern is computed for the case of 5 active slots
excited with the chosen phase shift pl = exp(jkΛ sin θ), for l = −2, . . . , 2 and
pl = 0 otherwise. The steering angle is chosen θ = 30◦ and 0◦ for comparison.
The steering angle differs slightly from the applied value θ = 30◦. This difference
can be diminished by taking more active slots. At the same time the width
of the main lobe gets smaller and the side lobe level remains unchanged. In
Fig. 3b the corresponding distribution of the pressure field on the baffle plane is
presented. The grating lobe which appears for the steering angle θ = 30◦ is due
to the spatial sampling theorem (Λ ≤ λ/2) violation in the considered case of
Λ = 0.7λ. This is further discussed in the next section (see Fig. 5, Eq. 30 and the
discussion therein after). For convenience, the real and imaginary parts of the
pressure distribution in Figs. 2, 3 are shown for positive and negative values of
x-coordinate respectively, since in the above examples the odd number of active
slots is considered, resulting in the symmetry of the graph of p(x) with respect
to the origin.

Fig. 2. Radiation pattern |p(θ)| and pressure distribution on the baffle plane p(x)
for Λ/λ = 0.7, (a), (b), and Λ/λ = 1, (c), (d) and different slot width w.
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Fig. 3. Radiation pattern |p(θ)| for Λ/λ = 0.7, w/λ = 0.6 and 5 active slots excited
with linear phase shift and steering angle θ = 30◦ (solid line) and 0◦ (dashed line).

4.2. A receiver beam-forming – scattered sound pressure on baffles

The total force exerted by the incident wave on a baffle is (assuming p(x) = 0
between baffles):

p̄ =

Λ−w/2∫

w/2

p(x) dx =

Λ∫

0

∑
n

pne−jrnx dx. (27)

Figure 4a presents Bragg orders of the scattered wave-field for the case of small
value of K/k. After simple evaluation of integrals where pn =

∫
qndx evaluated

from Eq. (10), one obtains:

p̄ = 2j sin(rΛ/2)e−jrΛ/2
∑
m

αm

∑
n

Sn−mPn−m

(r + nK)2
, (28)

which series converges fast and can be easily evaluated numerically. The direc-
tional characteristics of the wave detection by baffles for several values of slot
width w and the baffle period Λ = 0.5λ and Λ = 0.7λ are shown in Fig. 4b
and c respectively. In Fig. 4d the real and imaginary parts of p̄(θ) are shown for
w = 0.6λ, w = 0.3λ and Λ = 0.7λ. The inflection point of the curves is clear.
The phenomenon takes place when the −1st Bragg component of the scattered
field approaches the tangential direction of propagation with respect to the baffle
system, that is at r−K → −k. In the above examples, the value r = 10−4k was
used instead of r = 0 in order to avoid evaluation of the corresponding limits
r → 0 (Danicki, 1999).
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Fig. 4. Directional characteristic of the wave detection by baffles p̄(θ) for different Λ
and several w.

In the example of receiver wave-beam synthesis, the output signal is the
Hamming-windowed (Cook, Bernfeld, 1967) sum of signals pl from 20 trans-
ducer elements:

S(θ) =
20∑

n=1

pnWnejxnk cos ϑ, xn = (n− 10.5)Λ,

Wn = 0.08 + 0.92 cos2(π(n− 10.5)/20),

(29)

where ϑ is the chosen observation direction: 0◦ or 30◦ in the examples presented in
Fig. 5, while the angle of incidence θ sweeps over an entire domain (pn depends
on r = k sin θ). The results are compared with ideal cases of point receivers
responding to the incident wave by pn = exp(−jrxn).

Since the pitch Λ = 0.7λ does not obey the spatial sampling theorem (Λ ≥
λ/2), the grating lobes appear for ϑ = 30◦ in Fig. 5b. The exact formula

θm = asin {±mλ/Λ− sinϑ} (30)

yields for ϑ = 30◦ and m = −1 the value θ−1 = −68◦ which is in a good agreement
with numerical results in Fig. 5b.
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Fig. 5. Directional characteristic of the wave detection by baffles computed from Eq. (29)
for observation angles: a) ϑ = 0◦ and b) ϑ = 30◦; Λ = 0.7λ, w = 0.6λ in both cases.

5. Conclusions

The presented examples confirm that the applied method is worth considera-
tion for numerical experiments concerning the beam-forming systems. It is very
efficient numerically, yielding all interesting characteristics of the system within
the same simple analysis, and yields results satisfying the energy conservation
law, the valuable feature allowing us to check the computed results easily. This
is important for evaluation of non-stationary signals comprising wide spectrum,
where computations must be repeated for many frequencies.

Further modification of the presented method makes it applicable for analyz-
ing finite transducer array, periodic or having different transducer elements with
different width and spacing (Danicki, 2004; Tasinkevych, 2004). Such mod-
ification may help reducing spurious effects connected with abrupt ends of the
transducer system, which is considered as quite difficult for analysis. Authors’
intention is to investigate this problem in future works. The proposed method
seems to be particularly useful and suitable for modeling receiving transducer ar-
ray in the system where the observation wave-beam is sweeping over wide range
of angles.
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