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MATHEMATICAL FOUNDATIONS OF LIMIT CRITERION FOR ANISOTROPIC MATERIALS

MATEMATYCZNE PODSTAWY WARUNKU GRANICZNEGO DLA MATERIAŁÓW ANIZOTROPOWYCH

In the paper a new proposition of limit state criteria for anisotropic solids exhibiting different strengths at tension and
compression is presented. The proposition is based on the concept of energetically orthogonal decompositions of stress state
introduced by Rychlewski. The concept of stress state dependent parameters describing the influence of certain stress modes on
the total measure of material effort was firstly presented by Burzyński. The both concepts are reviewed in the paper. General
formulation of a new limit criterion as well as its specification for certain elastic symmetries is given. It is compared with
some of the other known limit criteria for anisotropic solids. General methodology of acquiring necessary data for the criterion
specification is presented. The ideas of energetic and limit state orthogonality are discussed – their application in representation
of the quadratic forms of energy and limit state criterion as a sum of square terms is shown.
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Artykuł przedstawia nową propozycję kryterium stanu granicznego dla anizotropowych ciał stałych wykazujących różną
wytrzymałość przy rozciąganiu i ściskaniu. Propozycja ta opiera się na koncepcji energetycznie ortogonalnych rozkładów
stanu naprężenia zaproponowanej przez Rychlewskiego. Pomysł wykorzystania zależnych od stanu naprężenia parametrów
określających wpływ konkretnych form naprężenia na całkowitą miarę wytężenia materiału po raz pierwszy został przedstawiony
przez Burzyńskiego. W pracy omówione są obydwie koncepcje. Przedstawione jest ogólne sformułowanie nowego warunku
granicznego, jak również jego specyfikacja dla wybranych symetrii sprężystych. Kryterium to zostało porównane z niektórymi
innymi spośród znanych kryteriów granicznych dla ciał anizotropowych. Przedstawiono ogólną metodologię pozyskiwania
danych wymaganych do specyfikacji kryterium.

1. Introduction

1.1. Motivation

Rapid development of materials science is related with in-
creasing demand for adequate analysis of deformation process-
es in newly elaborated materials. Also the simulations of ther-
momechanical processes that appear in many recent indus-
trial and laboratory applications require accounting for some
unconventional mechanical properties of investigated solids.
Among the uncommon properties of materials, which can-
not be neglected any more, one should distinguish especially
anisotropy of mechanical properties, tailored often on demand
by controlling the structure on the microscopic or nano-metric
level, and asymmetry of elastic range (cf. e.g. the discussion
of the limit states in nano-metals by Frąś et al. [1]). The lat-
ter property can be observed as the difference of tensile and
compression strength – the so called strength differential ef-
fect (SDE), pressure sensitivity of yield and the dependency
on the third invariant of stress deviator described by the so

called Lode angle on the octahedral plane. It is the goal of
modern mechanics of solids to provide such a mathemati-
cal description, which enables to account for these features
of modern materials. The aim of the paper is to introduce a
new mathematical formulation of yield criteria for anisotropic
solids revealing the asymmetry of elastic range. The novelty of
the proposed approach is based on the hypothesis that certain
parts of elastic energy density can be applied to formulate
the measure of material effort. The notion of material effort,
known since long in German literature on mechanics of solids
as Anstrengung, in Russian napry�ennost~ (napryazhen-
nost’) and in Polish as wytężenie, used rather intuitively, can
be defined more precisely as the state of material point of the
loaded body, determined by internal forces (stress) and strain,
which is related with the change of the strength of chemical
bonds, with respect to the natural state, in the representative
volume element of the condensed matter under investigation.
This definition is in accord with the earlier studies about the
relation of microscopic observations and modelling of defor-
mation and fracture of solids by Pęcherski [2]. The interdisci-
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plinary approach of connecting the nature of chemical bonds
with the strength of materials was presented by Gilman [3].
The applications of Molecular Dynamics for the analysis of
the strength of chemical bonds determining the strength of
metal-metal oxide interfaces were studied in the papers of
Nalepka and Pęcherski [4], [5] as well as in Nalepka [6], [7].
A measure of material effort is required to assess the distance
of the considered state of stress from the postulated surface of
limit states in the six-dimensional space of stress. The conclu-
sion of the aforementioned studies is that the notion of energy
as a multilevel scalar quantity can be applied as the univer-
sal and versatile measure of material effort. On the atomic
level certain part of energy is related with the change of the
strength of chemical bonds. Similarly, on the macroscopic lev-
el some precisely defined parts (contributions) of the density
of elastic energy accumulated in the strained body contribute
to the measure of material effort. The symmetry of the elastic
and strength properties control the particular partition of the
total elastic energy density. Historically, the first proposition
of accounting for the density of elastic energy as a measure
of material effort in isotropic solids belongs to James Clerk
Maxwell, who expressed this idea in the private letter of the
18th December 1856 to William Thomson (known later as
Lord Kelvin). The letter has been published with other works
of Maxwell in 1936 [8]. Independently, Beltrami [9] consid-
ered the density of total elastic energy as a measure of material
effort, what has not found conformation in experimental inves-
tigations. More successful approach was presented by Huber
in 1904[10] who assumed on the basis of certain physical
reasoning of molecular interactions that the density of elas-
tic energy of distortion is an appropriate measure of material
effort for isotropic solids. The earlier proposition of Maxwell
supports this idea. The mentioned partition of energy density
for anisotropic solids was first introduced by William Thom-
son [11] in 1856yet it has not become a subject of broader
interest until Jan Rychlewski undertaken systematic study of
this problem [12], [13]. The all discussed above cases of the
energy-based hypothesis of material effort are related with the
fundamental assumption about the symmetry of elastic range.
In terms of the measured elastic limits (yield strengths) it
means that their values in tension and compression are the
same. If the distinct difference of these values is observed,
the asymmetry of elastic range appears and the formulation
of energy-based hypothesis of material effort for anisotropic
solids remains an open and unsolved problem. The complete
and mathematically elegant solution for the case of isotropic
body was provided by Burzyński [14].

1.2. Brief review on the limit criteria for anisotropic
solids

In 1928 Richard von Mises in his pivotal paper [15]
has presented at least three innovative general ideas relat-
ed with limit criteria for anisotropic solids. First, the atten-
tion was focused on the concept of a stress state depen-
dent quadratic function satisfying the postulates of symme-
try preservation and pressure insensitivity – it was the ex-
tension of the limit state criterion for isotropic solids pre-
sented in 1913 [16], anticipated by Huber as early as in
1904 [10]. Von Mises’ idea was the basis for series of fur-

ther propositions dealing with different elastic symmetries
or involving the influence of hydrostatic stress. The best
known are the limit criteria by Hill [17] and Hoffman [18]
as well as by Tsai-Wu [19], Caddell-Raghava-Atkins [20]
and Deshpande-Fleck-Ashby [21]. The idea of quadratic func-
tions was soon modified so that the exponent of the terms
of the considered function was fixed at different value (eg.
Liu-Huang-Stout [22]) or it became another parameter of the
criterion (eg. Hill [23] and Hosford [24]). Basing on those
concepts a large number of yield criteria for plane stress state
were formulated – for precise summary and analysis see e.g.
Banabic [25]. Most of the discussed limit criteria cannot de-
scribe any symmetry lower than orthotropy, some cannot ac-
count for the strength differential effect and sometimes the
obtained yield surface simply does not correspond well with
the experimental results. The ways of dealing with this prob-
lem were also of purely technical nature – adding further lin-
ear or quadratic terms involving additional constant parame-
ters [18] [19] [20] [21], changing the value of exponent [23],
[24] etc. In the authors’ opinion this is not a proper way of
solving the problem – the results are complex and unclear in
their mathematical form, which is even more difficult for both
mathematical analysis and physical interpretation.

The second idea presented in the paper of Mises [15]
was – as it seems – the first attempt of generalization of the
Coulomb-Tresca-Guest limit shear stress condition. Another
such proposition was suggested by Hu [26]. The third idea of
the paper of Mises [15]is based on very general (yet never de-
veloped) proposition of a plasticity condition. Mises suggest-
ed that the most general yield condition should be a function
which arguments are certain stress state invariants with respect
to the addition of the hydrostatic stress state and the geometri-
cal transformations belonging to the group of symmetry of the
considered material. He has also proposed a ”complete set” of
such invariants for cubic and hexagonal symmetry. Valuable
proposition of a yield criterion for anisotropic solids was also
made by Karafillis and Boyce [27]. The authors where con-
sidering ”isotropic plasticity equivalent” (IPE) yield surface
which was obtained with use of a properly chosen (with re-
spect to the symmetries of the elasticity tensors) linear trans-
formation of the stress space. Quite recently an interesting
proposition of Schreyer and Zuowas presented [28],in which
the spectral decomposition of the elasticity tensors was used
for definition of a set of the yield criteria and a set of uncou-
pled equations for the evolution parameters respective for all
eigenstates of the elasticity tensors. Also recently the geomet-
rical foundations of plasticity yield criteria were studied with
use of differential geometry and group theory concepts [29].
Yet still certain required features such as accounting for the SD
effect, simplicity in application or clear physical interpretation
are missing in those propositions.

The last group of the limit state criteria is the one which
considers as a measure of material effort certain parts of stored
elastic energy density. An interesting coincidence is the fact
that the first energy-based hypothesis of material effort for
anisotropic solids was stated by Burzyński [14] in the same
year when Mises published his paper [15]. Burzyński con-
sidered a special class of materials for which the decomposi-
tion of the elastic energy into its volumetric and distortional
part is possible – the combination of those energies, influ-
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enced additionally by the hydrostatic stress was considered
as a measure of material effort. Yet Burzyński has not pro-
vided any workable criterion for anisotropic solids. He fo-
cused rather on certain modification of the criterion for the
isotropic case accounting for the effect of initial anisotropy
[30]. In 1956 Olszak and Urbanowski [31] inspired by earlier
works of Goldenblat [32] [33] introduced a limit condition for
anisotropic solids involving a ”pseudoenergy” of distortion
and volume change, however yet these notions still had no
clear physical meaning. Then the concept – already with use
of the spectral decomposition of elasticity tensors introduced
by Rychlewski [12] – was further developed by Olszak and
Ostrowska-Maciejewska in [34]. Yet the most general, and si-
multaneously physically strict and mathematically elegant was
the proposition of Rychlewski [13], who also gave clear ener-
getic interpretation of the generalized quadratic limit condition
for anisotropic solids by Mises [15]. The detail discussion of
the energy-based condition for cubic and transverse symme-
tries was given in [35].

As it was stated before, one has to notice that large num-
ber of all of the limit criteria mentioned above has certain
drawbacks. Many of them were developed under the assump-
tion that the hydrostatic stress does not influence neither the
elasticity limit nor the plastic flow. Facing the experimental
data gathered for decades this assumption cannot always hold
true.A definite influence of pressure on the yield stress was
proved by experiments (Spitzig, Richmond and Sober [36]
[37], Wilson [38] and others). The relation between pressure
sensitivity and the strength differential effect was also pointed
out [39]. Another issue which seems to be almost totally omit-
ted in the investigations of the discussed problem is that only
single proposition (e.g. Cazacu and Barlat [40]) of the yield
criteria for anisotropic solids account for the influence of the
third invariant of the stress tensor deviator and thus – in partic-
ular – they are capable of describing the materials exhibiting
the Lode angle dependence. Of course both third invariant of
the stress tensor deviator and the Lode angle are invariants
with respect to all possible rotations soit would be inconsis-
tent to consider them as a variable influencing an anisotropic
function directly without any restrictions being a consequence
of the material’s symmetry. Anyway, it is rather obvious if
such a specific phenomenon as the Lode angle dependency
can be observed in case of isotropic solids, similar, or even
more sophisticated effects should occur in case of anisotropy.
All those facts are the main reasons and a direct motivation
for the authors to formulate a new proposition of a limit state
criterion for anisotropic solids that would satisfy all of the
above mentioned requirements.

1.3. The content of the paper

The second section of the paper is devoted to the deriva-
tion of the new proposition of an energy-based limit state
criterion for anisotropic solids. Fundamental theorems on the
spectral decomposition of a linear operator and on simultane-
ous representation of two quadratic forms in their canonical
forms are given, as well as application and its consequences
in certain problems of mathematical theory of plasticity are
discussed. Previously introduced concept of energetic orthog-
onality [13] as well as the new concept of the limit state or-

thogonality are presented. General idea of elastic energy de-
compositions of Rychlewski [13], and the idea of stress state
dependent influence functions by Burzyński [14] are also de-
scribed. The third section of the paper contains the statement
of the authors’ new proposition – general formulation, basic
assumptions on the introduced quantities and discussion on
the application of the presented yield criterion in the descrip-
tion of plastic deformation. In the fourth section exemplary
specifications of the limit criteria for certain chosen elastic
symmetries are given. The methodology of determination of
the form of the unknown functions is also proposed. The paper
closes with a brief summary.

2. Derivation

Consider linear constitutive relations between stress and
strain (generalized Hooke’s law):



σ = S · ε
ε = C · σ
C ◦ S = S ◦ C = IS

⇒



σi j = Si jklεkl

εi j = Ci jklσkl

Ci jklSklmn = Si jklCklmn =

= 1
2

(
δimδ jn + δinδ jm

)
,

(1)
where σ is the Cauchy stress tensor, ε is the infinitesimal
strain tensor, S and C are symmetric, positive definite fourth
rank elasticity tensors (stiffness and compliance tensor respec-
tively) and IS is the identity operator in the six-dimensional
linear space of symmetric second order tensorsJ2

sym. Elasticity
tensors satisfy the following internal symmetries:

Si jkl = S jikl = Si jlk = Skli j,

Ci jkl = C jikl = Ci jlk = Ckli j.
(2)

If the stress state space is considered as a dimensionless one
(e.g. relative stresses referred to a fixed value of stress) then
the generalized Hooke’slaw (1) can be considered as a linear
map of J2

sym onto itself – an automorphism in J2
sym.

2.1. Spectral decomposition of elasticity tensors

For any tensor of an even order T ∈ J2p its eigenval-
ue and eigentensor problem can be considered.Tensor T is
then a linear operator mapping the linear space J p into it-
self. The clue concept of the currently presented proposition
is the spectral decomposition of the elasticity tensors. As the
elasticity tensors are the linear operators realizing the linear
automorphic map of the generalized Hooke’s law in J2

sym (the
dimensionless stress and strain space), their eigenproblem can
be stated, namely the problem of finding such symmetric sec-
ond order tensor ω for which

S · ω = λω⇒
(
S − λIS

)
· ω = 0. (3)

We call the scalar λ (the eigenvalue od S) the Kelvin modulus
[12] and the corresponding tensor ω is termed a proper state
of S. It is worth noting that the eigenproblem of the elasticity
tensors is related to the problem of finding such strain state of
fixed norm for which the stored elastic energy density reaches
its local extremum

Φ =
1
2
ε · σ =

1
2
ε · (S · ε)→ min / max Λ |ε| = const. (4)
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Since the elasticity tensors are symmetric, all Kelvin moduli
are real. Positive definiteness of S and C is equivalent to the
positiveness of all Kelvin moduli. Since the compliance tensor
is the inverse of the stiffness tensor, it can be shown that

ω = IS · ω = (C ◦ S) · ω = C · (S · ω) = C · (λω) (5)

what yields

C · ω =
1
λ
ω. (6)

It is now visible that any eigenstate of S is also an eigenstate
of C and the corresponding eigenvalue of C is the inversion
of the pertinent Kelvin modulus. Rychlewski has introduced
and proved the following theorem [12], which he called the
main structural formula of linear theory of elasticity

Theorem

For any elastic body given by its stiffness tensor S there
exists exactly one decomposition of the linear space of sym-
metric second order tensors J2

sym into direct sum of mutually
orthogonal subspaces Pα (eigensubspaces of the elasticity ten-
sors)

J2
sym = P1 ⊕ P2 ⊕ ... ⊕ Pp, ρ 6 6
Pα⊥Pβ for α , β α, β = 1, 2, ..., ρ

(7)

such that for any stress or strain state

σ = σ1 + σ2 + . . . + σρ, σα ∈ Pα
ε = ε1 + ε2 + . . . + ερ, εα ∈ Pα

(8)

and there exists exactly one set of pairwise unequal constants
(Kelvin moduli – eigenvalues of the stiffness tensor)

λ1, λ2, . . . , λρ, λα , λβ for α , β

such that
S = λ1P1 + λ2P2 + . . . + λρPρ
C = 1

λ1
P1 + 1

λ2
P2 + . . . + 1

λρ
Pρ

(9)

where linear operators Pα are the orthogonal projectors on
the eigensubspace Pα corresponding with the λα eigenvalue:

Pα · σ =


σ ⇔ σ ∈ Pα
0⇔ σ < Pα

. (10)

The orthogonal projector Pα are the identity operators in the
corresponding eigensubspace Pα. Since the decomposition of
J2

sym into eigensubspaces of the elasticity tensors is complete,
so

P1 + P2 + . . .Pρ = IS. (11)

As the theorem states this decomposition is unique. How-
ever, any orthogonal projector Pα itself can be ex-
pressed as a sum of dyads of the normalized eigenstates
ωi
α (i = 1, 2, . . . , dim Pα) , ωi

α ·ω j
α = δi j respective for λα form-

ing an orthonormal basis in Pα

Pα =

dimPα∑

i=1

(
ωi
α ⊗ ωi

α

)
, (no summation over α) . (12)

It should be reminded that for real eigenvalues their algebraic
and geometric multiplicity are equal – the multiplicity of an
eigenvalue as a root of the characteristic polynomial is equal
the dimension of the corresponding eigensubspace.

In general the spectral decomposition of the elasticity
tensors can be written in a following form

S = λI (ωI ⊗ ωI ) + λII (ωII ⊗ ωII ) + . . . + λVI (ωIV ⊗ ωIV )
C = 1

λI
(ωI ⊗ ωI ) + 1

λII
(ωII ⊗ ωII ) + . . . + 1

λVI
(ωVI ⊗ ωVI )

,

(13)
which is unique for different Kelvin moduli. If some of the
Kelvin moduli are multiple, some of λK (K = I , II , ...,VI) are
equal and some of ωK can be chosen in an infinite number of
ways. Please note that such decomposition is not unique. Any
stress and strain state can be decomposed in any orthonormal
basis in J2

sym formed by eigenstates ωK

σ = σI + σII + . . . + σVI , σK = (σ · ωK )ωK

(no summation over K)
ε = εI + εII + . . . + εVI , εK = (ε · ωK )ωK

(14)
Similar considerations were presented later independently by
Mehrabadi and Cowin [41] and Sutcliffe [42].

2.1.1. Decoupled stress-strain constitutive relations

The consequences of decomposition of the stress/strain
space into the eigensubspaces of the elasticity tensors are of
great meaning. If the stress and strain tensors are decomposed
in the basis of the eigenstates of the elasticity tensors, then the
constitutive relations (1) becomes a set of uncoupled equations
– the corresponding proper stress and strain states are strictly
proportional [12], [43]

σK = λKεK ⇔ εK = 1
λK
σK K = I , . . . ,VI

(no summation over K) .
(15)

It should be mentioned that historically the first use of uncou-
pled constitutive relations was introduced by Thomson [11]
in the expression of the elastic energy density as a sum of
squares of strains:

Φ = λIε
2
I + λIIε

2
II + λIIIε

2
III + λIVε

2
IV + λVε

2
V + λVIε

2
VI (16)

2.1.2. Decoupled stress-strain constitutive relations

Since the decomposition (7) of J2
sym into eigensubspaces

of the elasticity tensors is orthogonal it can be easily shown
that the work performed by a proper stress state be longing to
a certain eigensubspace on the proper strain state belonging
to different eigensubspace is zero

α , β ⇒ L
(
σα, εβ

)
=

1
2
σα · εβ =

1
2
σα ·C ·σβ =

σα · σβ

2λβ
= 0

(17)
We say that any two stress and strain states which do not
perform work one on another are energetically independent.

Definition of a scalar product can be formulated in an
arbitrary way as long as all axioms of the scalar product
hold true – it maybe any symmetric, positive definite and
non-degenerate bilinear form. It is known that for any quadrat-
ic form there exists a corresponding bilinear form [44]. If no
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locked strain states [43] [45] corresponding with zero eigen-
value of the compliance tensor are taken into consideration,
one can see that as the elasticity tensors are symmetric and
positive definite all those above mentioned axioms are fulfilled
by an energetic scalar product defined as

α • β de f
= α · C · β α,β ∈ J2

sym (18)

Any two states which are orthogonal with respect to the en-
ergetic scalar product defined above are called energetically
orthogonal

α⊥̇β ⇔ α • β = 0. (19)

It means that

2Φ (α + β) = (α + β) ·C ·(α + β) = α ·C ·α+β ·C ·β+2α ·C ·β.
(20)

If the condition (19) is satisfied, then

2α · C · β = 0

and the states α and β are energetically independent.
It is also worth noting that eigenstate and eigenvalue prob-

lem for certain operator mapping linear space into itself can
be defined in various ways depending on the assumed defini-
tion of the scalar product in that space. If the energetic scalar
product (18) is assumed, then an energetic eigenproblem for
any linear operator L: J2

sym → J2
sym can be formulated. Any

stress state g satisfying, [13]

L • g ≡ (L ◦ C) · g =
1
2γ

g ⇔ Li jklCklmngmn =
1
2γ

gi j (21)

is called an energetic eigenstate of L for an appropriate ener-
getic eigenvalue 1

2γ . If L = S, then

S • g = (S ◦ C) · g = IS · g = g (22)

so the stiffness tensor acts as an identity operator if the en-
ergetic scalar product is used to define the inner product of
tensors. Since quadratic form

f • L • g = f · (C ◦ L ◦ C) · g = fi jCi jklLklmnCmnpqgpq (23)

is symmetric, all of the energetic eigenvalues are real.

2.1.3. Main decomposition of elastic energy density

Any two eigenstates of the elasticity tensors correspond-
ing to different eigenvalues are both orthogonal and energet-
ically orthogonal. It enables rewriting the total elastic energy
density

Φ (σ) =
1
2
σ · C · σ (24)

as an additive function of its stress or strain argument, what
is in general impossible for quadratic forms such as energy:

Φ (σ) = Φ (σ1) + Φ (σ2) + . . . + Φ
(
σρ

)
, ρ 6 6

Φ (σα) =
|σα |2
2λα

, α = 1, 2, . . . , ρ
(25)

where σα (α =1, 2, ..., ρ) are the eigenstates of the com-
pliance tensor. We will call the decomposition (25) the main
decomposition of elastic energy density.

2.2. Energy-based hypotheses of material effort for
anisotropic solids

2.2.1. Generalized limit condition of Mises and its energetic
interpretation – Rychlewski’s theorem

Let us considera generalized limit criterion for anisotropic
solids by Mises [15] of the following form:

σ ·H · σ = 1 (26)

where H is a fourth rank limit state tensor satisfying the in-
ternal symmetry conditions (2). In the original formulation of
the limit condition of Mises [15], he considered the case when
only the deviator of the stress state contribute to the measure
of material effort. It is worth noting that Mises emphasized
that the limit condition (26) has no energetic sense. H de-
scribes the strength properties of the considered body and it
is represented by a matrix of coefficients of a quadratic form
of the limit condition (26). If the flow rule associated with the
limit condition (26) is considered, then H is a linear operator
in J2

sym and an eigenproblem can be formulated for it, namely
finding such stress states h and scalars h that, [34]

H · h =
1
k2 h. (27)

Classical theorem on the spectral decomposition of any linear
operator, which was presented in the previous section referring
to the elasticity tensors, leads to the following result:

H =
1
k2
1

R1 +
1
k2
2

R2 + . . . +
1
k2
κ

Rκ , κ 6 6 (28)

where 1
k2
α

and Rα (α =1, 2, ..., κ) are the eigenvalues and or-
thogonal projectors on the corresponding eigensubspaces of H
respectively. The spectral decomposition maybe also rewritten
in the following form,

H =
1
k2

I

(hI ⊗ hI )+
1
k2

II

(hII ⊗ hII )+ . . .+
1

k2
VI

(hVI ⊗ hVI ) , (29)

which is unique only for 1
k2
α

being single roots of the charac-
teristic polynomial. The limit condition (26) maybe rewritten
as:

σ ·H · σ =
|σ1|2
k2
1

+
|σ2|2
k2
2

+ . . . +
|σκ |2
k2
κ

= 1, σα = Rα · σ.
(30)

If any of the limit stress value kα = ∞(α = 1, 2, ..., κ) then
the corresponding stress state σα maybe considered as a safe
stress state as it does not influence the limit condition.

It is important to note here, that both the compliance
tensor C and limit state tensor H each maybe used as a linear
operator in J2

sym C in the generalized Hooke’s law (1), H in
the associated flow rule – as well as a quadratic form – C in
the expression for elastic energy density (24), H in the limit
condition (26). In the face of this simple fact the following
theorem emerges [44].
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Theorem

Let E be an n-dimensional affine space and let there are
two quadratic forms defined in it x· A· x and x· B· x, x ∈ E
and let the form x· B· x be symmetric and positive definite.
Then there exists such a basis in which both quadratic form
scan be represented in the canonical form.

As it was already mentioned, for any quadratic form x ·
B· x there exists a bilinear form x · B· y which is polar to it.
If it is assumed to be positive definite then the scalar product
defined as

〈x |y 〉 de f
= x · B · y (31)

fulfills all axioms of the scalar product. In E there exists thus a
basis which is orthonormal with respect to the scalar product
defined above:

eK · B · eL = δKL (32)

in which both quadratic forms x · A · x and x · B · x are
simultaneously represented in their canonical form (as a sum
of squares).

Rychlewski [13] has used the theorem on the simultane-
ous reduction of two quadratic forms σ · C ·σ and σ · H ·σ to
their canonical forms with assumption of the energetic scalar
product (18).

Rychlewski’s theorem

For every elastic material defined by its compliance ten-
sor C and limit state tensor H, there exist exactly one en-
ergetically orthogonal decomposition of the linear space of
symmetric second order tensors J2

sym:

L2
sym = H1 ⊕ . . . ⊕Hχ, χ 6 6,

Hα⊥̇Hβ for α , β α, β = 1, 2, . . . , χ
(33)

and exactly one set of pairwise unequal constants

h1, . . . , hχ, hα , hβ for α , β (34)

such that, for an arbitrary stress state σ

σ = σ1 + . . . + σχ, σα ∈Hα (35)

the measure of material effort given by formula (26) is equal

σHσ =
1
h1

Φ (σ1) + . . . +
1
hχ

Φ
(
σχ

)
, (36)

where

Φ (σ) =
1
2
σ · C · σ = Φ (σ1) + . . . + Φ

(
σχ

)
(37)

the total elastic energy density.
In the general case the tensors C and H are indepen-

dent. The elasticity tensors C and the limit state tensor H are
coaxial when they have the same eigensubspaces and thus the
same orthogonal projectors, yet in general they may still have
di?erent eigenvalues.

If the tensors C and H are coaxial then the elastic en-
ergy density decomposition (37) is called by Rychlewski [13]
the main energy decomposition (25). It is important to note,
that the decomposition of J2

sym into the eigensubspaces of
the elasticity tensors is the only decomposition which is both
orthogonal and energetically orthogonal.

2.2.2. Limit state orthogonality

Rychlewski has used the quadratic form σ ·C ·σ to define
the energetic scalar product the form of the Mises limit con-
dition could be chosen as well. According to the postulates of
Mises [15] an addition of a hydrostatic component should not
influence the limit condition (26) – it is due to assumption of
that limit stress is pressure insensitive. It can be shown, that
the pressure in sensitivity is equivalent to the statement that
any hydrostatic stress state is an eigenstate of H corresponding
with the zero eigenvalue. However, positive definite limit state
tensor maybe used in definition of limit state scalar product
and limit state orthogonality

αNβ = α ·H · β α,β ∈ J2
sym (38)

Any two tensors which are orthogonal with respect to the
scalar product defined above will be called limit orthogonal

α⊥̂β ⇔ αNβ = 0 (39)

According to the theorem in [44] on parallel reduction of two
quadratic form sin to the sum of squares, we might analogi-
cally represent the total elastic energy density in the following
form:

Φ (σ) =
1
2
σ ·C·σ =

W (σ1)
w1

+
W (σ2)

w2
+. . .+

W (σϑ)
wϑ

, ϑ 6 6

(40)
such that for any stress state σ

σ ·H · σ = W (σ1) + W (σ2) + . . . + W
(
σχ

)

W (σα) = σα ·H · σα = αNα α, β = 1, 2, . . . , ϑ
α , β ⇒ σα⊥̂σβ

(41)

Limit state orthogonality is yet still difficult in physical inter-
pretation, however it may be a subject of further research.

2.2.3. Elastic energy decompositions – Rychlewski’s
hypothesis of material effort

Energetically orthogonal decompositions of elastic energy
density introduced by Rychlewski [13] became a basis for the
formulation of a new proposition of an energy-based limit con-
dition for anisotropic media. Rychlewski proposed to consider
the linear combination of the terms of energy decomposition
(36) as a measure of material effort. The material is considered
to be in the limit state if the energetic measure reaches certain
fixed value which is a constant material parameter independent
of the applied load.

Φ1

h1
+

Φ2

h2
+ . . . +

Φρ

hρ
= 1, ρ 6 6 (42)

This is energetic interpretation of the limit criterion of Mises
type given by Rychlewski [13]. If the considered decompo-
sition of energy density is the main decomposition of elastic
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energy density, then the limit condition maybe written in the
following form

|σ1|2
2λ1h2

1

+
|σ2|2
2λ2h2

2

+ . . . +

∣∣∣σρ

∣∣∣2

2λρh2
ρ

= 1 (43)

or simply

|σ1|2
k2
1

+
|σ2|2
k2
2

+ . . .+

∣∣∣σρ

∣∣∣2

k2
ρ

= 1, k2
α = 2λαh2

α, (α = 1, . . . , ρ)

(44)
where σα are the projections of the current stress state σ on
the eigensubspaces of the elasticity tensors, λα is the corre-
sponding Kelvin modulus and kα(α = 1, 2, ..., ρ) is the limit
value of the proper stress that should be determined exper-
imentally for properly choosen modes of stress pertinent to
each eigenstate, cf. [49]. For detailed analysis of the limit
criteria of the form (44) see [35].

Rychlewski’s limit criterion due to its energetic formu-
lation seems to be much better physically motivated than the
majority of other, purely empiric propositions. An important
feature of this proposition is that these are the elastic proper-
ties of a body themselves (Kelvin moduli, elastic proper states)
which define the mathematical form of the limit criterion and
not an arbitrary choice of an author. This hypothesis lacks
however certain desired features. First of all, as it is strictly
quadratic function of the stress state (thus symmetric – sign in-
sensitive), it cannot describe materials exhibiting the strength
differential effect. Another thing is that the limit values of the
energy densities hα (and in consequence the limit values of
the corresponding stresses kα)are constant. It is in the con-
trary with the well known fact, that for certain materials, even
isotropic ones, the limit shear stress may be different for var-
ious shear modes corresponding with different values of the
Lode angle.

2.2.4. The concept of the stress state dependent influence
parameters – Burzyński’s hypothesis of material effort

As it was mentioned above, strictly quadratic
energy-based limit criteria cannot account for the asymmetry
of the elastic range. This was one of the reasons for which
Burzyński modified the well known limit criterion of Huber
[10] (who was his teacher) so that it could account for the
strength differential effect. He considered only a special class
of linear elastic materials for which the decomposition of
elastic energy into a sum of energy of volume change Φv and
energy of distortion Φ f is possible:

Φ =
1
2
Aσ · Aε

︸     ︷︷     ︸
Φv

+
1
2
Dσ · Dε

︸     ︷︷     ︸
Φ f

(45)

where Aσ, Aε and Dσ, Dε denote the spherical and deviatoric
part of stress and strain tensors respectively. This kind of ma-
terial we call volumetrically isotropic. Such decomposition is

possible when the components of the elasticity tensors fulfill
the following – so called –

(3 independent relations)



C1123 + C2223 + C3323 = 0
C1131 + C2231 + C3331 = 0
C1112 + C2212 + C3312 = 0

(2 independent relations)



C1111 −C2222 = C2233 −C1133

C2222 −C3333 = C3311 −C2211

C3333 −C1111 = C1122 −C3322

(46)
Burzyński proposed to consider as a measure of material effort
a linear combination of the energy density of volume change
and energy density of distortion, yet the influence of the pres-
sure (dilatancy) is determined by a stress state dependent pa-
rameter η. The formulation of the hypothesis of material effort
can be presented as follows:

ηΦv + Φ f = K (47)

where K is the limit value of the stored energy density. Due
to a special character of the scaled term in the decomposition
of energy Burzyński assumed that the parameter η is only
pressure sensitive. According to the experimental motivation
the following form of this pressure influence function was
suggested:

η (p) = ω +
δ

3p
(48)

where p = 1
3 tr(σ) is the hydrostatic stress and ω and δ are cer-

tain constant material parameters. The Burzyński hypothesis
remains still one of the most general propositions for isotropic
solids – it anticipated in a particular case widely used criterion
of Drucker and Prager [46] and maybe applied for both ductile
and brittle materials. The character of the yield surface which,
maybe any quadric surface, is uniquely determined by the rela-
tions between the limit values of stress at tension, compression
and shear. Burzyński made also an at tempt for accounting for
anisotropy, yet it has been not completed to provide a theo-
retically satisfactory criterion – for details see [30]. It is also
worthy to note that the problem of volumetric-distortional de-
composition considered by Burzyński in 1928 [14] was under-
taken recently by Ting [47] and Federico [48].

3. New proposition of a hypothesis of material effort

3.1. General formulation

The authors’ new proposition is based generally on two
concepts – the idea of energy decompositions and the idea
of the stress dependent parameters influencing the measure of
material effort. The idea of authors is to extend the hypothesis
of material effort of Rychlewski so that it accounted for the
materials with asymmetric elastic range in the same way in
which Burzyński modified the hypothesis of Huber.
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Proposition

Let us consider any energetically orthogonal decomposi-
tion of the linear space of symmetric second order tensors:

J2
sym = H1 ⊕H2 ⊕ . . . ⊕Hµ, µ 6 6

α , β ⇔Hα⊥̇Hβ, α, β = 1, 2, . . . , µ.
(49)

We propose that the material reaches the limit state, if the
following relation between the parts of elastic energy density
holds:

η1Φ1+η2Φ2+. . .+ηµΦµ = 1, Φα =
1
2
σα ·C·σα, σα ∈Hα,

(50)
where ηα(α = 1, ..., µ) are certain stress state dependent mate-
rial parameters – we will call them, depending on their phys-
ical interpretation, either influence functions or stress mode
indicators.

The energetically orthogonal decomposition (49) of J2
sym

maybe uniquely determined by certain quadratic form σ ·H ·σ
(36) or simply by a single tensor H – an example of finding
such a decomposition with use of a tensor H of assumed sym-
metry can be found in [49]. It is important however to em-
phasize that the new proposition differs from the generalized
limit criterion of Mises both in its mathematical formulation
as well as in its physical interpretation.

3.2. Assumptions on the stress mode indicators and
influence functions

Following assumptions are made on the form and char-
acter of the introduced stress mode indicators and in?uence
functions:
• Limit value

If we consider a stress state σ = σα(α = 1, ..., µ) which
belongs entirely only to a single subspace Hα of the de-
composition (49), then if the considered stress state reach-
es the limit state, then the limit condition (50) takes form

ηα
(
σlim
α

)
= Φ

(
σlim
α

)−1
.

So the value of the appropriate parameter ηα in the limit
state is equal to the inversion of the limit value of the ener-
gy density corresponding with the stress states belonging
to proper subspace. Let us remind that ηα is not constant
– it is a function of both material and stress state, what
distinguishes the new proposition form the Rychlewski’s
condition (42).

• Domain
It seems natural that to keep mutual energetic indepen-
dence of the considered energy density terms and their
correlation with the scaling parameters ηα, it is necessary
to assume that those parameters depend only on the stress
state belonging to the corresponding subspace Hα. Ac-
cording to (49) any stress state σ maybe decomposed into
a sum

σ = σ1 + σ2 + . . . + σµ, σα ∈Hα.

Then each of the parameters ηα is assumed to be a func-
tion of an argument being a projection of the current stress
state on the corresponding subspace Hα

ηα = ηα (σα) .

The authors suggest, that the parameter ηα should be
called the ”influence function” if it depends on the norm
of its argument – this is when the magnitude of the appro-
priate stress influences the total measure of material effort
in a way which is not proportional to the corresponding
energy density. It concerns especially the subspaces of
non-deviatoric stress states which may contribute to the
strength differential effect. If the considered subspace is
multidimensional, in which the elements belonging to it
are not just proportional one to another but also their form
may vary, the respective parameter ηα will be called the
”stress mode indicator”. In general, parameter ηα may be
both influence function and stress mode indicator.

• Arguments of ηα
Each of the functions ηα(α = 1, ..., µ) is a scalar function
of a tensor argument – in general, such functions may have
quite complex structure. In any practical calculation such
a function may be expressed e.g. in terms of the invariants
of σα or in terms of its components in a fixed basis. We
state that in general case each function ηα may be assumed
to be of the following form:

ηα = ηα (|σα | , ϕ1, ϕ2, . . . , ϕN ) , N = dim Hα − 1,

where non-dimensional parameters ϕk(k = 1, ...,N) deter-
mine the decomposition of the stress state being an argu-
ment of ηα in the set of basis states in N+1-dimensional
subspace Hα. An analogous quantity commonly used
in case of isotropy is the Lode angle. In case of
one-dimensional subspace Hα, the measure of the pro-
jection of the stress state on that subspace is a complete
information on the σα if only the basis state in this space
is known. It is thus the only needed argument of ηα:

Hα = lin {ω} , dim Hα = 1 ⇒ ηα = ηα (σα) ,
σα = σ · ω.

There are many cases in which it seems necessary to con-
sider the functions ηα as anisotropic functions, it means
as functions which features change depending e.g. on the
decomposition of their argument state in the basis of its
multidimensional domain sub-space. However sometimes
it may be justified to assume that ηα are isotropic. Their
isotropy must not be mistaken with isotropy in physical
space – parameters ηα might be isotropic only in their do-
main, namely in an abstract subspace of an energetically
orthogonal decomposition of J2

sym. As the isotropic func-
tions they are in particular expressed solely in terms of
the invariants of their arguments (e.g. trace, norm, second
or third invariant of the argument or its deviator etc.):

ηα = ηα (I1 (σα) , I2 (σα) , I3 (σα))

• Devaiatoric subspaces Hα

In case when the SD effect is not observed at shearing,
for Hα being and appropriate subspace of deviators (pure
shears or their compositions) we assume on the respective
ηα that it is an even function (symmetric, sign insensitive):

ηα (−σα) = ηα (σα) .
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It is worth to mention that if σα is a deviator, then ob-
viously I1(σα) = 0 and I2(σα) is proportional to σα –
one can see that it is in fact the third invariant of the
stress tensor deviator which makes the qualitative (not
only quantitative) distinction between various forms of
shearing. It is known for certain materials that different
forms of shearing cause plastic yield at different level of
the shear stress magnitude – it is the well known depen-
dency on the Lode angle, which is strictly connected with
the third invariant of the stress tensor deviator. For this
reason, the parameters η in case of deviatoric subspaces
might be interpreted as the shear mode indicators.
It may be assumed for simplicity of the yield criterion
formulation that the measure of material effort respective
for the state belonging to the deviatoric subspace is pro-
portional to the energy connected with it for any fixed
form of such state and thus the corresponding parameter
ηα is independent of its norm – it is then the shear mode
indicator, however it is not an influence function. We will
make such an assumption as well as the one that for any
state belonging to any deviatoric subspace of the consid-
ered decomposition no SD effect occurs. Furthermore, if
the deviatoric subspace Hα is one-dimensional, then the
parameter ηα is proportional to the inverse of the square
of the limit value of the considered stress state:

ηα ∼ 1
k2
α

The preliminary analysis of the presented hypothesis was
presented in [50], [51], however in the current paper more
comprehensive exposition of the concepts of influence func-
tions and stress mode indicators is given.

4. Specification of the limit criterion for chosen elastic
symmetries

There are two main tasks in the process of specification
of a limit criterion for certain material – the choice of the
proper energetically orthogonal decomposition of the space of
stress and strain tensors and finding the forms of the influence
functions. The decomposition of J2

sym into eigensubspaces of
the elasticity tensors seems to be the most natural choice both
from physical and mathematical point of view. It can be easily
interpreted physically and it is the only such decomposition
which is both energetically orthogonal and orthogonal in the
sense of a classically defined scalar product. Most of the fol-
lowing specifications are derived with use of the decomposi-
tion into eigensubspaces of C and S, however an example of
distinct decomposition is also given. For detailed analysis and
specification of the new yield criterion in case of plane stress
state see [51].

Let us note that in such a case the assumption of isotropy
of the in?uence functions corresponds with the almost for-
gotten proposition of Mises [15] of a yield function of the
stress state dependent scalar arguments which are invariant
with respect to all geometric transformations respective for
the considered elastic symmetry. The clue difference is that
the form of those invariants is not chosen arbitrary as it was
done in [15], yet it is uniquely given by the definition of three

invariants of the second rank tensors and by the decomposition
of J2

sym into eigensubspaces of the elasticity tensors (e.g.by
form of orthogonal projectors).

In the following specifications of the limit criterion for
some chosen elastic symmetries the follwing notation for the
fourth rank tensors satisfying (2) is used:

A =



A1111 A1122 A1133

A2222 A2233

A3333

√
2A1123

√
2A1131

√
2A1112√

2A2223
√

2A2231
√

2A2212√
2A3323

√
2A3331

√
2A3312

sym
2A2323 2A2331 2A2312

2A3131 2A3112

2A1212


(51)

In the following considerations it is assumed that the ax-
es of the coordinate system in physical space coincide with
the axes of symmetry or directions normal to the planes of
symmetry of the considered anisotropic material.

The spectral decomposition of the elasticity tensors of
very low elastic symmetry (triclinic, monoclinic, orthotropic)
depends strongly on the numerical values of their components
– even the number of orthogonal eigensubspaces may vary in
large extent. Kelvin moduli as well as the form of the eigen-
states depend in a strongly non-linear way on the components
of the elasticity tensors. Those symmetries and also trigonal
symmetry are not discussed in the current paper only due
to complexity of the notation and great generality of those
symmetries which makes the problem of precise specification
of the limit criterion for those symmetries rather impractical.
For the spectral analysis of the elasticity tensors for all elastic
symmetries see e.g. [12], [52], [53].

4.1. Isotropy – main decomposition of elastic energy
density

Author’s proposition in case of isotropy can be considered
as a consistent extension of general energy-based approach
of Burzyński accounting for the influence of the Lode angle,
which was not involved in the original proposition of Burzyńs-
ki. In the case of isotropy there are only two eigensubspaces of
the elasticity tensors – one-dimensional subspace of spherical
tensors and a five-dimensional subspace of deviators. Due to
isotropy of the material the problem may be simplified by
introducing the principal stresses. The limit condition (50) in
case of isotropy may be rewritten in the following form

ηv (p) · p2 + η f (θ) · q2 = 1 (52)

or even in the most general form

ηp (I1) + ηq (J2, J3) −C = 0 (53)

where:
p = 1

3 (σ1 + σ2 + σ3) – hydrostatic sress

q =

√
1
3

[
(σ2 − σ3)2 + (σ3 − σ1)2 + (σ1 − σ2)2

]
– devia-

toric stress
θ = 1

3 arc cos
[

3
√

3
2

J3

J (3/2)
2

]
– Lode angle

C – constant material parameter
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The isotropic case of the considered limit condition was
already discussed [54], [55] and specified for Inconel-718 al-
loy [56] basing on the experimental data available in the litera-
ture [57]. The influence function ηp(p) describes the pressure
sensitivity of the material, while the shear mode indicator
ηq(J2, J3) might be considered as a function describing the
Lode angle dependence η f (J2, J3) = η f (θ). Due to isotropy it is
assumed that any function of the Lode angle should be period-
ic with its period equal 120◦ – Lode angle dependent functions
are of ten considered as a functions of argument y = cos 3θ.
There are many propositions of the pressure in?uence func-
tions or Lode angle dependent shear mode indicators in the
literature:

Pressure influence functions
• Two-parameter rational function by Burzyński [14]

ηp (p) =
(
ω + δ

p

)
p2

• Five-parameter function by Bigoni and Piccolroaz [58]

ηp (p) =



− 2K
p2 · Mpc

√
(F − Fm) [2 (1 − α) F + α]

if F =
−p+c
pc+c ∈ [0, 1]

+∞ if F =
−p+c
pc+c < [0, 1]

Shear mode indicators
• One-parameter trigonometric function by Lexcellent et. al.

[59] η f (y) = cos
[
1
3 arccos

[
1 − α (1 − y)

]]

• Two-parameter exponential function by Raniecki and
Mróz [60] η f (y) = 1 + α

[
1 − e−β(1+y)

]

• Two-parameter power function by Raniecki and Mróz [60]
η f (y) =

[
1 + αy

]β
• Two-parameter trigonometric function by Podgórski [61]

η f (y) = 1
cos(30◦−β) cos

[
1
3 arc cos (α · y) − β

]

• Valuable summary of the Lode angle dependent functions
can be also found in [62]
In particular the newly introduced limit criterion for

isotropic solids (53) can be represented as a general-
ization of the most of the commonly used limit cri-
teria -e.g. Maxwell-Huber-Mises, Coulomb-Tresca-Guest,
Coulomb-Mohr, Drucker-Prager and others. It is enough to as-
sume the Burzyński’s pressure influence function with ω = 0
and Podgórski’s shear mode indicator multiplied by q√

3
and to

take the values of the parameters of the Podgórski’s functions
as indicated in [61] to obtain required results.

4.2. Cubic symmetry – main decomposition of elastic
energy density

Cubic symmetry – respective for the regular crystal
system (typical for e.g. iron, copper, etc.) – is character-
ized by three mutually orthogonal four-fold symmetry ax-
es and planes of symmetry perpendicular to those axes as
well as by a three-fold symmetry axes which are equally
inclined to the symmetry axes mentioned first. The spec-
tral decomposition of a fourth rank symmetric tensor of cu-
bic symmetry gives us a three mutually orthogonal eigen-
subspaces: one-dimensional eigensubspace P1 of hydrostatic
stress states, two-dimensional eigensubspace P2 of deviators
(compositions of pure-shears in planes of symmetry in direc-
tions equally inclined to any two principal symmetry axes)
and three-dimensional eigensubspace P3 of deviators (com-

positions of pure-shears in planes of symmetry in directions
of the principal symmetry axes).

The limit condition (50) for cubic symmetry maybe
rewritten the following general form:

ηv (p) · p2 + η f 1 (θ) · q2
1 + η f 2 (ϕ, ψ) · q2

2 = 1 (54)

where
p = 1

3 (σ11 + σ22 + σ33) – hydrostatic stress

q1 =

√
1
3

[
(σ22 − σ33)2 + (σ33 − σ11)2 + (σ11 − σ22)2

]
–

oblique deviatoric stress

q2 =

√
σ2

23 + σ2
31 + σ2

12 – oblong deviatoric stress
and the non-dimensional quantities θ as well as ϕ and ψ are pa-
rameters determining the form of the projections of the stress
state in the two-dimensional and three-dimensional eigensub-
space of deviators respectively – for details see [52]. Those
quantities fulfill the following relations:

θ =
1
3

arccos
3
√

3
2

J3(σ2)
J (3/2)
2 (σ2)



sin 2ψ ·
[
cosϕ

(
1 − cos2 ϕ

)]
=

J3 (σ3)

J (3/2)
2 (σ3)

where J2 and J3 denote the second and the third invariant
of the stress tensor deviator, and σK (K = 1, 2) denote the
projections of the general stress state σ on the corresponding
K th eigensubspace PK . The problem of determination of the
pressure influence function ηv and two shear mode indicators
η f 1 and η f 2 in cubic symmetry is highly complicated due to
fact that the stress state at most of typical laboratory tests
(uniaxial tests and pure shears in various directions) belongs
to at least two eigensubspaces and thus all three functions
must be determined simultaneously. However for certain ori-
entations of the applied uniaxial load, the influence of one
of the eigenstates may be set to zero. If the uniaxial stress
of magnitude k is applied in direction of the elementary cell
diagonal [1, 1, 1] then the stress state is orthogonal to the
second eigensubspace:

p =
k
3
, q1 = 0, q2 =

k√
3

It is also sure that at pure shear in the planes of symmetry, in
directions of the symmetry axes one must obtain

η f 2 (0◦, 0◦) = η f 2 (90◦, 90◦) = η f 2 (90◦, 0◦) =
1
k2
s

where ks is the limit shear stress for this orientation (it con-
cerns also any other equivalent pairs ϕ, ψ). Then, in case of
uniaxial stress state in which the stress vector lays in one of the
principal plane of symmetry, the influence of the third eigen-
state is known, and only two unknown functions contribute to
the total measure of material effort.

4.3. Volumetrically isotropic orthotropy – main
decomposition of elastic energy density

Let us consider a volumetrically isotropic orthotropic
compliance tensor – it is characterized by three mutually or-
thogonal two-fold symmetry axes. The decomposition of the
elastic energy density into volumetric part and distortional
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part is additionally possible for such a symmetry due to as-
sumption of its volumetrical isotropy. The spectral decompo-
sition of the above compliance tensor gives us six mutually
orthogonal eigensubspaces: one-dimensional eigensubspace of
hydrostatic stress states, two one-dimensional eigensubspaces
of deviatoric stress states (in general they are not pure shears)
and three one-dimensional eigensubspaces of pure shears. Let
us note that all deviatoric eigensubspaces are one-dimensional
– there is no qualitative distinction between any two states
belonging to such a subspace. Assuming that the influence
functions respective for those subspaces are constant parame-
ters and expressing the energy densities with use of stress state
components the general limit condition (50) can be rewritten
in the following form:

ηv (p) · p2 +
σ2

d1

k2
d1

+
σ2

d1

k2
d1

+
τ2

1

k2
s1

+
τ2

2

k2
s2

+
τ2

3

k2
s3

= 1 (55)

where:
p = 1

3 (σ11 + σ22 + σ33) – hydrostatic stress
σd1 = 1√

2(1+κ1+κ2
1)

(σ11 + κ1σ22 − (1 + κ1)σ33) – first or-

thotropic deviatoric stress
σd2 = 1√

2(1+κ2+κ2
2)

(σ11 + κ2σ22 − (1 + κ2)σ33) – second

orthotropic deviatoric stress
τ1 = σ23 – magnitude of pure shear in x2x3 directions
τ2 = σ31 – magnitude of pure shear in x3x1 directions
τ3 = σ12 – magnitude of pure shear in x1x2 directions
kd1, kd2, ks1, ks2, ks3 – limit values of the magnitude of the

appropriate shear stress states.
and

κ1 =
C3311−C2233−

√
(C2

1122+C2
3311+C2

2233)−(C3311C2233+C2233C1122+C1122C3311)
C1122−C3311

κ2 =
C3311−C2233+

√
(C2

1122+C2
3311+C2

2233)−(C3311C2233+C2233C1122+C1122C3311)
C1122−C3311

are functions of the stiffness distributor determining the form
of the eigenstates. Due to orthogonality of the corresponding
eigensubspaces the following equality holds

κ1 + κ2 + 2 (1 + κ1κ2) = 0.

The form of the pressure influence function is to be deter-
mined. Some possible forms of such function are given in a
summary of the influence function for isotropic solids. Never-
theless the form of this function might be predicted basing on
the experimental data – since the term corresponding with the
first eigensubspace is the only one which takes into account
the hydrostatic stress component and it depends only on its
magnitude the form of the pressure influence function can be
determined basing on the uniaxial states (which has a non-zero
hydrostatic component) in various directions. Uniaxial stress
state of magnitude k in direction givenin the considered basis
by avers or n is represented by a stress tensor

σ = k (n ⊗ n) = k



n2
1 n1n2 n1n3

n2
2 n2n3

sym n2
3



where ni denotes the i-th component of n in the considered
basis. If the stress reaches the limit state at its limit magnitude

kn characteristic for each direction, then the limit condition
(55) can be rewritten in the following form:

ηv

(
kn

3
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(56)

which determines a value of the pressure influence function
for certain value of its argument. Sufficiently large set of ex-
perimental data enable estimation of the form of ηv(p) through
appropriate interpolation or approximation.

4.4. Cubic symmetry – decomposition of elastic energy
density given by orthotropic tensor H

Let us note that in all of the above examples of the yield
criterion specification it was the main decomposition of elastic
energy weighted terms of which were considered as a measure
of material effort. It is important to emphasize that it is only
a specific case of the presented proposition of the hypothesis
of material effort. In general any decomposition of the elastic
energy density which is energetically orthogonal can be tak-
en into account. According to the Rychlewski’s theorem any
such decomposition is uniquely related to two quadratic forms,
σ · C · σ and σ · H · σ, given by the compliance tensor C and
tensor H which – in case of the generalized limit condition of
Mises – may be interpreted as a limit state tensor. In general,
for certain elastic material given by its compliance tensor C
the tensor H exhibiting certain desired symmetry properties
and the quadratic form respective for it might be used in order
to find a proper decomposition of the elastic energy density,
which is energetically orthogonal and thus may be used in
the formulation of the yield criterion according to the pro-
posed hypothesis of material effort. In [49] an energy-based
limit condition for cubic materials exhibiting volumetrical-
ly isotropic orthotropy of its strength properties in the limit
state was considered. In such a case the two deviatoric eigen-
subspaces of the elasticity tensors may be splitted into five
one-dimensional deviatoric subspaces.

P1 = H1, P2 = H2 ⊕H3, P3 = H4 ⊕H5 ⊕H6. (57)

Numbering of the eigensubspaces P of cubic compliance ten-
sor C is the same as in the subsection dedicated to the cubic
symmetry. The elastic energy density maybe still decomposed
into the terms corresponding with the energetically orthogonal
subspaces Hα(α = 1, ..., 6) and the limit state condition may
be written in the form:

ηvΦv +η f 2Φ f 2 +η f 3Φ f 3 +η f 4Φ f 4 +η f 5Φ f 5 +η f 6Φ f 6 = 1 (58)

which in turn maybe rewritten in terms of the components
of the stress state, so that it took the final form analogical to
(55). The above decomposition is not the main decomposition
of the elastic energy density, however due to relations (57) the
following equalities hold:

Φ1 = Φv

Φ2 = Φ f 1 + Φ f 2

Φ3 = Φ f 3 + Φ f 4 + Φ f 5
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where Φα(α = 1, 2, 3) are the terms of the main decomposition
of the elastic energy density corresponding with the proper
eigensubspaces of the cubic elasticity tensors Pα.

5. Summary

New proposition of a hypothesis of material effort was
presented. Limit criteria for most of elastic spatial elastic sym-
metries were derived from the proposed hypothesis. Method-
ology of acquiring the data necessary for the criterion spec-
ification was proposed. Methods of prediction of the form
of unknown influence functions and stress mode indicators
basing on basic strength tests (uniaxial test, pure shear) was
proposed. It seems that numerical simulation of the deforma-
tion respective for the considered eigenstate (and its mode)
of a molecular model exhibiting proper symmetry may enable
more precise prediction of the form of those functions assum-
ing that the stored energy (which finds its equivalent on the
molecular level) is the measure of material effort. Further re-
search on the proposed hypothesis requires broad and complex
experimental verification.
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