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Abstract A simplified analytical model of tangential contact engagement, sliding and separation of two elastic,
identical spheres is developed assuming the kinematically induced sphere motion trajectory or load controlled
sliding motion. The evaluation of driving force during contact sliding motion is determined for both monotonic
and reciprocal sliding motion. The analytical formulae and diagrams of driving force versus sliding path are
specified for linear and circular paths. The sliding trajectories are also determined for the load controlled
programs. The results presented can be applied in the experimental testing of frictional response of contacting
bodies, in a wear study of rough surfaces or in the contact interaction analysis of granular material during
flow. The results can also be relevant for the development of the discrete element method widely applied in
simulation of granular material flow, where the sliding regime conditions prevail in grain contact interaction.

1 Introduction

The contact interaction of two elastic spheres under normal or oblique loading and torsional couple has been
studied by Mindlin and Deresiewicz [1], Lubkin [2], Deresiewicz [3], Walton [4], Vu-Quoc et al. [5], Segalman
et al. [6]. For an oblique loading, only the contact slip regime was studied with a sticking (adherence) zone, in
the central part and the slip zone, in the outer part of contact area. The sliding regime then occurs when the slip
zone develops within the whole contact area. For a cyclic variation of the tangential force, the progressive and
reverse slip zones are generated, and the hysteretic deformation response is accompanied by the consecutive
evolution of loading, unloading and reloading slip zones from the boundary of the contact zone. The discrete
memory of contact response with consecutive creation and erasure of loading events can be geometrically
presented by means of consecutive loading surfaces in the T∼ −N space (where T∼ is the tangential load vector

and N is the normal load to the contact plane), cf. Dobry et al. [7]. A representation of slip memory rules
by the loading surfaces in the analysis of frictional slip interaction of an elastic strip with a rigid foundation
and in contact interaction of two elastic spheres under oblique loading was discussed by Jarzębowski and
Mróz [8]. Both proportional and non-proportional loadings in T∼ −N space were considered and represented

by the evolution of loading surfaces. Recently, the memory diagrams for two spheres contact interaction under
the oblique loading have been also discussed by Aleshin and Van Den Abeele [9]. The contact response
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st. Pawińskiego 5b, 02-106 Warsaw, Poland
E-mail: zmroz@ippt.gov.pl



1660 R. Balevičius, Z. Mróz
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Fig. 1 Two identical elastic spheres in a mutual contact and contact surface section

of two spheres under the fixed normal load and monotonically or periodically varying torsion couple can
be analytically treated for both slip and sliding regimes as the contact zone remains fixed and the torsional
couple reaches a limiting value, cf. [2,3,6]. In order to simulate oblique impacts with adhesion, Mindlin and
Deresiewicz theory was extended by Thornton and Yin [10].

When the sliding regime develops under the fixed normal load N and the increasing tangential load T , the
central sticking zone is erased, and sliding occurs along the whole area of contact. For a specified trajectory of
the sphere center, both N and T vary, and the contact zone changes its size and orientation when moving along
the boundary of the fixed sphere. This type of contact response will be analyzed in the present paper. In fact, the
sphere displacement reached during the slip regime is very small relative to the radius of the contact zone, and
contact interaction during the flow of granular material is associated for a large part with the sliding regime.
Such factors, as the contact force evolution, length of sliding path and time period of the contact interaction and
frictional dissipation during monotonic or reciprocal sliding, become important parameters in the deformation
and flow analysis of granular matter. Both static and dynamic sliding motion will be considered in Parts I and
II of this paper.

The paper is organized as follows. In Sect. 2, some basic formulae for the slip regime are presented by
following Mindlin’s and Deresiewicz’s (M–D) analysis [1]. In Sect. 3, the sliding regime is analyzed for the
imposed linear and circular trajectories of the moving sphere. In Sect. 4, the sphere sliding is considered for
the specified load control process, while the concluding remarks are stated in Sect. 5.

2 Slip regime analysis

Consider two identical spheres of radius R made of a linear elastic material characterized by Young’s modulus
E and Poisson’s ratio ν. The spheres are placed symmetrically with respect to each other in a mutual contact
(Fig. 1). Applying the normal compressive force N to each sphere, the circular contact zone of radius r = aH
is generated. When the tangential force T is subsequently applied and monotonically increases, the annular
slip zone with radius c ≤ r ≤ aH develops at the contact perimeter with the slip displacement discontinuity
oriented parallel to the force T and, in the central sticking (adherence) zone of radius 0 ≤ r ≤ c, the slip
vanishes. When T reaches its limit value T = μN (where μ is the coefficient of friction between the spheres),
the slip zone expands to the whole contact area, and the adherence zone vanishes, c = 0. Next, for the
continuing deformation process, the sliding regime develops and is characterized by the motion of the contact
zone, while its size evolution is terminated by the contact separation. If both N and T increase proportionally
and T = μN , then there is no slip regime and the sliding regime takes place instantaneously.

The radius of the contact zone is specified from the Hertz solution:

aH = (K N R)1/3 , (1)

where K = 3
(
1 − ν2

)
/(4E).
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(a) (b)

Fig. 2 Normalization of the ultimate tangential displacement versus the overlap (a), and radius of the sphere (b)

The normal force induces the penetration depth (overlap) h0 between two spheres in contact (Fig. 1),
specified by the relations:

N = 1

2
√

2

R1/2

K
h3/2

0 = knh3/2
0 , or h0 = 2

(
K N

R1/2

)2/3

= 2
a2

H

R
, (2)

where kn = 1
2
√

2
R1/2

K represents the coefficient of normal contact stiffness. In fact, the tangent and secant
stiffness moduli are derived from (2).

The tangential displacement δ relative to the centers of contacting spheres (Fig. 1) is expressed as follows
from the M–D solution [1]:

δ = 3 (2 − ν) μN

16GaH

(

1 − c2

a2
H

)

= 3 (2 − ν) μN

16GaH

(

1 −
(

1 − T

μN

)2/3
)

, (3)

where G = E
2(1+ν)

denotes the shear modulus.
An ultimate displacement δu at which the sphere starts to slide is specified by setting c = 0, that is, for the

vanishing sticking zone. Thus, in view of (1) and (3), there is

δu = 3 (2 − ν) μN

16GaH
= (2 − ν) μ

4 (1 − ν)
h0 = (2 − ν) μ

2 (1 − ν)

a2
H

R
. (4)

It is seen that the ultimate tangential displacement, at which the slip regime turns out into the sliding regime,
is proportional to the overlap value h0 or to the square of contact radius aH , depending also on the Poisson’s
ratio ν and the friction coefficient μ. Its value is significantly lower than the value of overlap h0.

In Fig. 2a, the dependence of the ratio δu/h0 on μ and ν is graphically illustrated, and the function of δu/R
versus aH /R, μ and ν is presented in Fig. 2b.

These diagrams (Fig. 2) provide the bounds on the ultimate tangential displacement resulted from the slip
of spheres first loaded by normal force N , next by increasing force T . In fact, for most common materials
Poisson’s ratio is, 0 ≤ ν ≤ 0.5, the value of δu is much smaller than the overlap value, and the ratio δu/h0
tends to zero for the vanishing friction coefficient. The slip regime of the contacting spheres takes place, when
the ultimate tangential displacement is up to 3–16 times smaller than the overlap between the spheres, for
μ ∈ [0.1, 0.6].

Consider now the contact engagement, typical for the flow or impact problems, when the contacting sphere
moves with the velocity inclined at the angle ϕ to the normal direction of the contact. Assuming the slip
displacement to be collinear with the velocity vector, we can write in view of (2) and (3)

tan ϕ = δ

h0
= (2 − ν) μ

4 (1 − ν)

(

1 − c2

a2
H

)

. (5)
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Fig. 3 Dependence of ultimate angle ϕu , specifying the sliding regime, on the friction coefficient and Poisson’s ratio

The slip zone specified by c is now instantaneously generated and varies with the angle ϕ, thus

c2

a2
H

= 1 − 4 tan ϕ (1 − ν)

μ (2 − ν)
, (6)

and a pure sliding regime occurs, when c/aH = 0, thus

tan ϕ ≥ (2 − ν) μ

4 (1 − ν)
≈ μ

4
(2 + ν) = tan ϕu . (7)

Figure 3 presents the impact angle ϕu specifying the sliding and slip domains. It can be seen that the slip
regime develops only for small values of ϕu . Let us refer to the analysis of Di Renzo and Di Maio [11] who
made an attempt to apply M–D theory to predict the evolution of the tangential force, displacement and velocity
during the collision of an aluminum oxide sphere with a soda-lime glass anvil for varying impact angles. For
fairly inclined impacts, the sliding mode dominates during the whole sphere motion period. However, for small
impact angles, the sliding regime was observed only in the final short period of the sphere contact and was
preceded by the longer period of slip regime for varying normal and tangential displacements.

The following conclusions can be stated in view of the presented analysis:

• The M–D theory can be applied for the slip regime occurring in the small range of tangential displacement
0 ≤ δ ≤ δu , where δu is significantly smaller than the sphere overlap h0. Similarly, for the impact loading,
the slip regime occurs only for small impact angles.

• When δ > δu or ϕ > ϕu , the sliding regime occurs, for which the M–D theory cannot be applied and new
relations should be derived for the contact force sliding trajectory evolution.

3 Sphere sliding regime: a displacement controlled process

3.1 Basic assumptions

Consider now the case of sliding regime of two contacting spheres. Assume the lower sphere to be fixed at
point O and the upper sphere center O1 to be attached to a moving tool imposing the translation along the
linear path O1 O2 (Fig. 4) with the velocity vs(t0).

This sliding mode can be referred to specific cases, for instance, the spherical asperities interaction in
relative translation of a punch over a rough substrate or to translation controlled testing of friction and wear
of two interacting bodies. The linear path O1 O2 of the sphere corresponds to the contact path A-B-C , where
the point A represents the contact engagement at time t0, B is the center of the sliding line for the contacting
spheres corresponding to the maximal overlap h0, and C is the contact separation point occurring at time tc,
provided the kinetic energy has not been earlier lost due to the frictional dissipation process (Fig. 4).

Now, the sliding regime can easily be specified by requiring ϕ > ϕu , where ϕ is the angle between the
initial velocity of the contacting sphere to the linear path O1 O2 (Fig. 5). An ultimate angle ϕu is specified
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Fig. 4 Contact engagement (point A) and separation (point C) for a linear path O1 O2 of the contacting sphere

Fig. 5 Slip, sliding and separation domains for the linear sliding paths

by formula (7) and plotted in Fig. 3. Plotting the circle of radius Rs = 2R sin ϕu with its center at point O ,
(Fig. 5), it can be seen that sliding occurs for all linear paths emanating from the point O1 and not intersecting
the circle. On the other hand, the slip regime develops for all linear paths intersecting the circle. In other words,
there is the sphere of radius Rs and conical domain with its vertex at O1 and tangential to the sphere specifying
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the slip regime and the external domain specifying the sliding regime bounded by the plane normal to O O1.
The contact separation occurs for the paths emanating from O1 in the exterior of slip and sliding domains.

During sliding, the contact zone moves with respect to both spheres, changing its orientation and size
(Fig. 4). In particular, at the contact engagement, the overlap is zero, while with progress of sliding, the overlap
ht starts to grow up reaching the maximal value at the symmetry line, and subsequently, it diminishes tending
to zero again at the contact separation.

The analytical solution within the continuum mechanics formulation is not available and only the numerical
incremental procedure can be applied. Therefore, in the present paper, a simplified model is developed by
assuming the normal contact traction N to be specified by the Hertz formula (2) in terms of the contacting
spheres overlap geometry and material characteristics, while the tangential traction is defined by the sliding
friction rule, T = μN .

The sliding path st ∈ [±su, ∓su] will be specified in an appropriate coordinate system x, y with the
reference configuration of the system assumed to be a right-handed Cartesian with an origin point coincident
with the center of the lower sphere, (Fig. 4). The sign conversion in st bounds is resulted from the leftward
or rightward motions. In particular, the upper signs are referred to the contact engagement at the sliding path
coordinate x = +su and its separation at x = −su during the leftward motion of the contacting sphere. For the
rightward motion (Fig. 4), the sliding path starts at position x = −su , and ends at x = +su , while the lower
signs are accounted for. Instead of using the perpendicular projections onto x and y axis, the sliding path may
be also analyzed in terms of angle αt ∈ [±αu, ∓αu].

On the contact surface center, the slip displacement is zero, and the sliding displacement is defined in terms
of the sliding path length st ∈ [±su, ∓su]. At the contacting sphere center, the contact evolution process is
accompanied by both slip and sliding displacements, where the slip displacement varies according to formula
(4) and is proportional to the contact overlap. In fact, when contact separation occurs, the slip displacement is
erased. However, during the sliding reversal motion under preserved contact pressure, the slip process precedes
the sliding mode and generates continuous reorientation of contact friction stress. The slip displacement is
accounted for in the description of transition effects during the sliding reorientation process in Sect. 3.4. The
problem of progressive and reciprocal sliding motion will be discussed in detail in this section.

3.2 Case 1: a linear path of the contacting sphere

3.2.1 Contact geometry

Let the upper sphere move along a linear path from point O1 to point O2 relative to the lower sphere, with
its center fixed at point O (Fig. 4). The spheres come into contact at point A, and after a sliding time period
tc, the separation of the spheres occurs at point C . During this period, the sphere center translation length is
4su , while the contact sliding path is of length 2su . Referring to Fig. 4, it can be seen that the overlap ht and
contact zone radius at developed at any st are symmetrical relative to the spheres intersection points.

The contact condition between two identical spheres may be expressed as 2R − y > 0, where y = y (t) =
const (for the linear path). Suppose the maximal overlap h0 between the contacting spheres is given. The fixed
vertical coordinate of the upper sphere may be set as y = 2y0 = 2R − h0, while the sphere center position
may be denoted by x = 2st (Fig. 4).

The overlap ht corresponding to the sliding path coordinate st , developed at time t , is specified from the
formulae

(2R − h0)
2 + (2st )

2 = (2R − ht )
2 (8)

and

ht (st ) = 2R −
√

(2R − h0)
2 + 4s2

t . (9)

For st = 0, there is ht = h0, and, for st = su , there is ht = 0. The ultimate coordinate of the linear sliding
path is expressed using (9) as follows:

su (h0) = ±1

2

√
4Rh0 − h2

0. (10)

The ultimate coordinate of the upper sphere center specifies as 2su (h0) (Fig. 4), while the overlap depen-
dency versus sphere center trajectory is simply determined by Eq. (9) substituting s2

t for 4s2
t .
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Fig. 6 Evolution of the overlap and contact zone radius over the linear sliding path

Mathematically, the sign ± implies the symmetry conditions, i.e., the linear sliding path developed at any t
can be bounded over the range of st ∈ [±su, ∓su], depending on the direction of motion (as explained above).

The radius of the contact zone at is specified from the equation

R2 = a2
t +

(
R − ht

2

)2

, and at (ht ) = ±1

2

√
4Rht − h2

t (11)

where at (ht ) > 0 should be specified in analysis.
Comparing (10) and (11), it can be seen that the contact zone radius at changes in the same way as the

ultimate coordinate of the linear sliding path. In fact, when ht = h0, then,

au = su = ±1

2

√
4Rh0 − h2

0. (12)

The evolution of the contact overlap ht (st ) and contact zone radius at (st ) over the linear sliding path is
plotted in Fig. 6.

As can be seen from the functions plotted in Fig. 6, the increase in the maximal overlap h0 with respect to
the sphere radius produces the increase in the linear sliding path. With progress of the sliding path coordinate
st , the overlap ht grows up reaching the maximal value at the symmetry line, and subsequently, it diminishes
tending to zero again at the separation of the spheres. The contact zone radius at has the maximum at the
maximal overlap h0 and zero at the contact engagement and separation.

It is easy to note that the value of contact radius specified by (11) is larger than that defined by the Hertz
formula (2). In fact, for the small value of the ratio h0/R 	 1, we have

au

aH
= 1√

2

√

4 − h0

R
> 1. (13)

Figure 7 illustrates the main difference between the Hertzian contact zone radius aH and that determined
by the overlap approach au .

The Hertz formula results from the elastic solution accounting for the contact deformation between two
bodies and aH are smaller than the intercept value resulting from the intersection of undeformed profiles in
the overlap approach. In the limit, for h0/R → 0, the ratio au/aH → √

2.

3.2.2 Evolution of contact tractions

The imposed linear trajectory induces the contact forces acting at the center of the contacting surfaces between
the spheres. Now, the normal and tangential forces acting on the contact surface (Fig. 8) are related to the
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linear sliding path in terms of the overlap geometry by using the Hertz formula (2) and the sliding friction rule,
thus

N (st ) = knh (st )
3/2 = kn

(
2R −

√
(2R − h0)

2 + 4s2
t

)3/2

, T (st ) = μN (st )
3/2 , (14)

or in non-dimensional form

N̂ = N/kn R3/2 =
(

2 −
√

(2 − ĥ0)2 + 4ŝ2
t

)3/2

, ĥ0 = h0/R, ŝt = st/R. (15)

Accounting for the contact normal vector rotation under the linear trajectory of the sphere along O1 O2
(cf. force directions at time instants t1 and t , in Fig. 8), the normal and tangential contact forces can be referred
to the nominal contact plane at st = 0, corresponding to the maximal overlap h0.
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(a) (b)

Fig. 9 Contact force-path diagrams for: a rightward motion, b leftward motion

For a rightward or leftward motion, the resultant of the vertical and horizontal forces denoted by N∗ and
T ∗ can be expressed as follows:

N∗ (st , αt ) = N (st ) cos αt + sgμ |N (st )| sin αt , (16)

T ∗ (st , αt ) = N (st ) sin αt − sgμ |N (st )| cos αt , (17)

where sg = sign (vs (t)) , αt ∈ [±αu, ∓αu].
Finally, in view of formulae sin αt = st√

s2
t +y2

0

and cos αt = y0√
s2
t +y2

0

, the above expressions can be expressed

for the linear sliding path as follows:

N∗ (st ) = N(st )
y0√

s2
t + y2

0

+ sgμ |N (st )| st√
s2

t + y2
0

, (18)

T ∗ (st ) = N(st )
st√

s2
t + y2

0

− sgμ |N (st )| y0√
s2

t + y2
0

, for st ∈ [±su, ∓su] . (19)

In Fig. 9, the normal and tangential force diagrams are presented for both sliding directions and different
ratios of h0/R. Here, the unit values for kn = 1 N/m3/2, R = 1 m and μ = 0.6 were simply selected.
They correspond to the non-dimensional characterization form specified by Eq. (15), so the same symbols are
retained.

As can be seen in Fig. 9, the force diagrams are not symmetric with respect to the nominal plane st = 0.
The asymmetry is produced by the contact normal vector rotation along the linear sliding path. In particular,
for st ∈ [−su, 0] and rightward motion, the horizontal component of normal force is pointing in the same
direction as the friction force, but, for st ∈ [0, su], this component is oppositely oriented to the friction
force, (Fig. 8). The direction of asymmetry develops toward the direction of sliding velocity. In Fig. 9a, the
direction of velocity is pointed to the right (i.e., positive); hence, the resultant force T ∗ (st ) is negative. The
slip displacement range from M–D theory corresponding to the slip regime, when the spheres first enter into
contact along the y-axis and next the slip and sliding motion occurs along BC or BA lines (Fig. 4), is marked
in Fig. 9. It is seen that the slip displacement is much smaller than the sliding displacement.

3.3 Case 2: a circular path of the contacting sphere

3.3.1 Contact geometry

Consider now the contact response for an imposed circular trajectory of radius R̃ and eccentricity ẽ with respect
to the fixed sphere center O (Fig. 10). Suppose, the upper sphere moves with the initial velocity vs(t0) along
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A

B

C
O

x

y

vs(t1)

x(t1),y(t1)O1

x(t),y(t)

vs(t)

x(tc),y(tc)
O2

vs(tc)

u

Õ

∼

xt
∼

t

xu
∼

(-xu, u)
∼

R

ru
∼

rt∼

∼
R 1

∼

R

ht
∼

h0
∼

R

st
∼

αt
∼

αu
∼

at
∼

Circular path with 
eccentricity

Curved
sliding path

Ot
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this path and comes into contact at point A, and after a finite time tc the spheres separate at point C (Fig. 10).
As the upper sphere moves along the circle with a non-zero eccentricity, it slides with respect to the fixed
sphere along a curved sliding path which can be specified in terms of the generalized coordinates s̃t , α̃t and r̃t .
In this case, the curved sliding path at any t deviates from a perfect circular trajectory. All variables referred
to the circular trajectory will now be marked by the tilde superscript.

The evolution of the curved sliding path can be defined in the polar coordinates (r̃t , α̃t ), where r̃t �= const
and varies with the angle α̃t ∈ [±α̃u, ∓α̃u] at any t . The contact condition between two identical spheres may
be expressed as 2R − R̃1 > 0, where R̃1 = R̃1 (t) �= const.

In view of the relation

R̃2 = ẽ2 + R̃2
1 + 2ẽ R̃1 cos α̃t , (20)

the radius of the curved sliding path can be expressed as follows:

r̃t (α̃t ) = R̃1

2
= R̃

2

(
−k̃ cos α̃t ±

√
1 − k̃2 sin2 (α̃t )

)
, (21)

where k̃ = ẽ
R̃

is defined as the eccentricity ratio.

For α̃t = 0, we obtain R̃1 = −ẽ ± R̃. Hence, following Fig. 10, the positive sign should be taken into
account. The derivative of r̃t (α̃t ) with respect to α̃t has the form:

dr̃t (α̃t )

dα̃t
= R̃

2

⎛

⎝k̃ sin α̃t − k̃2 sin α̃t cos α̃t√
1 − k̃2 sin2 (α̃t )

⎞

⎠. (22)
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Due to the symmetry, the curved sliding path may be described by integration of r̃t (α̃) over α̃ ∈ [0, α̃t ],
thus

s̃t =
α̃t∫

0

√

r̃t (α̃)2 +
(

dr̃t (α̃)

dα̃

)2

dα̃

= R̃

2

α̃t∫

0

√√√
√√
√

(√
1 − k̃2 sin2 (α̃) − k̃ cos α̃

)2

+
⎛

⎝k̃ sin α̃ − k̃2 sin α̃ cos α̃
√

1 − k̃2 sin2 (α̃)

⎞

⎠

2

dα̃. (23)

Assuming k̃ < 1 and integrating equation (23), it is obtained

s̃t = R̃

2

(
α̃t − arcsin

(
k̃ sin α̃t

))
. (24)

Thus, the evolution of the overlap versus angle for two identical spheres in contact undergoing relative
motion along a circular path with eccentricity may be defined as

h̃t (α̃t ) = 2R − R̃1 = 2R − R̃

(
−k̃ cos α̃t +

√
1 − k̃2 sin2 (α̃t )

)
. (25)

Solving Eq. (24) for α̃t , we arrive at the following formula:

α̃t = ± arcsin

⎛

⎝
k̃ sin

(
2s̃t/R̃

)

2r̃t/R̃

⎞

⎠ + 2s̃t

R̃
, (26)

where

2r̃t/R̃ =
√

1 + k̃2 − 2k̃ cos
(

2s̃t/R̃
)
. (27)

Inserting Eq. (26) into relation (25) and using the positive sign in (26), we can specify the distribution of
the overlap over the curved sliding path s̃t ∈ [±s̃u, ∓s̃u] as follows:

h̃t (s̃t ) = 2R − R̃

⎛

⎝2s̃t

R̃
− k̃ cos

⎛

⎝arcsin

⎛

⎝
k̃ sin

(
2s̃t/R̃

)

2r̃t/R̃

⎞

⎠

⎞

⎠

+

√√√
√√1 − k̃2 sin2

⎛

⎝arcsin

⎛

⎝
k̃ sin

(
2s̃t/R̃

)

2r̃t/R̃

⎞

⎠ + 2s̃t

R̃

⎞

⎠

⎞

⎟
⎠ . (28)

To rearrange (28) into a closer form, we refer the curved sliding path to the rectangular coordinates (x̃t , ỹt ),
(Fig. 10). In this case, defining the path radius by the relation

r̃t (x̃t , ỹt ) = ±
√

x̃2
t + ỹ2

t , (29)

the contact overlap can be expressed by the formula

h̃t (x̃t , ỹt ) = 2 (R − r̃t (x̃t , ỹt )) = 2

(
R −

√
x̃2

t + ỹ2
t

)
. (30)

In view of the relation

ỹt = r̃t (α̃t ) cos α̃t = R̃1

2

1

tan2 (α̃t ) + 1
= R̃1

2

(
1

1 + (x̃t/ỹt )
2

)
(31)
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and Eq. (20), we can obtain:

ỹt (x̃t ) = − k̃ R̃

2
±

√
R̃2 − 4x̃2

t . (32)

Inserting this relation into expression (28) (using the positive sign), we can rewrite the formula for the
contact overlap in the following form:

h̃t (x̃t ) = 2

⎛

⎜
⎝R −

√√
√√x̃2

t +
(

− k̃ R̃

2
+

√
R̃2 − 4x̃2

t

)2
⎞

⎟
⎠ . (33)

Now, the arc length of the curved sliding path is expressed by the integral, thus

s̃t =
x̃t∫

0

√

1 +
(

dỹt (x̃)

dx̃

)2

dx̃ =
x̃t∫

0

√

1 + 4x̃2

R̃2 − 4x̃2
dx̃ = R̃

x̃t∫

0

1
√

R̃2 − 4x̃2
dx̃, R̃ > 0. (34)

Integration of (34) is simple, thus yielding the following formula:

s̃t = R̃

2
arcsin

(
2x̃t

R̃

)
. (35)

The inverse form of relation (35) is as follows:

x̃t = R̃

2
sin

(
2s̃t

R̃

)
. (36)

Inserting (36) into the relationship for h̃t (x̃t ), we finally express the contact overlap in the form

h̃t (s̃t ) = 2R − R̃

√

1 + k̃2 − 2k̃ cos
(

2s̃t/R̃
)
, s̃t ∈ [±s̃u, ∓s̃u]. (37)

The following identities result from formulae (25) and (37):

√

1 + k̃2 − 2k̃ cos
(

2s̃t/R̃
)

= −k̃ cos α̃t +
√

1 − k̃2 sin2 (α̃t ) =
√

sin2
(

2s̃t/R̃
)

+
(
−k̃ + cos

(
2s̃t/R̃

))2
.

The contact zone radius ãt , (Fig. 10), is specified by the relation (11), thus

ãt (α̃t ) = ±
√

R2 − r̃t (α̃t )
2 = ±

√

R2 − R̃2

4

(
1 + k̃2 − 2k̃ cos

(
2s̃t/R̃

))
. (38)

Finally, the formulae for the ultimate values of the above functions should be derived. The contact engage-
ment condition is h̃t (±α̃u) = 0, and for the separation of spheres, it turns out to h̃t (∓α̃u) = 0. Thus,
substituting one of these conditions into relation (25), we obtain a limit value of the angle specifying the
curved sliding path:

α̃u = ± arccos

((
1

k̃

[
1 − 4

R2

R̃2

]
− k̃

)
R̃

4R

)

. (39)

The ultimate value specifying s̃u is simply calculated from Eq. (24), for the α̃t = α̃u .
Thus, the presented formulae specify the curved sliding path geometry for the circular trajectory with

eccentricity of the contacting sphere, when the bounds s̃t ∈ [±s̃u, ∓s̃u], α̃t ∈ [±α̃u, ∓α̃u] are fulfilled.
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Fig. 11 Transition from the linear to circular paths for the different eccentricity ratios

3.3.2 Interpretation for the eccentricity ratio

The limit values of eccentricity ratio k̃ = ẽ
R̃

may be interpreted as an index for transition from the perfect

circular trajectory to the linear path. Thus, for the perfect circular trajectory, h̃t (α̃t ) = const, and this condition
is fulfilled when k̃ = 0. In this case, from Eq. (39) and (21), we get α̃u = ∞ and R̃1 = R̃ = const, meaning
that the contacting sphere slides along the perfect circular trajectory.

For the linear path, the vertical coordinate stands for ỹt = yt = const. In this case, the ultimate coordinate
of the curved sliding path should be approached as close as to the ultimate coordinate of the linear sliding path,
i.e., s̃u ≈ su ≈ x̃u . To prove this condition, Eq. (35) may be rewritten in the following form:

2s̃u

R̃
= sin

(
2su

R̃

)
. (40)

Here, the solution for s̃u may be obtained only when the angles are small. This yields that s̃u ≈ su , for
2s̃u/R̃ 	 1, and k̃ → 1, for k̃ = R̃/ẽ. Hence, the transition from the circular path with eccentricity to the
linear trajectory of the contacting sphere will occur when k̃ → 1. In this case, it is convenient to select a certain
value of the maximal overlap h0, assume the ratio of k̃ to be close unity, and finally predict the eccentricity

and radius of the trajectory by the formulae e = (2R − h0)
k̃

1−k̃
, R̃ = k̃e. In Fig. 11, the graphs of transition

from the linear to circular paths are plotted in terms of different eccentricity ratios.
As can be seen in Fig. 11, when k̃ ≈ 0, the contacting sphere slides along the perfect circular trajectory

over the other sphere. For 0 < k̃ < 1, the motion of the contacting sphere occurs with different eccentricity
ratios resulting in the different lengths of the curved sliding paths. Finally, for k̃ → 1, the contacting sphere
trajectory approaches a linear path.

3.3.3 Evolution of the contact tractions

Similar to the case of a linear path, the contact force vectors acting on the curved sliding path at time t appear to
be non-coincident with those acting at the overlap center. In particular, the force N (s̃t ) specified on the contact
plane is not normal to the curved sliding path but has the projections Nτ (s̃t ) , Tτ (s̃t ) on this path (Fig. 12).
As can be seen here, the forces acting on the curved sliding path and those on the contact plane can be related
by the angle β̃t .

As follows from Fig. 12, the sum of force projections onto the τ̃ and ñ axes provides the resultant tangential
and normal forces for a rightward or leftward motion. Thus

N∗ (s̃t , β̃t

)
= N (s̃t ) cos β̃t + sgμ |N (s̃t )| sin β̃t , (41)
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Fig. 12 Contact force vectors acting on the contact surface at time t under a circular path with eccentricity

T ∗ (s̃t , β̃t

)
= N (s̃t ) sin β̃t − sgμ |N (s̃t )| cos β̃t . (42)

It should be noted that these expressions are the same as relations (16), (17), for β̃t = αt . Now, referring
to Fig. 12, the relation between angles β̃t and α̃t may be determined as β̃t = α̃t − γ̃t .

In order to get the formula for the angle γ̃t , the following relationship can be used:

dỹt (x̃t )

dx̃t
= tan γ̃t . (43)

An inverse form of the integral equation (34) yields

dỹt (x̃t )

dx̃t
= ±

√(
ds̃t

dx̃t

)2

− 1. (44)

The derivative for the arc length of the curved sliding path specified by Eq. (35) can be expressed as

ds̃t

dx̃t
= R̃

√
R̃2 − 4x̃2

t

. (45)

Thus, using Eqs. (43–45), we obtain

γ̃t = ± arctan

⎛

⎝ 2x̃t√
R̃2 − 4x̃2

t

⎞

⎠ . (46)

In view of formulae (36) and (46), the angle γ̃t may be related to s̃t as:

γ̃t = ± arctan

⎛

⎜⎜
⎝

2 R̃
2 sin

(
2s̃t/R̃

)

√

R̃2 − 4
(

R̃
2 sin

(
2s̃t/R̃

))2

⎞

⎟⎟
⎠ = ± arctan

⎛

⎝
sin

(
2s̃t/R̃

)

cos
(

2s̃t/R̃
)

⎞

⎠ = ±2s̃t

R̃
. (47)
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Now, using Eq. (26), the sine and cosine functions in Eqs. (41), (42) can be expressed in the following
form:

sin β̃t = sin
(
α̃t − 2s̃t/R̃

)
= ±

k̃ sin
(

2s̃t/R̃
)

√
1 + k̃2 − 2k̃ cos

(
2s̃t/R̃

) = ±k̃ sin α̃t , (48)

cos β̃t = cos
(
α̃t − 2s̃t/R̃

)
=

1 − k̃ sin
(

2s̃t/R̃
)

√
1 + k̃2 − 2k̃ cos

(
2s̃t/R̃

) =
√

1 − k̃2 sin2 (α̃t ). (49)

Finally, the contact forces versus trajectory angle α̃t are expressed in the form:

N∗ (s̃t , α̃t ) = N (s̃t )

√
1 − k̃2 sin2 (α̃t ) + sgμ |N (s̃t )| k̃ sin α̃t , (50)

T ∗ (s̃t , α̃t ) = N (s̃t ) k̃ sin α̃t − sgμ |N (s̃t )|
√

1 − k̃2 sin2 (α̃t ). (51)

The correctness of the obtained relationships can be demonstrated. Thus, substituting k̃ → 1, we get
α̃t ≈ αt , and formulae (50), (51) turn out into expressions (16), (17) for the linear sliding path. This transition
was already demonstrated in Fig. 11.

Also, it can be demonstrated that Eq. (51) specifies the contact traction, corresponding to the perfect
circular trajectory of the contacting sphere. From Fig. 11, it is clear that for the perfectly circular path only
the frictional force should arise, and the overlap remains constant. Substituting k̃ = 0 into (51), we simply
obtain T ∗ (s̃t ) = T (s̃t ) = −sgμ |N (s̃t )|. Hence, for the perfectly circular path, only the sliding friction force
contributes to the response of two identical spheres in contact.

Finally, for the curved sliding path expressed in terms of st ∈ [±su, ∓su], the relations (50), (51) can be
specified as follows:

N∗ (s̃t ) = N (s̃t )
1 − k̃ sin

(
2s̃t/R̃

)

√
1 + k̃2 − 2k̃ cos

(
2s̃t/R̃

) + sgμ |N (s̃t )|
k̃ sin

(
2s̃t/R̃

)

√
1 + k̃2 − 2k̃ cos

(
2s̃t/R̃

) , (52)

T ∗ (s̃t ) = N (s̃t )
k̃ sin

(
2s̃t/R̃

)

√
1 + k̃2 − 2k̃ cos

(
2s̃t/R̃

) − sgμ |N (s̃t )|
1 − k̃ cos

(
2s̃t/R̃

)

√
1 + k̃2 − 2k̃ cos

(
2s̃t/R̃

) , (53)

where

N (s̃t ) = knh (s̃t )
3/2 = kn

(

2R − R̃

√

1 + k̃2 − 2k̃ cos
(

2s̃t/R̃
))3/2

(54)

is the normal force acting on the sliding contact zone, expressed in terms of the overlap geometry and Hertz
formula (2).

In Fig. 13, the evolutions of the contact tractions for the rightward or leftward motion, illustrating the effect
of different eccentricity ratios k̃, are plotted. Here, the unit values of kn = 1 N/m3/2, R = 1 m and μ = 0.6
were also simply selected for the illustration.

As can be seen in Fig. 13, for the eccentricity ratio k̃ → 1, the circular and linear paths tend to each other.
The force-path functions are non-symmetrical, and the asymmetry grows along the direction of the sphere
motion. The normal force projection also contributes to the slow down of the sphere motion along the induced
trajectory, similar to the friction force action. Both friction and contact configuration effects interact during
sliding, thus affecting the required driving force.
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(a) (b)

Fig. 13 Contact force-path diagram for the circular paths with different eccentricity ratios: a rightward motion, b leftward motion

3.4 The effect of unloading/reloading regimes

Let us examine the effect of unloading/reloading regimes on the evolution of the contact tractions during the
specified trajectory of the contacting sphere. Theoretically, the initiation of unloading/reloading regimes is
related to the development of the slip mode.

A rigorous theory evaluating the slip regime of two elastic spheres under the fixed normal load and
monotonically or periodically varying tangential force has been presented by Mindlin and Deresiewicz [1]. In
this case, the slip mode occurs for very small sphere centers displacement relative to its radius with zero slip
at the contact surface center. In the discrete element method (DEM), the slip regime is modeled in a simplified
manner. In this case, the tangential force acting at the contact center is usually calculated accounting for the
linear dependence between the slip displacement and tangential force of a spring whose stiffness is related to
the overlap by M–D theory. The slip displacement vector, in turn, is determined by integration of the contact
tangential velocity versus time yielding a small motion of the sphere and resulting in a non-zero displacement
relative to the contact center. This approach treats the spheres rather more as rigid than deformable neglecting
the existence of an adherence zone, which follows from M–D theory, and allows us for the simplified analysis.

For a specified sliding trajectory of the contacting sphere, both contact tractions, N and T , vary, and the
contact zone changes its size and orientation. In this case, an explicit account for the unloading/reloading
regimes within the continuum mechanics formulation is not available. Therefore, two simplified models will
be discussed here.

First, consider the unloading/reloading regime simply neglecting the slip mode. In this case, the loading
curve instantly drops onto a reversal sliding path, while the reloading curve turns out instantaneously onto the
loading path. In this case, the unloading curve, bounded for sA ≤ sunl ≤ sC , and the reloading function, for
sE ≤ srld ≤ sC , are discontinuous at the unloading and the reloading starting points TA and TC (Fig. 14).

The discontinuous unloading/reloading functions can be generated in terms of the Heaviside step function
for a discrete variable, thus

Tunl = TA · H [sA − sunl] − μ |N (sunl)| · (1 − H [sA − sunl]) , sA ≤ sunl ≤ sC , (55)

Trld = TC · H [srld − sC ] + μ |N (srld)| · (1 − H [srld − sC ]) , sE ≤ srld ≤ sC (56)

where H [n] =
{

0, n < 0
1, n ≥ 0 is the Heaviside step function of a variable n, sA and TA = −sign (vA) μ |N (sA)|

are the coordinate and tangential force values specifying the starting points of the unloading regime, sC and
TC = −sign (vC ) μ |N (sC )| are the same for the end points of the unloading regime, vA and vC are the initial
velocities for the unloading and reloading regimes, and sE is the coordinate of the end point of the reloading
regime.

In expressions (55), (56), the term (1−H [sA−sunl]) expresses a step-down function, while (1−H [srld − sC ])
indicates a step-up function for the unloading and reloading regimes, respectively (Fig. 14). The functions of
N (•) were specified in Eqs. (14) or (54) for the linear or circular paths, respectively.
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Fig. 14 Loading–unloading–reloading regimes for the leftward motion of the contacting sphere with account or neglect of slip
displacement

Secondly, let us account for the slip displacement at the start of unloading or reloading regimes. In this
case, the unloading curve attains the reversal sliding path without the discontinuity jump, i.e., throughout the
force-slip displacement curve (Fig. 14).

As demonstrated above by M–D theory, the ultimate slip displacement, at which the sphere starts to slide,
is small relative to the overlap. Hence, the force-slip displacement curve can be described approximately by a
simple power law function. Thus, assume that the unloading force-slip displacement curve can be defined by
the function

Tunl = TA − kH f (	s) (57)

where f (	s) = 	s p, 	s is the increment of the slip displacement, p is the power exponent, (0 < p < 1),
and kH is the slope of the curve.

The unloading curve slope kH = TA−Tδ,B
δu(sA)p is specified substituting into Eq. (57) the values Tunl = Tδ,B and

	s = δ (sA) where Tδ,B = −sign (vA) μ |N (sA + sign(vA) δu(sA))| is the value of the load at which the slip
curve intersects the reverse sliding curve, and δu (sA) is the ultimate slip displacement at sA (Fig. 14).

Finally, the unloading/reloading force-path curves can be generated as follows:

Tunl (sunl) =
{

TA − TA−Tδ,B
δu(sA)p |sA − sunl|p , sA + sign (vA) δu (sA) ≤ sunl ≤ sA,

−sign (vA) μ |N (sunl)| , sC ≤ sunl < sA + sign (vA) δu (sA),
sunl ∈ [sA, sC ]. (58)

Trld (srld) =
{

TC − TC −Tδ,D
δu(sC )p |sC − srld|p , sC ≤ srld ≤ sC + sign (vC ) δu (sC ) ,

−sign (vC ) μ |N (srld)| , sC + sign (vC ) δu (sC ) < srld ≤ sE .
srld ∈ [sC , sE ], (59)

In general, the ultimate slip displacement, when the slip regime turns out into sliding regime, should be
dependent on the radius of the contact zone and the point at which the unloading or reloading regime starts. In
view of Eqs. (4), (9) and (11), we can obtain

δu (st ) = (2 − ν) μ

2 (1 − ν)
h (st )

⎛

⎝1

2
+

√
(2R − h0)

2 + 4s2
t

4R

⎞

⎠ . (60)

In Fig. 15, the relations of the ultimate slip displacement versus sliding path for different values of the
overlap are demonstrated. As can be seen from these plots, the maximal values of δu (st ) predicted by (60) have
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Fig. 15 Dependence of the ultimate slip displacement versus the sliding path

the maximum at the center line of the contacting spheres and are reduced toward the contact engagement or
separation points. The ultimate slip displacement is also smaller than the overlap between contacting spheres.

Finally, in view of unloading/reloading regimes for a rightward or leftward motion, the resultant contact trac-
tions N∗ (st ) , T ∗ (st ) are predicted by Eqs. (18) and (19) substituting T (rld)

unl (st ) = −sign (vs (t)) μ |N (st )|,
for the linear path. Thus,

N∗(st ) = N(st )
y0√

s2
t + y2

0

− T (rld)
unl (st )

st√
s2

t + y2
0

, for st ∈ s(rld)
unl , (61)

T ∗(st ) = N(st )
st√

s2
t + y2

0

+ T (rld)
unl (st )

y0√
s2

t + y2
0

, for st ∈ s(rld)
unl (62)

where s(rld)
unl and T (rld)

unl are the unloading or reloading paths and the tangential force predicted by (58) or (59),
respectively. Similarly, for the circular path, N∗ (s̃t ) , T ∗ (s̃t ) are predicted by Eqs. (52) and (53) substituting
T (rld)

unl (st ) = −sgμ |N (s̃t )|.
The contact traction evolutions for the full sliding path with left and rightward motions are demonstrated

in Fig. 16 for the linear trajectory of the contacting sphere.
As can be seen here, for a full sliding path, i.e., st ∈ [±su, ∓su] along the linear trajectory, the relation

T ∗ = f (N∗) is represented by the (elliptical like) force loops originating from the contact engagement point
and terminated at the contact separation point, where the contact tractions vanish. For the leftward motion, the
loop develops in a positive (N∗, T ∗) plane, while for the rightward motion the function values are negative.
With increasing the overlap between the contacting spheres, the loops become more elongated. The force loops
represent the configurational effect associated with the contact plane rotation during sliding.

The force-path diagrams for a partial sliding combined with the reverse motion inducing loading–
unloading–reloading regimes with/without account for the slip are plotted in Fig. 17. Here, the contact tractions
were computed by Eqs. (55–62) for the linear trajectory of the contacting sphere. The power exponent value
p = 0.5 was applied in Eqs. (58), (59).

In Fig. 17, the contacting sphere undergoes a leftward motion (vs (t0) < 0) and comes into contact at the
point position su . Later, at the point st1 < 0, the direction of velocity changes, inducing the reverse motion.
In this case, the unloading regime develops and the tangential force curve suddenly (denoted by dashed lines)
drops down or following the slip curve gradually moves along the reversal sliding path. The unloading regime
ends at the sliding path coordinate st2 > 0, and the reloading regime develops under the negative velocity.
According to Eq. (60), the reloading slip curve has a smaller ultimate slip displacement value than the unloading
curve, because of the inequality |st2| < |st1|.



A finite sliding model of two identical spheres under displacement and force control 1677

Fig. 16 Force-path evolution for the left and rightward full sliding motion along the linear trajectory of the contacting sphere

(a) (b)

Fig. 17 A partial sliding combined with the reverse motion for the loading–unloading–reloading regimes: a tangential force-path
diagram; b (N∗, T ∗) plane

The main features of the application of the unloading/reloading curves are also illustrated in detail during
the dynamic analysis (Part II of the current study).

4 Sliding of spheres under force control

4.1 Analysis of finite sliding of rigid spheres

Referring to Fig. 18, consider the case of relative sliding of two rigid spheres under the applied driving force T0.
The lower sphere is fixed in its position, and the upper sphere initially rests on the horizontal plane at position
y1. The normal vector of contact is located at point −xu and is inclined to the y-axis at the angle −αu . The
gravity force Q is initially equilibrated by the supporting plane reaction. When the horizontal driving force T0
is applied, the sphere separates from the plane and the force equilibrium is reached for the developed contact
normal and tangential forces N and T . The sliding regime develops instantaneously, when the driving force T0
reaches its limit value |T0| = ∣∣Tμ

∣∣ (where Tμ is the resultant horizontal force). When the spheres are rigid, the
sliding path lies on the fixed sphere surface, and for plane motion, it is a perfect circular path of radius R (Fig. 18).
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Fig. 18 Contact geometry and acting forces for two spheres during sliding under the force control

The initial orientation angle αu of the contact normal vector is specified as αu = arccos (y0/R) (where
y0 is the initial vertical coordinate of the contact engagement), while the support elevation is defined as
y1 = R (2 cos αu − 1).

During the sphere sliding, the orientation angle αt of the contact normal vector varies. The positive driving
force T0 > 0 induces the rightward motion with the positive velocity vs > 0, and the sphere path starts at the
angle αt = −αu (Fig. 18). For T0 < 0, a leftward motion (vs < 0) is obtained with the sliding path starting
point located at αt = αu . It represents the configurational variable evolving during the sliding process, and the
equilibrium for the sliding sphere path (Fig. 18) combined with the limit friction condition μN provides the
following relations:

{∑
Fx = 0, T0 − sgμN cos αt + N sin αt = 0,∑
Fy = 0, − Q + sgμN sin αt + N cos αt = 0,

(63)

where sg = sign (vs) , Q = |Q|.
The solution of (63) simply yields

T0 = Tμ (αt ) = −Q tan
(
αt − sgϕ

)
, (64)

N (αt ) = Q
cos ϕ

cos
(
αt − sgϕ

) = cos ϕ

√
Tμ (αt )

2 + Q2 (65)

where ϕ = arctan μ, N (αt ) is the positive contact reaction (18), while Tμ (αt ) is the limit friction force which
should be reached to induce the motion of the upper sphere.

The relation (64) can be simply illustrated in the plane T0, Q (Fig. 19). The limit friction for the fixed
angle ϕ and varying angle αt is represented by the Coulomb cone with its axis oriented at the angle αt to the
Q-axis. The initial contact is presented in Fig. 19a, for the contact orientation angle αu .
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Fig. 19 Limit friction condition for sphere sliding: a initial contact configuration, b contact separation

Fig. 20 Distribution of contact forces versus the curved sliding path under the force control

During sliding, the orientation angle decreases and becomes negative; so, the contact separation point Ps
is reached, for α f = −φ (Fig. 19b). From relation (64) and Fig. 19, it also follows that the sliding regime can
occur only when αu ≤ π

2 − ϕ. For αu = π
2 − φ, Eq. (64) yields T0 → ∞ and the sphere cannot be moved by

the applied force.
Figure 20 presents the functions of driving and normal forces calculated by Eqs. (64) and (65) versus the

curved sliding path, st = αt R, for the different values of friction coefficients. In fact, for the reverse sliding,
the driving force at the onset of sliding is represented by the point Pr in Fig. 19b, and next the force varies
depending on the evolution of the orientation angle αt . Here, the values of Q = 1 N, R = 1 m and y0/R = 0.7
were simply selected as the input parameters.

As can be seen in Fig. 20, before the contact engagement, the frictional force acts between the upper sphere
and support, and at the contact engagement point (i.e., st = su), the static friction force instantly grows up to
the maximal value. This is due to the assumed rigid sphere contact response. For continuing sliding, the static
friction force decreases until the contact separation occurs. As demonstrated in Fig. 20, the static friction force
and the contact reaction forces increase for increasing friction coefficient.
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4.2 Analysis of the finite plane sliding of deformable spheres

Consider the contact of two elastic deformable spheres. Suppose the upper sphere to be initially placed at any
point xu with contact vector inclined to the y-axis at the angle αu and the constant vertical load Q is applied
first, and next the horizontal force T0 is increased monotonically. When |T0| ≤ ∣∣Tμ

∣∣, it can be stated that the
slip regime occurs and the resultant tangential force induces a small tangential displacement δ between the
contacting sphere centers during contact engagement. When the horizontal force reaches the friction force
Tμ, the slip regime passes into the sliding regime and the sphere starts to slide over the contact surface, when
|T0| >

∣
∣Tμ

∣
∣. For both regimes, the force equilibrium along the τ -axis, (cf., Fig. 11, in Part 2), can be expressed

as follows:

Q sin αt + T0 cos αt − sg min (|μN | , |T |) = 0, (66)

where

N = −T0 sin αt + Q cos αt (67)

is the contact reaction force, and T is the resultant tangential force.
For the slip regime, substituting T and N forces from Eqs. (66) and (67) into Mindlin’s Eq. (3), the tangential

displacement is defined as:

δ = sκ

3 (2 − ν) μ (−T0 sin αt + Q cos αt )
2/3

16G (K R)1/3

(

1 −
(

1 − |Q sin αt + T0 cos αt |
μ (−T0 sin αt + Q cos αt )

)2/3
)

(68)

where sκ = sign (Q sin αt + T0 cos αt ) is the sign specifying the tangential displacement direction due to the
resultant tangential force.

Using αt = 0 in Eq. (68), we simply arrive at the Mindlin equation (3). For T0 = 0, the upper sphere center
slides down along the contact plane under the action of vertical force Q, when the support is removed. Also,
Eq. (68) yields that the upper sphere should be placed in a position specified by the initial angle |αu | ≤ φ.

Actually, besides the variable force T0, δ is also dependent on αt in the right hand side of Eq. (68), because
the change in tangential displacement yields the change in the resultant tangential force. However, the above
analysis has been shown that the limit values of the tangential displacements δu are very small (see Sect. 4.3)
and the constant value of angle αt ≈ αu can be reasonably substituted in Eq. (68), for modeling real materials.

When |T0| = ∣
∣Tμ

∣
∣, substituting Eq. (65) into Eq. (68), the approximate equation specifying the ultimate

tangential displacement is obtained. The root of this equation cannot be derived explicitly and is expressed in
terms of the arc length at the centers of contacting spheres as follows:

sδ,u ∈
{

st | sκ3 (2 − ν) μ (Q cos ϕ)2/3

16G (K R)1/3 cos2/3
(
(st ± su)/(2R) − sgϕ

) − st = 0

}

. (69)

The slip regime terminates on the curved sliding path at the point sδ,u ±su , when the friction force, specified
by Eq. (64), takes the value Tμ

((
sδ,u ± su

)
/(2R)

)
.

For the sliding regime, substitution of μN in Eq. (66) results in the solution given by Eq. (64). For the
case of deformable spheres, this equation can be resolved accounting for the curved sliding path specified by
the variable radius rt (αt ) depending on the developed overlap (Fig. 18). Thus, according to the Hertz solution
and Eq. (65), the overlap can be expressed as follows:

ht (αt ) =
(

Q

kn

cos ϕ

cos
(
αt − sgϕ

)

)2/3

. (70)

The radius r (αt ) of the curved sliding path may be expressed as the function of the overlap:

rt (αt ) = c

(
R − ht (αt )

2

)
(71)

where c = 2 is taken for the curved sliding path specified at the centers of contacting spheres and c = 1 stands
for the path taken at the contact surface.
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Starting from the expressions (70), (71), the relation of r (αt ) to the applied force Q is obtained, thus

rt (αt ) = c

⎛

⎝R − 1

2

(
Q

kn

cos ϕ

cos
(
αt − sgϕ

)

)2/3
⎞

⎠ . (72)

In this case, the vertical coordinate of the sliding paths is expressed as follows:

yt (αt ) = rt (αt ) cos αt . (73)

The curved sliding path for deformable spheres can be defined by the integral

st =
αt∫

±αu

√

rt (α)2 +
(

drt (α)

dα

)2

dα (74)

where

drt (α)

dα
= − cTμ cos2/3 (ϕ)

3Q1/3k5/3
n cos2/3

(
α − sgϕ

) . (75)

Inserting Eq. (72) into Eq. (74), the solution for st cannot be expressed explicitly. Hence, the function of
the friction force against the sliding path can be defined in incremental form. Thus, Eq. (74) may be simply
rearranged as follows:

dst

dαt
=

√

rt (αt )
2 +

(
drt (αt)

dαt

)2

. (76)

In this case, the angle increment can be expressed by the following relation:

dαt = − dTμ

Q
(
1 + tan2

(
αt − sgϕ

)) = − Q

Q2 + T 2
μ

dTμ. (77)

Combining Eq. (76) with (77), we obtain the tangential compliance in the following form:

dst

dTμ

= − Qc

Q2 + T 2
μ

√√√√
(

R − cos2/3 (ϕ)
(
Q2 + T 2

μ

)1/3

2k2/3
n

)2

+ cos4/3 (ϕ) T 2
μ

(
Q2 + T 2

μ

)2/3

9Q2k4/3
n︸ ︷︷ ︸

z(Tμ)

. (78)

For the i-th iteration, the frictional force against the curved sliding path can be expressed as follows:

T i
μ = T i−1

μ + z−1
(

T i
μ

) (
si

t − si−1
t

)
. (79)

In Fig. 21, the horizontal force versus curved slip/sliding path predicted for the sphere centers is plotted.
For the slip mode (Fig. 21a), the constant vertical load Q is applied first, and the horizontal force T is

increased subsequently up to the limit value Tμ

((
sδ,u ± su

)
/(2R)

)
. In this case, the tangential displacement

was predicted according to Eq. (68) for each step of T . The sliding regime (Fig. 21b) developed after the slip
mode is calculated incrementally according to Eq. (79). The value of the vertical load Q = 100 N is selected,
the contact stiffness kn values used are: 1,000, 2,000 Nm−3/2, while the other parameters are the same as in
the previous analysis. Also, the support at the contact engagement is not considered because the upper sphere
is placed in a position specified by the initial angle of |αu | ≤ ϕ. This allowed to increase the horizontal force
from zero value. In the case of support application, the initial value of the applied force should be used as
Qμ.

As can be seen in Fig. 21a, the monotonic increase in the horizontal force produces the nonlinear increase in
tangential displacement developed at the center of the upper sphere. This process terminates at the intersection
point between the slip and sliding modes, and next the sliding friction force gradually decreases along the
progressing sliding path. For increasing contact stiffness, the deformable sphere response tends to the rigid
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(a) (b)

Fig. 21 Driving force versus st diagram: a slip regime, b slip and sliding regimes
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Fig. 22 Slip and sliding regimes on N −T0 plane

sphere response. The slip and sliding regimes shown in Fig. 21 are presented in the diagram of evolution of
the contact force N and driving force T0 depicted in Fig. 22.

During the monotonic increase in the horizontal force T0, the slip regime develops from the point P0 =
Q cos αu (where T0 = 0), resulted from Eq. (67) (Fig. 22). Due to relation between the tangential displacement
δ and angle αt , the N − T0 curve is slightly nonlinear. When the driving force reaches the friction force limit,
i.e., |T0| = ∣∣Tμ

∣∣, the slip regime terminates at the point Ps and the sliding regime starts. During this process,
the friction force decreases with progressing the sliding path according to Eq. (79), and the N − T0 curve
reaches the point P0 again, where T0 = 0. The unloading and reloading processes emanating from the slip
regime are also shown in Fig. 22 by dashed lines.

When |T0| >
∣
∣Tμ

∣
∣, the force equilibrium at a certain point of the sliding path is violated yielding

N = 0, and the contact separation occurs. This case will be discussed in Part 2 devoted to the dynamic
analysis.

4.3 Verification of the model prediction by experimental measurements

A theoretical prediction of the friction force for two rigid contacting spheres according to Eq. (64) will be
compared with the experimental measurements. Łukaszuk et al. [12] measured the coefficient of friction
between pairs of the metallic spheres and pea grains. Spheres and grains of 5 mm diameter were tested
in a specially developed apparatus to measure the components of small forces and displacements. In the
measurement, the simultaneous measurement of the friction force was induced to maintain slow steady motion,
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Fig. 23 Friction force versus the horizontal component of slip and sliding path

when the force Q is applied. A low value of the vertical force Q equal to 0.98 N was applied. The measured
coefficient of friction μ was approximately equal to 0.68 (steel spheres), 0.22 (lubricated steel spheres) and
0.4 (pea grains). The initial position of the contact engagement y0 was derived from the experimental graphs
[12], for the vertical and horizontal displacements. In Fig. 23, the measured and predicted friction force versus
horizontal displacement of the sliding sphere center are depicted.

As can be seen in Fig. 23, the theoretical and experimental friction force evolutions versus the horizon-
tal sliding path component are sufficiently adequate. However, at the contact engagement, the experimen-
tal and theoretical predictions differ. The small value of force Q applied to a stiff material of the spheres
resulted in small values of the theoretical ultimate tangential slip displacement of sδ,u = 0.4 × 10−7 m
and sδ,u = 0.7 × 10−5 m for the steel and pea grains, respectively. In view of this fact (Fig. 23), the slip
regime curves are almost vertical, and their values are smaller than the accuracy level of measured dis-
placements. The difference in the maximal driving force prediction during slip regime may be attributed
to the initial material and contact surface shape imperfections, combined with the development of local-
ized inelastic deformations. On the other hand, during sliding regime, the model prediction is fairly close
to the experimental data. Let us note that the precise measurement of the static force is quite complicated,
depending on the technique of mounting the spheres in the initial contact position and application of vertical
force.

5 Conclusions

A finite sliding model of two identical spheres under the displacement and force control has been proposed.
The model is based on the approximate analysis of the contact interaction process of two spheres by the overlap
approach along with the Hertzian nonlinear elastic spring analogy and Coulomb law for the sliding friction. In
particular, the analytical and incremental (in the case of force control) relationships between the contact force
and the sliding path length were derived. The effect of unloading/reloading was also analyzed for the case of
reciprocal sliding motion.

The well-known Mindlin and Deresiewicz theory may be applied only for the partial slip regimes occurring
for a very small range of tangential displacements induced by the motion of contacting sphere centers. For
the sliding regimes, the M–D theory is not appropriate, and the present analysis provides the complete set of
relations specifying the sphere motion.

Further applications and extensions of the analysis can be envisaged to other problems, such as (a) rough
contact surface interaction, (b) wear analysis and (c) specification of the flash temperature effect in the contact
zone.
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