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Abstract

The objective of the paper is formulation of sensitivity lgse for flow approach simulations of deep drawing problevith respect
to arbitrary design parameters. First, finite element fdathon of the primary problem is presented. Its importardtdee is the
full algorithmic tangent viscosity matrix which, as it wile shown, is a necessary tool in sensitivity calculationse @lgorithmic
(consistent) tangent matrix is unfortunately asymmetrigich is addressed in our considerations. The semi-analyformulation of
sensitivity is used, which means that some complex desiguatiges in the sensitivity equations are estimated bytdinifference

method. The finite difference method will be used as a reteremethod for verification of the sensitivity results.
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1. Introduction

The flow approach to modeling of large plastic deformation
processes [1, 7] is a numerically efficient alternative taditr
tional displacement-based finite element formulationsh bo-
plicit quasi static and explicit dynamic simulations. Ithased
on the rigid-viscoplastic constitutive equation in whidtess is a
function of strain rate and the form of the equation is anailsg
to nonlinear elasticity, with strain replaced by strairerathe for-
mulation is suitable, in particular, to model deep drawihmetal
sheets [8] or other plastic metal forming processes, likengoor
extrusion.

The most efficient known optimization algorithms are the
gradient methods. To effectively use them, one needs irdorm
tion on design sensitivity of the structural response. Gesen-
sitivity analysis has been widely discussed regardingiticaml
displacement FE formulations [3], including also largesta
plastic deformations [5,6]. Although issues of sensijigihalysis
in flow approach formulations of sheet metal forming have als
been addressed in the literature [2, 4, 9], complete fortiaulaf
the problem including geometric nonlinearities and fulinfioof
the consistent tangent matrix has not yet been developed.

The present paper is an attempt to fill this gap in the state

of the art. The results of sensitivity analysis may allow utyf
integrate the deep drawing algorithm with a gradient-baged
mization system and thus accelerate the process of optintiza
of tool geometry and stamping control parameters.

2. Formulation of rigid-viscoplasticity problem

2.1. Finite element formulation

In sheet metal forming analysis, shell formulation withrnga
stress constraints is adopted for sheet. Under this aseamiite
constitutive equation of a rigid-viscoplastic materisgd@mes the
form

o =D(é)¢ 1)

whereo ande are stress and strain, respectively, dddlenotes
strain-rate-dependent viscosity matrix. Formal analogiyvieen
equation (1) and a formulation of nonlinear elasticity nsmke
easy to solve the plastic flow problem in a similar manner &s no

linear elasticity problems, with strains replaced by stnates
and nodal displacements with velocities.

The finite element equilibrium equation assumes the vector-
matrix form,

K(q,9) 4= F(q,4q) @)

in which q, ¢ and F' denote generalized nodal displacement, ve-
locity and external load vectors, respectively, whikeis the se-
cant viscosity matrix.F' is a sum of prescribed loads applied to
sheet, reactions due to kinematic boundary conditions¢piteed
velocities) and contact reactions, all of them dependenj and

g (contact is modelled with penalty approach).

SinceK is actually also dependent on history of deformation,
the problem is solved in subsequent time steps, with theviell
ing implicit integration scheme assumed for generalizedaho
displacements &t,+1 = tn + At,

@ =q"+ [(1-9)g" + 94" "] At ®3)

where the solutiog™ andg”™ is known from the previous time
step and € (0, 1] is the implicit integration parameter.

2.2. lterative computation scheme

Having obtained the solution for the time instant we can
solve the nonlinear equation system (2) for.; with the use of
the Newton iteration scheme. The solution procedure ctsnisis
calculation of the secant viscosity mati#& and the force vector
F for consecutive approximations gfand determination of its
correctorsiq, according to

d . . = . . . .
d—q(Kq—F)5q=F—Kq7 q:=q¢+5q 4)
The above scheme is repeated until the convergence cnitisrio
fulfilled. It can be written in the compact form as

Kég=r (5)

where

K-k+3%, 4 Kk ®)
dqg dg

are called, respectively, the algorithmic tangent vidyasiatrix
and the vector of unbalanced (residual) nodal forces qooret
ing to the current approximate solutign Note that, in view of
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equation (3), the following relation holds at the currentdiin-  the program we assume that the sensitivity will be detercthine

stantt,, 41 for any variable dependent on bajrandgq: the semi-analytical differentiation method. In this aaro, the
explicit design derivative of is estimated using the following

() _ a0) () formula:

- = -+ UAt . @)
dg  9q oq <

e _ dr(g(h),...,n)|
2.3.  Algorithmic tangent matrix dh . ~
L=no

The full expression of the tangent viscosity matkxis quite r(q(ho), ..., ho+Ah) —r(q(ho), ..., ho)

elaborated, as it includes derivatives of numerous gedraéyr ~ AL ) (12)

nonlinear variables, expressions for contact forces etostMf
the components appear to be symmetric, however, some are n
Fortunately, the asymmetric terms are only those relateteto
pendence ofK and F' on nodal displacementg and thus, ac-
cording to (7), they contribute t& mutiplied by9dAt. In other 4. Final remarks
words,

yhere AR is perturbation of design parameteraround its pri-
mary valuehy .

As it appears from the presented formulation, the design sen
K = Ksymm + Kasymm VAL (®) sitivity problem is linear and thus time-efficient. The cistsnt
dangent viscosity matrix is necessary in the formulatiomfds-
tunately the matrix is not symmetric but negligence of tharas
metric terms does not appear to introduce significant enndtse
results.

The fully analytical implementation of design sensitivity
very difficult. The presented semi-analytical formulatiem-
ploys finite difference quotient to compute the explicit idas
Differentiating the main system of equations with respect t derivative of nodal residual forces.

a design parametér, one can obtain Numerical examples will be presented at the conference pre-

§~ K@ _aF o sentation.
R AR T A

Note that all terms depend ol either explicitly, or through
other variables that are design-dependent. Among those var1] C. Agelet de Saracibar.Finite Element Analysis of Sheet
ables, some are known at the beginning of the time step (&0 the' ~ Metal Forming Processes. PhD thesis, CIMNE, Barcelona
design derivatives are also known) and some — and here we are (jn Spanish), 1990.

talking aboutg — are not, and the derivati\& is unknown. For

simplicity of notation, let us define the ‘explicit desigrrvative’  [2] H. J. Antunez, M. Kleiber, and W. Sosnowski. Shape and
of any variablea(g(h), ..., h) as non-shape sensitivity and optimisation of metal formings pr
cesses. ICOMPLASYV proceedings, Barcelona, 1997.

This allows to estimate the asymmetric terms as small and n
glect them in the iteration procedure without significargslon
convergence speed.

3. Sensitivity analysis

References

da da . da dadq  da
an ~ dnl. ) I.e. an — d_q@ + an (10) [3] M.Kleiber, H. J. Antunez, T. D. Hien, and P. KowalczyRa-
rameter Sensitivity in Nonlinear Mechanics. J. Wiley, 1997.

g=const

The so defined explicit derivative includes all the desigrivde
tives of arguments ofi that are known at the beginning of the [4]
time step computations.

With this notation, equation (9) can be rewritten after ran
formations as 5]

M. Kleiber and W. Sosnowski. Parameter sensitivity el
in frictional contact problems of sheet metal formirgom-
putational Mechanics, 16, 1995.

P. Kowalczyk. Design sensitivity analysis in large deha-
dg dr tion elasto-plastic and elasto-viscoplastic problenhst. J.
= an (11) Num. Meth. Eng., 66:1234-1270, 2006.

This means that one has to solve a linear system of equatitins w [6] P. Kowalczyk. Sensitivity analysis in finite element compu-
the same tangent coefficient matrix as was used in the lagt equ  tations of elasto-plasticity. Prace IPPT — IFTR Reports no.
librium iteration. This makes the sensitivity computatiorery 712006, Warszawa, 2006.
time-efficient, especially that the matriX has already been de- 5 . ) )
composed at the moment. All one has to do is to build the righ{?] E. Ofate and O.C. Zienkiewicz. A viscous shell formuati
hand side vector in (11). for the analysis of thin sheet metal formingnt. J. Mech.

It must be admitted that the matrix we actually use in the ~ S0I., 25:305-335, 1983.

computations is in fact only the symmetric approximate & th [8] W. Sosnowski. Finite o t simulation of industrial sheet

full tangent matrix. This does not usually introduce sigrafit )
- : . metal forming processes. Prace IPPT — IFTR Reports no.
error in the results obtained. However, to make the anaigsi® 17/1995, Warszawa, 1995,

strict, one can consider solving the system (11) in iteratiovith
moving the asymmetric terms to the right-hand side. Thi$ wil [9] W. Sosnowski. Numerical simulation, sensitivity analysis

slightly extend the computation time. o _ and optimization of nonlinear deformations of structures.
Computation of the right-hand side vector given in equation Wydawnictwo Akademii Bydgoskiej, Bydgoszcz (in Polish),
(11) for an arbitrary design parameter may appear a veryudifi 2003.

task. In order to ensure the highest possible level of géiteod

TS02-14



