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Reaction-diffusion equation modelling calcium waves

with fast buffering in visco-elastic environment
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The model we consider treats a cell or a group of cells as a viscoelastic medium
whose stress tensor has a term - the traction- representing the stresses generated in the
medium by the actomyosin molecules. We consider three kinds of domains (“shapes”
of cells): the thin circular cylinder mimicking a long cell, the thin slab being a cari-
cature of a tissue, and the unbounded space. We assume that the viscous effects are
much weaker than the elastic ones and consider two extreme cases: either the body
force is negligible or it is strong. This leads to three pairs, one pair for each domain,
of approximations for the dilatation. We interpolate between the approximated ex-
pressions forming one pair and as the result we obtain a single calcium conservation
equation and a system of buffer equations. Using the rapid buffering approximation
we reduce the problem to a single reaction-diffusion equation. We study the travelling
wave solutions to these equations. We show that not only the high affinity buffers
but also the mechanical effects alone can prevent the formation and propagation of
the waves if the supply of calcium is not sufficiently substantial.
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1. Introduction

Irritation of a cell or a group of cells generates some aggregation of
calcium ions Ca2+. The nature of such an irritation can be very diverse. For in-
stance, it can be a sperm penetrating an egg or a mechanical or electric agent. In
some types of cells the density of such an aggregation becomes so large that the
aggregation starts to propagate as a wave. The role of the calcium waves is not
totally clear; however, the common opinion is that they enable many physiolog-
ical processes; in particular, they enable the transmission of information within
a single cell or a group of cells. That is why it is so important to understand the
leading mechanisms governing the calcium motion.

Despite the fact that the complexity of the problem is huge, it turned out
that even relatively simple models can be very useful. The simplest model [1, 2]
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is based on the reaction-diffusion equation

(1.1)
∂c

∂t
= D∆c+ f(c),

where t is the time, ∆ is the Laplacian with respect to x = (x1, x2, x3) – the
position, c is the calcium concentration normalised to the interval [0, 1], D > 0
is the coefficient of diffusion, and the source term f(c) describes the kinetics of
calcium transportation into and out of the cytosol. As it is known, the concen-
tration of calcium ions in a cell is low in normal conditions, since pure calcium
is toxic. Therefore, it is stored in special compartments which open when the
concentration of the local aggregation reaches a threshold value. Then some
amount of calcium is secreted what raises the local value of its concentration
and stimulates further secretion. Thus, the calcium waves are maintained by an
autocatalytic mechanism. So, the function f(c) must be bistable; that is, it must
have two stable equilibria and one unstable between them [1, 2]. More precisely,
we assume that f(c) is continuously differentiable with respect to c ∈ [0, 1] and
such that

(1.2)
f(0) = f(cT ) = f(1) = 0, for only one cT ∈ (0, 1),

f ′c(0) < 0, f ′c(cT ) > 0 and f ′c(1) < 0.

The simplest candidate is

(1.3) f(c) = Ac(1 − c)(c− cT ),

where A >0 is a constant. The bistable reaction-diffusion equations of the form
(1.1) occur in many other problems of applied sciences. The analysis of the
existence and uniqueness of travelling calcium waves in equations like (1.1) can
be found for instance in [3].

A model more refined than the one formulated by Eq. (1.1) accounts for
calcium buffering. Buffers are large proteins of various chemical structures able
to bind and release Ca2+. In fact, about 99% of calcium is bound to the buffers.
The simplest model accounting for free calcium and bounds to buffers is as
follows (see [2, 4, 5]):

(1.4)
∂c

∂t
= D∆c+ f(c) +

n∑

i=1

[kj
−bj − kj

+c(b
j
0 − bj)]

and

(1.5)
∂bi
∂t

= Di∆bi −
[
ki
−bi − ki

+c(b
i
0 − bi)

]
, i = 1, 2, . . . , n,
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where bi denotes the concentration of the i-th buffer that has bound the calcium
ions, bi0 is the total concentration of the i-th buffer, assumed to be constant,
the positive constants ki

+ and ki
− represent the rates of binding and releasing

calcium, respectively. D > 0 and Di ≥ 0 are the diffusion coefficients of free
calcium and buffered calcium, respectively.

The models like (1.1) or (1.4) and (1.5) do not take into account the fact that
calcium and buffers move through the physiological medium. The variations in
the calcium concentration generate some tension in the surrounding medium
which, in response, modifies the propagation of calcium waves. Essentially, the
tissue or the cell cytoplasm is modelled as a viscoelastic medium. Its stress tensor
with components σij , i, j = 1, 2, 3, is assumed to be of the following form [1, 2,
13, 14]:

(1.6) σij =

(
E

1 + ν
+ µ1

∂

∂t

)
εij + δij

(
E

1 + ν

ν

1 − 2ν
+ µ2

∂

∂t

)
θ + τδij ,

where δij , i, j = 1, 2, 3 is the Kronecker symbol, E is the constant Young mod-
ulus, ν is the constant Poisson ratio, µ1, µ2 are the constant shear and bulk
viscosities, εij , i, j = 1, 2, 3, are the components of the strain tensor, defined by

(1.7) εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
,

where ui = ui(x, t), i = 1, 2, 3 are components of the displacement vector. In
Eq. (1.6) θ represents dilatation which is responsible for volumetric changes in
the medium; it is defined by θ = div u. The last quantity on the right-hand side
of Eq. (1.6) τ = τ(c) represents the contribution to the stresses resulting from the
fact that the interior of a cell should not be treated as a totally amorphous vis-
coelastic material. Namely, there are molecules called actins and myosins which
form a sort of network and react to the changes of the calcium concentration:
when the calcium concentration starts to grow the network exerts a contraction
stress on the cytoplasm; however, if the calcium concentration reaches a suffi-
ciently large value the network starts to break down, consequently the traction
disappears [13, 14]. Due to that, we assume that τ are completely determined
by calcium concentration c and is such that

(1.8) τ(c) ≥ 0, 0 ≤ c ≤ 1, τ(0) = τ(1) = 0.

Ignoring the very small inertial terms we reduce the equations of motion to
equations expressing quasi-static balance of forces

(1.9)
∂

∂xj
σij + Fi = 0, i = 1, 2, 3,
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where Fi, i = 1, 2, 3, are the components of the vector of the body force which
comes from a permanent resistance to deformations of the cell material. The
simplest approximation to this sort of resistance consists in the assumption that
it is an elastic force

(1.10) Fi = −ρui, i = 1, 2, 3,

where ρ is a given positive constant.
The final problem is the calcium conservation equation. Since the stretch-

ing of the cell elevates the cytosolic calcium concentration (this phenomenon is
known as the “stretch activation”), Eq. (1.1) is replaced by the following one
[1, 2, 13, 14]:

(1.11)
∂c

∂t
= D∆c+ f(c) + γθ.

The first attempt of finding the travelling wave solutions of the system (1.6)–
(1.11) is contained in the quoted paper by Murray and Oster [13], but the
real progress was made by Lane et al. [14], who used these equations to explain
the phenomenon of calcium waves on the surface of a fertilized egg. The first
mathematically rigorous paper on calcium waves in the mechanochemical model
(1.6)–(1.11) was published by Flores et al. [15]. They proved the existence and
uniqueness of travelling wave solutions under the (among others) assumption
that the coupling between mechanical and chemical effects is weak by treating
the parameter γ in Eq. (1.11) as small. The stability of such waves, under the
same working assumption that γ is small, was proved later by Flores and
Plaza [16]. The existence of calcium wave solutions for the considered system
under different auxiliary assumptions was shown also by Peradzyński and
Kaźmierczak [17]. They considered two cases: either the body force is totally
negligible (ρ = 0 in Eq. (1.10)) and the viscous effects are sufficiently small or
these effects are absent (µ1 = µ2 = 0) and ρ is large. Recently, Peradzyński [18]
(see also [21]) considered the mechanochemical model (1.6)–(1.11) in domains
with boundaries, and showed how to reduce this system to a single equation
of the reaction-diffusion type whose details depended on the specific set of the
adopted simplifying assumptions. For so simplified equations, Kaźmierczak

and Dyzma [19] succeeded in finding some exact solutions.
In the mechanochemical model (1.6)–(1.11), the existence of buffers was ig-

nored. But, as it is known, 99% of calcium is bound to buffers; therefore, it is
necessary to incorporate buffers into the mechanochemical model. The simplest
way to construct such a model is to add the term γθ to Eq. (1.4), thus receiving
the following equation:

(1.12)
∂c

∂t
= D∆c+ f(c) +

n∑

i=1

[kj
−bj − kj

+c(b
j
0 − bj)] + γθ.
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Now, the system of equations aimed to model the buffered calcium waves
with accompanying mechanical effects consists of the buffer conservation equa-
tion (1.5), the mechanical equations (1.6)–(1.11), and the calcium conservation
equation (1.12). The existence and uniqueness of calcium wave solutions to such
a really complex model was considered by Kaźmierczak and Volpert [20]
under simplifying assumptions that buffers were immobile and with the body
force ρu neglected. Very recently, this analysis was pursued by Kaźmierczak

and Peradzyński [21], who considered the case of diffusing buffers and the
case of rapid buffers in the sense of Wagner and Keizer [4], and showed the
convergence of the speeds and pure calcium concentration profile to the profile
of the travelling wave of the reduced equation of rapid buffers.

A model very similar to that formed by Eqs. (1.5)–(1.12) was proposed by
Goodwin and Tainor in [22]. This model was studied in a few papers (see
[23, 24] and references therein).

If the cell or tissue is contained in a volume Ω, at least partially limited by
the boundary ∂Ω, then some boundary conditions are necessary. Let n = n(x, t)
be the outward vector normal to the boundary ∂Ω at the point x ∈ ∂Ω and
time t. Following Peradzyński [18] and Kaźmierczak and Dyzma [19] we
assume that the boundary ∂Ω is unloaded, that is we assume:

(1.13) σijnj

∣∣
∂Ω

= 0, i = 1, 2, 3.

We need also boundary conditions for the free calcium concentration c and
the buffers bi. The internal concentration of calcium in the cell is low, whereas
in the extracellular matrix is much higher. Usually, the supply of calcium from
the internal stores, represented in the considered model by the function f(c), is
insufficient and the cell pumps in the calcium from the outside through special
calcium channels. The large difference in concentrations does not play any role,
since the influx of calcium is strictly controlled by the cell. It takes place only
if the cell needs more calcium when stimulated, and it is stopped if the concen-
tration of calcium reaches the point of saturation. More information on calcium
dynamics can be found in the monograph by Keener and Sneyd [2]. In the
present paper we mimic this process by imposing the boundary condition of the
Robin type. This condition relates, on the boundary, the value of the calcium
flux in the direction of the outward normal to the boundary and the value of the
calcium concentration on the interior side of the cell boundary. This condition
can be formulated as follows:

(1.14) D
∂c

∂n
= R(c,x, t), x ∈ ∂Ω,

where R is a given function representing this admitted amount of calcium which
the cell takes from its surrounding or removes from its interior. If R(c,x, t) ≥ 0
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at a point of the boundary, then calcium flows in the interior of the cell, if
R(c,x, t) ≤ 0 then some amount of calcium is removed from the cell. We will
precise the form of R later as now we do not need its details. The boundary
conditions for the buffers are assumed to be of the form:

(1.15) Di
∂bi
∂n

= 0, x ∈ ∂Ω, i = 1, 2, . . . , n,

since there is no flux of buffers through the boundary of the cell.
Finally, we take the following initial conditions:

(1.16)
c(x, 0) = c̄(x), bi(x, 0) = b̄i(x), x ∈ Ω,

u(x, 0) = 0, x ∈ Ω.

The last condition follows from the definition of the displacement

2. Nondimensionalisation

According to the standard procedure we rewrite all equations introduced in
the preceding section in a nondimensional form (see [14]). Let L0 and T0 be the
typical length and time scales, respectively. The dimensionless time, position,
and the displacement are defined by

(2.1) t∗ =
t

T0
, x

∗ =
x

L0
, u

∗ =
u

L0
.

Using these quantities, we define

(2.2)

µ∗1 =
1 − 2ν

1 − ν

µ1(1 + ν)

ET0
, µ∗2 =

1 − 2ν

1 − ν

µ2(1 + ν)

ET0
,

ρ∗ =
1 − 2ν

1 − ν

ρL2
0(1 + ν)

E
, τ∗ =

1 − 2ν

1 − ν

(1 + ν)

E
τ,

D∗ =
DT0

L2
0

, D∗
i =

DiT0

L2
0

, ki∗

− = T0k
i
−, ki∗

+ = T0k
i
+,

f∗ = T0f, γ∗ = T0γ,

The nondimensionalized form of the system (1.12), (1.5), (1.9) along with
(1.6), (1.7), (1.10), is

∂c

∂t
= D∆c+ f(c) +

n∑

i=1

[kj
−bj − kj

+c(b
j
0 − bj)] + γθ,(2.3)

∂bi
∂t

= Di∆bi −
[
ki
−bi − ki

+c(b
i
0 − bi)

]
, i = 1, 2, . . . , n,(2.4)
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and

(2.5)
∂·

∂xj

[(
1−2ν

1−ν
+µ1

∂

∂t

)
εij+

(
ν

1−ν
+µ2

∂

∂t

)
θδij+τδij

]
= ρui, i = 1, 2, 3,

where we have suppressed the asterisks for notational convenience; and, natu-
rally, from now on all the quantities will be nondimensional.

3. Geometry motivated approximations

In this section, we present procedures generated by the geometry of the con-
sidered domains, which lead to some simplification of the boundary value prob-
lems posed in Section 1.We limit ourselves to thin domains only.

3.1. Thin circular fibre

In this subsection, we consider the transportation of calcium in a long thin
fibre of a circular cross section of the radius a. We limit our considerations to the
case when the problem possesses the cylindrical symmetry. It means that every
function q defined on the fibre is of the form

(3.1) q(x1, x2, x3, t) = q(x1, ς, t), ς =
x2

2 + x2
3

a2
,

where the coordinate system we use is as follows: the x1-axis coincides with the
central axis of the cylinder and the x2- and x3-axes are perpendicular to it.

We assume that the displacements are of the form

(3.2) u1 =
∂ϕ

∂x1
, u2 = wx2, u3 = wx3.

Under assumptions (3.1)–(3.2) the force balance equations (2.5) reduce to
two following ones

(3.3) 2

(
ς
∂

∂ς
+1

)
∂

∂ς

(
1−2ν

1−ν
+µ1

∂

∂t

)
ϕ

= a2

[
ρϕ−τ−

(
1+(µ1+µ2)

∂

∂t

)
∆1ϕ−

(
1

1−ν
+(µ1+2µ2)

∂

∂t

)(
ς
∂

∂ς
+1

)
w

]
,

(3.4)
∂

∂ς

[(
1

1−ν
+(µ1+2µ2)

∂

∂t

)
∆1ϕ+4

(
1+(µ1+µ2)

∂

∂t

)(
ς
∂

∂ς
+1

)
w+2τ

]

= a2

[
ρ w−

1

2

(
1−2ν

1−ν
+µ1

∂

∂t

)
∆1w

]
,
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where we introduced the symbol ∆1 = ∂2/∂x2
1 of one-dimensional “Laplacian”

for sake of consistency of notation, which will be used in the future.
The calcium equation (2.3) becomes

(3.5) D

(
ς
∂

∂ς
+1

)
∂c

∂ς
=
a2

4

[
∂c

∂t
−D∆1c−

n∑

i=1

[kj
−bj −k

j
+c(b

j
0−bj)]−f−γθ

]
,

where

(3.6) θ = ∆1ϕ+ 2

(
ς
∂

∂ς
+ 1

)
w,

and the buffer equations (2.4) take the form

(3.7) Di

(
ς
∂

∂ς
+ 1

)
∂bi
∂ς

=
a2

4

[
∂bi
∂t

−Di∆1bi + (ki
−bi − ki

+c(b
i
0 − bi))

]
.

Now, let us consider the boundary conditions (1.13)–(1.15). The normal vec-
tor for the boundary is

n =

(
0,
x2

a
,
x3

a

)
.

Hence, owing to (3.1) and (3.2) the boundary conditions (1.13) reduce to two
equations of the form

[
2

(
1−2ν

1−ν
+µ1

∂

∂t

)
∂ϕ

∂ς
+a2

(
1−2ν

1−ν
+µ1

∂

∂t

)
w

]

ς=1

= 0,(3.8)

[(
ν

1−ν
+µ2

∂

∂t

)
(∆1ϕ+w)+

(
2ς
∂

∂ς
+1

)(
1+(µ1+µ2)

∂

∂t

)
w+τ

]

ς=1

= 0.(3.9)

Finally, let us consider the conditions (1.14) and (1.15). We assume that

(3.10) R = aψ(b),

where b = (c, b1, . . . , bn). Hence, the boundary conditions (1.14) and (1.15) re-
duce to:

(3.11)

[
D
∂c

∂ς
−
a2

4
ψ

]

ς=1

= 0,

[
Di
∂bi
∂ς

]

ς=1

= 0, i = 1, 2, . . . , n.

We proceed to solving the boundary value problem (3.4)–(3.11). We seek so-
lutions in the form of the asymptotic expansion with respect to powers of a2. This
means that every quantity represented by q is assumed to admit an expansion
of the form
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(3.12) q(x1, ς, t) =
∞∑

k=0

qk(x1, ς, t)a
2k,

where a2 is treated as the small parameter.
Next, we admit, that every quantity P like τ , ψ, etc. depends on b =

(c, b1, . . . , bn) and on x1, t only, but does not depend on a. However, as b de-
pends on a, so does P , and that is why it must be developed in powers of a2.
This expansion is of the form

(3.13) P =

∞∑

k=0

Pk(b0,b1, . . . ,bk, x1, t)a
2k,

where the first coefficients are

(3.14) P0 = P (b0), P1(b0,b1) = P ′
b
(b0)b1, etc,

where b0,b1, . . . ,bkare coefficients in the expansion of the type (3.12).
Setting formally a = 0 in (3.3), (3.4) and (3.5), (3.7) we obtain the equations

of the lowest order of approximation

(3.15)

(
ς
∂

∂ς
+ 1

)
∂

∂ς

(
1 − 2ν

1 − ν
+ µ1

∂

∂t

)
ϕ0 = 0,

(3.16)
∂

∂ς

[(
1

1 − ν
+ (µ1 + 2µ2)

∂

∂t

)
∆1ϕ0

+ 4

(
1 + (µ1 + µ2)

∂

∂t

)(
ς
∂

∂ς
+ 1

)
w0 + 2τ0

]
= 0,

(3.17)

(
ς
∂

∂ς
+ 1

)
∂c0
∂ς

= 0,

(
ς
∂

∂ς
+ 1

)
∂bi0
∂ς

= 0,

subject to the conditions

(3.18)

[(
1 − 2 ν

1 − ν
+ µ1

∂

∂t

)
∂ϕ0

∂ς

]

ς=1

= 0,

(3.19)

[(
ν

1 − ν
+ µ2

∂

∂t

)
(∆1ϕ0 + w0)

+

(
2ς
∂

∂ς
+ 1

)(
1 + (µ1 + µ2)

∂

∂t

)
w0 + τ0

]

ς=1

= 0,

(3.20)

[
∂c0
∂ς

]

ς=1

= 0,

[
∂bi0
∂ς

]

ς=1

= 0,

where w00 is an arbitrary function which can depend on x1, t. We take
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Assumption 1. For any k = 0, 1, 2, . . . , and ς ∈ [0, 1], the functions
qk(x1, x2, t, ς) together with their derivatives with respect to ς are bounded.

Integrating Eq. (3.15) with respect to ςand using the condition of Assump-
tion 2 we obtain

(3.21)

(
1 − 2ν

1 − ν
+ µ1

∂

∂t

)
ϕ0 = ϕ00,

where ϕ00 is an arbitrary function of x1, t. The general solution of Eq. (3.21) is

(3.22) ϕ0 =

(
ϕ̄00(x1, ς)+

1

µ1

t∫

0

ϕ00(x1, ξ) exp

[
1−2ν

1−ν

ξ

µ1

]
dξ

)
exp

[
−

1−2ν

1−ν

t

µ1

]
,

where ϕ̄00(x1, ς) is another arbitrary function, which, in general, may depend
on ς. To determine this function we use the following initial condition: ϕ0(x1, ς, 0)
= 0 which results from the initial condition (1.16) for the displacement u and the
definition (3.2) of ϕ. The solution (3.22) satisfies the adopted initial condition
if and only if ϕ̄00(x1, ς) ≡ 0. Owing to this we conclude that ϕ0 is an arbitrary
function of x1 and t that is ϕ0 = ϕ0(x1, t). With such ϕ0, the boundary condition
(3.18) is trivially satisfied. Next, it follows immediately from Eqs. (3.17) that c0
and bi0, i = 1, 2, . . . , n are functions of x1 and t only, and they do not depend
on ς. Of course, such functions satisfy the boundary conditions (3.20) identically.
The equations for ϕ0, c0, bi0 will be found by considering suitable equations of
the next order approximations. It remains to consider Eq. (3.16) subject to the
boundary condition (3.19). Since c0, b0 do not depend on ς, so does the function
τ0 = τ(c0). Due to that and due to the fact that ϕ0 does not depend on ς either,
Eq. (3.16) reduces to

∂

∂ς

[(
1 + (µ1 + µ2)

∂

∂t

)(
ς
∂

∂ς
+ 1

)
w0

]
= 0.

One can easily write down its general bounded solution. It reads:

(3.23)

(
1 + (µ1 + µ2)

∂

∂t

)
w0 = w00,

where w00 = w00(x1, t) is an arbitrary function of x1, t only. The above equation
is a linear ordinary differential equation, whose general solution is

w0 =

(
w̄00(x1, ς) +

1

µ1

t∫

0

w00(x1, ξ) exp

[
1 − 2ν

1 − ν

ξ

µ1 + µ2

]
dξ

)

× exp

[
−

1 − 2ν

1 − ν

t

µ1 + µ2

]
,
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where w00(x1, ς) is an arbitrary function, which, in general, may depend on ς.
However, w0 has to satisfy the initial condition w0(t = 0) = 0, formulated in
(1.16). Therefore, w00(x1, ς) must be equal to zero. Hence, w0 does not depend
on ς. Using this fact in the boundary condition (3.19) we obtain the equation:

(3.24)

(
ν

1 − ν
+ µ2

∂

∂t

)
∆1ϕ0 +

(
1

1 − ν
+ (µ1 + 2µ2)

∂

∂t

)
w0 + τ0 = 0.

To determine ϕ0 and b0 we consider the next order approximation to Eqs.
(3.3), (3.5) and (3.7). These equations read

(3.25) 2

(
ς
∂

∂ς
+ 1

)
∂

∂ς

(
1 − 2ν

1 − ν
+ µ1

∂

∂t

)
ϕ1

= ρϕ0 − τ0 −

(
1 + (µ1 + µ2)

∂

∂t

)
∆1ϕ0 −

(
1

1 − ν
+ (µ1 + 2µ2)

∂

∂t

)
w0,

D

(
ς
∂

∂ς
+ 1

)
∂c1
∂ς

=
1

4

[
∂c0
∂t

−D∆1c0 − f0 − γθ0

]
,(3.26)

Di

(
ς
∂

∂ς
+ 1

)
∂bi1
∂ς

=
1

4

[
∂bi0
∂t

−Di∆1bi0 + (ki
−bi − ki

+c0(b
i
0 − bi0))

]
.(3.27)

The boundary conditions (3.8) and (3.11) yield
[
2

(
1 − 2ν

1 − ν
+ µ1

∂

∂t

)
∂ϕ1

∂ς
+

(
1 − 2ν

1 − ν
+ µ1

∂

∂t

)
w0

]

ς=1

= 0,(3.28)

[
D
∂c1
∂ς

−
1

4
ψ(0)

]

ς=1

= 0,

[
Di
∂bi1
∂ς

]

ς=1

= 0, i = 1, 2, . . . , n.(3.29)

Some terms on the right-hand side of Eqs. (3.25)–(3.27) are omitted due to that
ϕ0, w0, c0 do not depend on ς.

Equation (3.25) and Assumption 1 result in

(3.30) 2
∂

∂ς

(
1 − 2ν

1 − ν
+ µ1

∂

∂t

)
ϕ1

= ρϕ0 − τ0 −

(
1 + (µ1 + µ2)

∂

∂t

)
∆1ϕ0 −

(
1

1 − ν
+ (µ1 + 2µ2)

∂

∂t

)
w0.

Similarly, Eqs. (3.26) and (3.27) along with Assumption 1 yield

D
∂c1
∂ς

=
1

4

[
∂c0
∂t

−D∆1c0 −
n∑

i=1

[kj
−bj0 − kj

+c0(b
j
0 − bj0)] − f0 − γθ0

]
,(3.31)

Di
∂bi1
∂ς

=
1

4

[
∂bi0
∂t

−Di∆1bi0 + (ki
−bi − ki

+c0(b
i
0 − bi0))

]
.(3.32)
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Inserting (3.30) into the boundary condition (3.28) we conclude that this condi-
tion is fulfilled provided that ϕ0 is such that

(3.33)

(
1 + (µ1 + µ2)

∂

∂t

)
∆1ϕ0 + 2

(
ν

1 − ν
+ µ2

∂

∂t

)
w0 + τ0 = ρϕ0.

Similarly, inserting (3.31) into the first of the boundary condition (3.29) and
inserting (3.32) into the boundary conditions (3.29) for bi1 we find that these
conditions are fulfilled if c0 is a solution of the following equation:

(3.34)
∂c0
∂t

= D∆1c0 +
n∑

i=1

[kj
−bj0 − kj

+c0(b
j
0 − bj0)] + f0 + ψ0 + γθ0,

and bi1 satisfy

(3.35)
∂bi0
∂t

= Di∆1bi0 + (ki
−bi − ki

+c0(b
i
0 − bi0)), i = 1, 2, . . . , n,

where

(3.36) θ0 = ∆1ϕ0 + 2w0.

Equations (3.24) and (3.33)–(3.35) form a closed system of n + 3 equations for
n+ 3 unknown functions ϕ0, w0, c0, b10, . . . , bn0.

3.2. Thin slab

Now we consider the motion of calcium in visco-elastic material filling a thin
slab with plane parallel walls, i.e., (x1, x2, x3) ∈ R2 × [−a, a], with the plane
(x1, x2, 0) being the plane of symmetry. We limit ourselves to a simpler case
when the displacements within any plane parallel to the walls of the slab are
potential. We assume also that the phenomenon under investigation is symmetric
with respect to the x3. Under these assumptions we can write

(3.37)

uα(x1, x2, x3) =
∂ϕ(x1, x2, ς, t)

∂xα
, α = 1, 2, u3 = w(x1, x2, ς, t)x3,

c = c(x1, x2, ς, t), bi = bi(x1, x2, ς, t), i = 1, 2, . . . , n, ς =

(
x3

a

)2

.

Thanks to these assumptions the force balance equations (2.5) reduce to two
equations

(3.38)

(
2ς
∂

∂ς
+ 1

)
∂

∂ς

(
1 − 2ν

1 − ν
+ µ1

∂

∂t

)
ϕ

= a2

[
ρϕ− τ −

(
1 + (µ1 + µ2)

∂

∂t

)
∆2ϕ

−
1

2

(
1

1 − ν
+ (µ1 + 2µ2)

∂

∂t

)(
2ς
∂

∂ς
+ 1

)
w

]
,
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and

(3.39)
∂

∂ς

[(
1

1−ν
+(µ1+2µ2)

∂

∂t

)
∆2ϕ+2

(
2ς
∂

∂ς
+1

)(
1+(µ1+µ2)

∂

∂t

)
w+2τ

]

= a2

[
ρw−

1

2

(
1−2ν

1−ν
+µ1

∂

∂t

)
∆2w

]
,

for two unknown functions ϕ and w, where ∆2 = ∂
∂x2

1
+ ∂

∂x2
2

is the two-dimensional

Laplacian. The calcium equation (2.3) can be written as

(3.40) D

(
2ς
∂

∂ς
+1

)
∂c

∂ς
=
a2

2

(
∂c

∂t
−∆2c−

n∑

i=1

[kj
−bj −k

j
+c(b

j
0−bj)]−f−γθ

)
,

where

(3.41) θ = ∆2ϕ+

(
2ς
∂

∂ς
+ 1

)
w,

and buffer equations (2.4) take the form

(3.42) Di

(
ς
∂

∂ς
+ 1

)
∂bi
∂ς

=
a2

2

[
∂bi
∂t

−Di∆1bi + (ki
−bi − ki

+c(b
i
0 − bi))

]
.

The vector normal to the upper boundary is n+ = (0, 0, 1), whereas the
normal to the lower boundary is n− = (0, 0, −1). Therefore, owing to (3.37),
the boundary conditions (1.13) reduce to two equations of the form

(3.43)

[
2

(
1 − 2ν

1 − ν
+ µ1

∂

∂t

)
∂ϕ

∂ς
+ a2

(
1 − 2ν

1 − ν
+ µ1

∂

∂t

)
w

]

ς=1

= 0,

and

(3.44)

[(
ν

1 − ν
+ µ2

∂

∂t

)
∆2ϕ+

(
2ς
∂

∂ς
+ 1

)(
1 + (µ1 + µ2)

∂

∂t

)
w + τ

]

ς=1

= 0.

Finally, we consider the boundary conditions (1.14) and (1.15). We assume that

(3.45) R = x3ψ(b, x1, x2, t).

Hence, the boundary conditions (1.14) and (1.15) reduce to:

(3.46)

[
D
∂c

∂ς
−
a2

2
ψ

]

ς=1

= 0,

[
Di
∂bi
∂ς i

]

ς=1

= 0, i = 1, 2, . . . , n.
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We proceed to solving the equations (3.38)–(3.44) subject to the boundary
conditions (3.43), (3.44), and (3.46). We seek solutions in the form of the asymp-
totic expansion with respect to powers of a2. This means that every quantity
represented by P is assumed to admit an expansion of the form

(3.47) q(x1, x2, ς, t) =

∞∑

k=0

qk(x1, x2, ς, t)a
2k,

where a2 is treated as the small parameter.
Next, we assume that each quantity P like τ , ψ, etc. can depend on b and on

x1, x2, t only, but does not depend on a. However, as b depends on a, so does P ,
and that is why P must be developed in powers of a2. This expansion is of the
form

(3.48) P =

∞∑

k=0

Pk(b0,b1, . . . ,bk, x1, x2, t)a
2k,

where the coefficients Pk are defined in (3.14). The procedure, which we exploit
now is so similar to that used in the preceding subsection that we omit present-
ing the details and give only the final approximating equations being a sort of
counterpart of equations (3.24), (3.33)–(3.36). The present equations read:

(
ν

1 − ν
+ µ2

∂

∂t

)
∆2ϕ0 +

(
1 + (µ1 + µ2)

∂

∂t

)
w0 + τ0 = 0,(3.49)

(
1 + (µ1 + µ2)

∂

∂t

)
∆2ϕ0 +

(
ν

1 − ν
+ µ2

∂

∂t

)
w0 + τ0 = ρϕ0,(3.50)

∂c0
∂t

= D∆2c0 +

n∑

i=1

[
kj
−bj0 − kj

+c0(b
j
0 − bj0)

]
+ f(c0) + ψ0 + γθ0,(3.51)

∂bi0
∂t

= Di∆2bi0 + (ki
−bi − ki

+c0(b
i
0 − bi0)), i = 1, 2, . . . , n,(3.52)

where

(3.53) θ0 = ∆2ϕ0 + w0.

4. Mechanics motivated approximations

The systems (3.24), (3.33)–(3.36) and/or (3.49)–(3.53), although being much
simpler then the original ones formulated in Section 1 are still so complicated
that it is impossible to draw any detailed conclusions of the problem under
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consideration. Because of that we are forced to pursue the procedure of sim-
plification. To this end, let us notice that the calcium conservation equations
(3.34) and (3.51) are coupled with the mechanical effects only through the term
containing the dilatation θ. Hence, it is enough to find a formula relating the di-
latation to the traction (assumed to be known) in order to obtain closed systems
(3.34), (3.35) or (3.51), (3.52) describing the chemical part of the phenomenon
of calcium waves. Receiving such formulae is the goal of the present section.

4.1. Thin fibre

The system composed of equations (3.24) and (3.35) relates three quantities
ϕ0, w0, and θ0, with the latter given by (3.38). We use Eq. (3.38) to eliminate
w0 from equations (3.26) and (3.35) and obtain the following system:

(
1 − 2ν

1 − ν
+ µ1

∂

∂t

)
∆1ϕ−

(
1

1 − ν
+ (µ1 + 2µ2)

∂

∂t

)
θ − 2τ = 0,(4.1)

(
1 + ν

1 − ν
+ (µ1 + 3µ2)

∂

∂t

)
θ + 3τ = ρϕ.(4.2)

For sake of brevity of notation we omitted the subscript ‘0’ by τ , ϕ and θ.
Following Peradzyński [18] we consider two extreme cases

Case 1. Weak restoring force. We assume that

µ1 + µ2 → 0 and ρ = O((µ1 + µ2)
2).

Under such assumptions we get from Eq. (4.2) the following expansion:

(4.3) θweak = −3
1 − ν

1 + ν
τ + 3(µ1 + 3µ2)

(
1 − ν

1 + ν

)2 ∂

∂t
τ.

Using this in Eq. (4.1) we can obtain an approximating formula for ∆1ϕ, but
this quantity will be not used in our future considerations and due to that we
gave up presenting it. Equations (3.35) for the buffers dynamics are left intact.

Case 2. Strong restoring force. We consider the case when

ρ→ ∞, µ1 + µ2 = O

(
1

ρ

)
.

We present some details of the construction of the asymptotics, because the
present case is more difficult than the previous one. We define

(4.4) ϕ =
ϕ̃

ρ
,
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and treat µ1ρ and µ2ρ as quantities of order of magnitude 1 as ρ → ∞. Intro-
ducing the small parameter ε by

ε =
1

ρ
,

we give the equations (4.1) and (4.2) the following form:

ε

(
1 − 2ν

1 − ν
+ εµ1ρ

∂

∂t

)
∆1ϕ̃−

(
1

1 − ν
+ ε(µ1 + 2µ2)ρ

∂

∂t

)
θ − 2τ = 0,

(
1 + ν

1 − ν
+ ε(µ1 + 3µ2)ρ

∂

∂t

)
θ + τ = ϕ̃.

Now, the asymptotic expansions of the solutions of this system can be easily
constructed. They are

(4.5) θstrong = −2(1 − ν)τ +
(1 − 2ν)2

ρ
∆1τ + 2(1 − ν)2(µ1 + 2µ1)

∂

∂t
τ,

and the asymptotic expansion for ϕ is not given, because it does not interest us.

4.2. Thin slab

Similarly as we did in the previous case we eliminate w0 from equations (3.49)
and (3.50) and obtain

(
1 − 2ν

1 − ν
+ µ1

∂

∂t

)
∆2ϕ−

(
1 + (µ1 + µ2)

∂

∂t

)
θ − τ = 0,(4.6)

(
1

1 − ν
+ (µ1 + 2µ2)

∂

∂t

)
θ + 2τ = ρϕ.(4.7)

The application of the same procedure as in the case of fibre yieds:

Case 1. Weak restoring force, when µ1 + µ2 → 0 and ρ = O((µ1 + µ2)
2).

(4.8) θweak = −2(1 − ν)τ + 2(µ1 + 2µ2)(1 − ν)2
∂

∂t
τ.

The expansion of ∆2ϕ is not included since we will not need it in the future.

Case 2. Strong restoring force, when ρ→ ∞, µ1 +µ2 = O(1/ρ). Now we get

(4.9) θstrong = −τ +
1

ρ

(
1 − 2ν

1 − ν

)2

∆τ + (µ1 + µ2)
∂

∂t
τ,

and the expansion for ϕ, which we do not present.
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4.3. Unbounded space

For sake of references and completeness of our studies we include some re-
marks concerning the influence of mechanical effects on the calcium motion in
the unbounded space R3.

We apply the divergence operator to both sides of Eq. (1.9) with the stress
tensor given by (1.6) and arrive at

(4.10) ∆3

((
1 + (µ1 + µ2)

∂

∂t

)
θ + τ

)
= ρθ,

where ∆3 ≡ ∆ is the three-dimensional Laplacian. Now, we follow the reasoning
presented in [18] and consider two extreme cases.

Case 1. Weak restoring force: µ1 + µ2 → 0, ρ = O((µ1 + µ2)
2). In this

case we obtain from Eq. (4.10) the following approximate formula (under the
assumption that θ is bounded and vanishes at infinity):

(4.11) θweak = −τ + (µ1 + µ2)
∂τ

∂t
.

The buffer equations (2.4) remain unaffected.

Case 2. Strong restoring force: (µ1 + µ2) = O(1), ρ→ ∞. In this case it can
be deduced from Eq. (4.10) that

(4.12) θstrong =
1

ρ
∆τ.

4.4. Interpolated equations

In the preceding three subsections we received three pairs of formulae sup-
posed to approximate the expression for the dilatation θ. We considered two
extreme situations: the cell very susceptible to deformations (ρ→ 0: Eqs. (4.3),
(4.8) and (4.11), respectively) or very resistant to them (ρ → ∞: Eqs. (4.5),
(4.9) and (4.12)). The question of a simple approximating formula for θ in the
case of intermediate values of ρ was not discussed. Based on the pre-assumption
of the Murray–Oster theory [13], [14] that all the mechanical effects are weak,
we propose to resolve this question by means of interpolation between θweak and
θstrong, the two elements of the considered pair. To construct such a “bridge” we
multiply θweak by 1/(1 + ρ2), whereas θstrong is multiplied by ρ2/(1 + ρ2) and
get in this way the following expression supposed to approximate θ:

(4.13) θ =
1

1 + ρ2
θweak +

ρ2

1 + ρ2
θstrong.
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Explicitly, if the pairs (θweak, θstrong) are given by (4.3) and (4.5), or (4.8) and
(4.9), or else (4.11) and (4.12), the proposal (4.13) takes the form

(4.14) θ = −
η

γ
τ +

α

γ

∂τ

∂t
+
δ

γ
∆dτ, d = 1, 2, 3,

where d denotes the “dimension” of the domain, d = 1 refers to the thin fibre,
d = 2 is used for the thin slab, and d = 3 is the dimension of the unbounded
space. The coefficients α, δ, η depend on the case considered and are given ex-
plicitly in Table 1.

Table 1. The coefficients α, δ and η in Eq. (4.14).

α δ η

Thin fibre
d = 1

γ

3(µ1+3µ2)

„

1−ν

1+ν

«2

+2ρ2(µ1+2µ2)(1−ν)2

1+ρ2
γ

ρ(1−2ν)2

1+ρ2
γ

3
1−ν

1+ν
+2(1−ν)ρ2

1+ρ2

Thin slab
d = 2

γ
(1−ν)22(µ1+2µ2)+ρ2(µ1+µ2)

1+ρ2

γρ

1+ρ2

„

1−2ν

1−ν

«2

γ
2(1−ν)+ρ2

1+ρ2

All space R3

d = 3
γ

µ1+µ2

1+ρ2

γρ

1+ρ2

γ

1+ρ2

Equation (4.14) has a clear interpretation, namely is says that local changes
in the volume of the cell are caused by the contractive forces of the traction,
as well as the viscous effects: the coefficient α = 0 only if both coefficients of
viscosity: the shear viscosity µ1 = 0 and the bulk viscosity µ2 = 0. The last term,
δ∆dτ , in Eq. (4.14) represents the contribution to volumetric changes generated
by the passive forces of resistance of the cell to deformations: vanishing of the
coefficient δ means that these forces are ignored (see Table 1). Hence, an equation
like (4.14) can be written down based on a purely heuristic sort of argument
without evoking many details of a mechanical model of the interior of a cell
except for the active traction forces. Our idea consists in using Eq. (4.14) in
calcium conservation equations (3.34) or (3.52) or else (1.4), in accordance with
the “dimension” d of the domain. The resulting equations are all of the form:

(4.15)
∂

∂t
(c− ατ) = ∆d(Dc+ δτ) +

n∑

i=1

[kj
−bj − kj

+c(b
j
0 − bj)] + f + ψd − ητ.

For d = 1, 2 the functions ψd are equal to these functions ψ, which were consid-
ered in Sections 3.1 and 3.2, whereas ψ3 ≡ 0, i.e., in the case of the unbounded
space. The calcium equations (4.15) are supplemented by the suitable buffer
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equation (3.37), (3.52) or (2.4). These equations can be written jointly as

(4.16)
∂bi
∂t

= Di∆dbi + (ki
−bi − ki

+c(b
i
0 − bi)), i = 1, 2, . . . , n, d = 1, 2, 3.

For biological reasons, it is obvious that the inequality

(4.17) c− ατ ≥ 0

should be satisfied, since it says simply that the amount of calcium engaged in
generating the traction cannot exceed the amount of free calcium available in
the cell. The condition (4.17) is equivalent to the following one:

(4.18) α sup
0≤c≤1

τ(c)

c
< 1.

and this is a limitation imposed on the range of the parameter α: it simply cannot
be too large; that is, the coupling between mechanical and chemical effects cannot
be too strong.

5. Fast buffering approximation

Equations (4.15) and (4.16) are still too complicated as for the needs of the
qualitative analysis of the calcium waves. In this paper we will use the so-called
rapid buffering approximation introduced by Wagner and Keizer in [4]. It
has turned out to be very accurate in many cases. That is why it is so popular
and used by many authors [2, 6, 7, 8]. Here, by the way it is worth to men-
tion another sort of simplification consisting in assuming that the buffers are
immobile, i.e., Di = 0, i = 1, 2, . . . , n. Such models were studied in [7–12, 20].
The problems considered in these papers concern the existence, uniqueness and
stability of the calcium waves. In papers [7, 8] many additional facts and com-
ments concerning the relations between rapid buffering approximation, immobile
buffer approximation and the full models (1.4) and (1.5) can be found. In the
model with rapidly buffered calcium, it is assumed that the buffer kinetics is
fast [2, 4–7]. It means that the buffering time scales given by the inverse of ev-
ery association parameters ki

+ and those of dissociation ki
− are much shorter

then the time of diffusion [4]. Hence, the fast buffering process is a singular
perturbation. We eliminate the fast buffering time scale from Eq. (4.15) by
adding to it the sum of all equations (4.16). This leads to the equation of the
form:

(5.1) g1(c)
∂c

∂t
=

d∑

i=1

∂

∂xi

(
g2(c)

∂c

∂xi

)
+ g0(c), d = 1, 2, 3,
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where

g0(c) = f(c) + ψd(c) − η τ(c),(5.2)

g1(c) =

n∑

i=0

dbi(c)

dc
− ατ

dτ(c)

dc
,(5.3)

g2(c) =
n∑

i=0

Di
dbi(c)

dc
+ δ

dτ

dc
,(5.4)

where b0(c) ≡ c,D0 = D and Eqs. (4.16) in the considered type of approximation
lead to algebraic equations of form:

(5.5) ki
−bi − ki

+c(b
i
0 − bi) = 0, i = 1, 2, . . . , n,

whose solutions are

(5.6) bi = bi(c) =
bi0c

c+Ki
, Ki =

ki
−

ki
+

, i = 1, 2, . . . , n.

As we can see the approximate expressions for the buffered calcium concentration
do not, in general, satisfy the initial conditions imposed on buffers formulated
in (1.16). Hence, this approximation is not applicable during some initial pe-
riod. Such an effect is typical and is prescribed to the singular character of the
procedure leading to Eqs. (5.5).

The rapid buffering approximation provides us with a motivation of treating
the bi’s as given functions of the calcium concentration c. Mostly, we will not
use the explicit forms of the functions bi(c) given by (5.6), with the exception of
using them for examples, but we will need their analytic properties. Therefore,
we take the following assumption concerning this function:

Assumption 2. The functions bi : [0, 1] → R1, i = 1, 2, . . . , n, are continuous
together with their second derivative, and such that

(5.7) bi(c) ≥ 0 with bi(0) = 0,
dbi(c)

dc
≥ 0,

d2bi(c)

dc2
≤ 0,

i = 1, 2, . . . , n, ∀c ∈ [0, 1].

The rapid buffer approximation was obtained both in [4] and [6] in a purely
formal way. A rigorous mathematical proof of the asymptotic convergence is
given by Kaźmierczak and Peradzyński [21], but for travelling wave solutions
only.

We take the following:

Assumption 3. The functions gi : [0, 1] → R1, i = 1, 2 are continuous and
strictly positive on their domain.
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Comment. Under Assumption 2, Eq. (5.1) admits a very intuitive interpre-
tation. To this end, let us consider the quantity

(5.8) z = z(c) =

∫ c

0
g1(y)dy

∫ 1

0
g1(y)dy

=

n∑

i=0

bi(c) − α τ(c)

n∑

i=0

bi(1)

.

The denominator is just a normalizing factor; hence, as such it has no influ-
ence on the sense of z. The numerator in (5.8) is the difference between the sum∑n

i=0 bi(c)being the total amount of calcium – free calcium ions and the buffered
ones – and the amount of it which has been used in developing the active stresses
within the cell – the traction – represented in (5.1) by the term ατ . Hence, z is
the concentration of this calcium which can be used in the physiological processes
other than mechanical stresses. Example of such physiological process are cal-
cium waves. Next, the term on the right-hand side of Eq. (5.1), which contains g2,
says that all constituents diffuse, including the calcium engaged in developing
the traction. The form of the last g0, in Eq. (5.1), represents the “stretch acti-
vation” effect consisting, in the present case, in lowering the level of calcium in
the cell due to the contraction force exerted by the actomyosin molecules, the
traction [13, 14].

The dependence of Eq. (5.1) on the geometry of the domain is noticeable. It
is visible not only in the form of the constants α, δ, η (cf. Table 1), but also in
the number of t space variables xi, 1 ≤ i ≤ d.

Equation (5.8) defines a one-to-one transformation of the interval [0, 1] onto
itself. Let c = Ψ(z) be the transformation inverse to this one. The new variable
z satisfies, as it follows from Eqs. (5.1), a reaction-diffusion equation of the form

(5.9)
∂z

∂t
=

d∑

i=1

∂

∂xi

(
D(Ψ(z))

∂z

∂xi

)
+G(z), d = 1, 2, 3,

where

(5.10) G(z) =
g0(Ψ(z))∫ 1

0
g1(y)dy

and

(5.11) D(c) =
g2(c)

g1(c)
.

6. Calcium waves

If we set formally τ(c) ≡ 0 in Eqs. (5.2)–(5.4); then, Eq. (5.9) (or strictly
speaking its one-dimensional version) coincides with Eq. (10) of reference [7] or
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Eq. (2.5) of reference [8]. Since, the proofs of theorems concerning solutions of
Eq. (5.9) for the case of τ(c) ≡ 0 given in [7, 8] are based on the fact that the
functions g1 and g2 are positive, they can be applied to the case when τ(c) ≥ 0,
provided that Assumption 3 holds. In particular, this is true for the solutions in
the form of travelling waves. These are solutions of the form

(6.1) z(x, t) = z(ξ), ξ = x− Ut,

where U ∈ R1 is interpreted as the speed of the wave. We take also the following
conditions:

(6.2) lim
ξ→−∞

z(ξ) = 0, lim
ξ→+∞

z(ξ) = 1, lim
ξ→∓∞

dz(ξ)

dξ
= 0.

Inserting (6.1) into (5.9) we obtain for z(ξ) the following ordinary differential
equation:

(6.3)
d

dξ

(
D(Ψ(z))

dz

dξ

)
+ U

dz

dξ
+G(z) = 0.

We assume that the function G(z) is bistable. Because of physiological reasons,
only these travelling waves are accepted as calcium waves which are waves of
excitation. Due to what was said above we have

Theorem 1 ([8]). Let D(c) be a given positive function, and let G(z) be
bistable on [0, 1]. Then, there exists a unique travelling wave solution of Eq. (4.3)
with negative wave speed U < 0 if and only if the following inequality holds:

(6.4)

1∫

0

G(z)dz > 0.

Moreover, this solution is asymptotically stable and satisfies dz/dξ > 0.

By (5.10) and (5.11) condition (6.4) is equivalent to

(6.5)

1∫

0

g0(c)g2(c)dc > 0.

The disclosed form of the above condition reads:

(6.6)
n∑

i=0

Di

1∫

0

g(c)
dbi
dc
dc+ δ

1∫

0

g(c)
dτ

dc
dc > η

n∑

i=0

Di

1∫

0

τ(c)
dbi
dc
dc,



Reaction-diffusion equation modelling calcium waves. . . 499

where we denoted

(6.7) g(c) = f(c) + ψd(c).

With the use of (5.11), the inequality (6.6) takes the following form:

(6.8)
n∑

i=0

1∫

0

(αDi + δ)f(c)F (c)
dbi
dc
dc > α η

n∑

i=0

Di

1∫

0

τ(c)
dbi
dc
dc,

where

(6.9) 0 < F (c) =
αD(c)

αD(c) + δ
= α

n∑

i=0

Di
dbi
dc

+ δ
dτ

dc

n∑

i=0

(αDi + δ)
dbi
dc

< 1.

To proceed any further it is necessary to have a formula for the function g(c).
We assume that it is a bistable function on [0, 1]. Then it can be represented in
the form

(6.10) g(c) = V (c)[V ′
c (cT ) − V ′

c (c)],

where the function V is such that:

V ∈ C3([0, 1]), V (0) = V (1) = 0, V (c) > 0 for c ∈ (0, 1),

V ′
c (0) > 0, V ′

c (1) < 0, ∃!c0 ∈ (0, 1) such that V ′
c (c0) = 0,

V ′′
c (c) ≤ 0 for c ∈ [0, 1].

It is obvious that if such a function V is given and g is of the form (6.10), then
g is bistable. Inversely, let the bistable function g be given, then Eq. (6.10) is
an equation for V. It can be proved (see [3]) that this equation has a unique
solution satisfying all of the conditions (6.10). In what follows we will use an
approximate and simpler expression for the function g. By the Lagrange mean
value theorem we have

V ′
c (c) − V ′

c (cT ) = (c− cT )V ′′
c (c̃),

where c̃ is an intermediate point between c and cT . Our simplification consists
in replacing V ′′

c (c̃) by V ′′
c (c). Then (6.10) becomes

(6.11) g(c) = F (c)(c− cT ), c ∈ [0, 1], cT ∈ (0, 1),
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where F (c) = −V (c)V ′′
c (c). We assume that F does not depend on cT , and that

it satisfies the following conditions:

(6.12)
F ∈ C2([0, 1]), F (0) = F (1) = 0, F (c) > 0 for c ∈ (0, 1)

F ′
c(0) > 0, F ′

c(1) < 0.

From now on we will consider only this case when f is of the form (6.11). By
inserting (6.11) into (6.6) and solving for cT , we obtain

(6.13) cT <

n∑

i=0

∫ 1

0
(αDi + δ)cF (c)F (c)

dbi
dc
dc

n∑

i=0

∫ 1

0
(αDi + δ)F (c)F (c)

dbi
dc
dc

− αη

n∑

i=0

Di

∫ 1

0
τ(c)

dbi
dc
dc

n∑

i=0

∫ 1

0
(αDi + δ)F (c)F (c)

dbi
dc
dc

.

The first term on the right-hand side is positive and bounded from above by
unity, whereas the second one is negative. Hence, it is possible that the right-
hand side of (6.13) is negative. In such a case no calcium wave is admitted.
This is an essential difference between the present model with mechanical effects
incorporated and the counterpart model with mechanical effects ignored. Namely,
in the absence of the mechanical effects, the criterion of the admissibility of
calcium waves does not contain any negative term like the second one in (6.13).
Hence, the immobile buffers, i.e., such ones that Di = 0, i = 1, 2, . . . , n, cannot
eliminate the calcium wave (see [7–12]). However, this ceases to be true if the
mechanical effects are included. The right-hand side in (6.13) can be negative
even if there is no buffering, particularly if

η

∫ 1

0
τ(c)dc

∫ 1

0
F (c)dc

≫ 1.

A more precise condition is given in the following:

Theorem 2. If

(6.14)
η

∫ 1

0
τ(c)dc

∫ 1

0
F (c)dc

>
B0

αB1
,
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where

B0 =

n∑

i=0

(αDi + δ)
dbi(c)

dc

∣∣∣∣
c=0

, B1 =

n∑

i=0

Di
dbi(c)

dc

∣∣∣∣
c=1

,

then cT < 0; hence, no calcium wave can exist.

P r o o f. Using in (6.14) the following two estimates:
n∑

i=0

∫ 1

0
(αDi + δ)cF (c)F (c)

dbi
dc
dc

n∑

i=0

∫ 1

0
(αDi + δ)F (c)F (c)

dbi
dc
dc

< 1,

and
n∑

i=0

1∫

0

(αDi + δ)F (c)F (c)
dbi
dc
dc <

n∑

i=0

(αDi + δ)

1∫

0

F (c)
dbi
dc
dc

we get

(6.15) cT < 1 − α η

n∑

i=0

Di

∫ 1

0
τ(c)

dbi
dc
dc

n∑

i=0

(αDi + δ)

∫ 1

0
F (c)

dbi
dc
dc

.

Now, by (5.7) the derivatives dbi/dc are decreasing; therefore, the following
estimates hold true

n∑

i=0

Di

1∫

0

τ(c)
dbi
dc
dc > B1

1∫

0

τ(c)dc,

and

n∑

i=0

(αDi + δ)

1∫

0

F (c)
dbi
dc
dc ≤

n∑

i=0

1∫

0

F (c)
dbi
dc
dc ≤ B0(αD + δ)

1∫

0

F (c)dc.

Thus, we can replace the right-hand side of (6.15) by

cT < 1 −
DB1αη

B0(αD + δ)

∫ 1

0
τ(c)dc

∫ 1

0
F (c)dc

.

Under the assumption (6.14), the quantity cT is negative. The proof is complete.
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To illustrate the condition (6.14) let us consider a much simpler case when
there is only one buffer with b1(c) given by (5.6). In such a case, (6.15) takes the
form

(6.16)
β

∫ 1

0
τ(c)dc

∫ 1

0
F (c)dc

>

(
1 +K1

K1

)2K2
1 (αD + δ) + (αD1 + δ)b10K1

αD(1 +K1)2 + αD1b10K1
.

The following conclusions follow from this inequality:
1. We see clearly that the mechanical resistance can eliminate the calcium

wave even if the buffer is stationary, i.e., if D1 = 0. In this case, (6.16) reduces
to

η

∫ 1

0
τ(c)dc

∫ 1

0
F (c)dc

> 1 +
δ

αD
,

what seems to be a realistic condition. This contradicts the predictions of the
counterpart mechanics-free theory by Sneyd, Dale and Duffy [7].

2. If the buffer is of low affinity, i.e., if the rate of binding calcium ions k+ is
much smaller than that of the reverse process k−, K1 ≫ 1, then satisfaction of
the relation

η

∫ 1

0
τ(c)dc

∫ 1

0
F (c)dc

∼ 1

is sufficient to eliminate the wave.
3. If the buffer is of high affinity, i.e., if K1 ≪ 1, then (6.16) implies that

η

∫ 1

0
τ(c)dc

∫ 1

0
F (c)dc

∼
1

K2
1

≫ 1,

what is rather unrealistic from physiological point of view since the ratio on
the left-hand side has to be too large. Such a quite unrealistic result must
be prescribed to the fact that, when deducing (6.14), we have estimated the
first term on the right-hand side in (6.13) by its upper bound equal to one,
but in reality this term may be quite small as in the case of high affinity
buffers.

It is worth to put much attention to high affinity buffers as in some situations
they can eliminate the calcium wave, what was observed experimentally [25], and
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such buffers are used in experiments for visualisation reasons. Some caution is
necessary when for a buffer, say i-th, the parameter Ki → 0 because then the
expression given by (5.6) looses its sense for c = 0, Ki = 0.

For sake of simplicity of the presentation we consider the case when there is
only one buffer with b1 given by (5.6). The range of the function F (c,K1), for
every fixed K1 > 0 is a closed interval [Fm, 1], where

(6.17) 0 ≤ Fm = Fm(K1) = inf
0≤c≤1

F (c,K1) ≤ 1.

We begin with two lemmas.

Lemma 1. Let the function F ∈ C1([0, 1]) be such that F (0) = 0. Then the
following estimate takes place:

(6.18)

1∫

0

cF (c)

(c+K)2
dc =

1∫

0

F (c)

c
dc+O(K logK) as K ↓ 0.

P r o o f. We have

∣∣∣∣

1∫

0

cF (c)

(c+K)2
dc−

1∫

0

F (c)

c
dc

∣∣∣∣ ≤ K

[
2

1∫

0

dc

c+K
+K

1∫

0

dc

(c+K)2

]
sup

c∈[0,1]

F (c)

c

= O(K logK).

The proof is complete.

Lemma 2. Let the function F ∈ C2([0, 1]) be such that F (0) = 0. Then the
following equality takes place:

(6.19)

1∫

0

F (c)

(c+K)2
dc = −F ′

c(0) logK +O(1) as K ↓ 0.

P r o o f. By the Taylor formula we have

∣∣∣∣

1∫

0

F (c)

(c+K)2
dc−

1∫

0

cF ′
c(0)

(c+K)2
dc

∣∣∣∣ ≤
1

2
sup

c∈[0,1]
|F ′′

c (c)|

1∫

0

c2

(c+K)2
dc.

It remains to evaluate the integral

1∫

0

c

(c+K)2
dc

to obtain the thesis. The proof is complete.



504 K. Piechór

Theorem 3. If
(i) the positive constants D, α, δ are independent of K1,
(ii) the function F is independent of K1 > 0and satisfies conditions (6.12),
(iii) there are constants K0 > 0 and F0 > 0 such that Fm(K1) > F0 > 0 for

K1 ∈ (0,K0),
(iv) there is a constant ω > 0 such that (αD1 + δ)b10K1 > ω > 0 for K1 ∈

(0,K0).
Then

cT < c+ =

(αD + δ)

∫ 1

0
cF (c)F (c)dc+ (αDi + δ)b10K1

∫ 1

0

cF (c)F (c)

(c+K1)2
dc

(αD + δ)

∫ 1

0
F (c)F (c)dc+ (αDi + δ)b10K1

∫ 1

0

F (c)F (c)

(c+K1)2
dc

(6.20)

= O

(
1

F0ω logK1

)

for K1 ∈ (0,K0).

P r o o f. Ignoring the first term in the denominator of c+ we obtain

c+ <
αD + δ

(αD1 + δ)b10K

∫ 1

0
cF (c)F (c)d

∫ 1

0

F (c)F (c)

(c+K1)2
dc

+

∫ 1

0

cF (c)F (c)

(c+K1)2
dc

∫ 1

0

F (c)F (c)

(c+K1)2
dc

.

By Assumption (iii) we get for K1 ∈ (0,K0)

c+ <
1

F0

αD + δ

(αD1 + δ)b10K

∫ 1

0
cF (c)d

∫ 1

0

F (c)

(c+K1)2
dc

+
1

F0

∫ 1

0

cF (c)

(c+K1)2
dc

∫ 1

0

F (c)

(c+K1)2
dc

.

At last, using Lemmas 1 and 2 we obtain

(6.21) c+ <
1

F0F ′
c(0)

αD + δ

(αDi + δ)b10K1

∫ 1

0
cF (c)d

− logK1 +O(1)

+
1

F0F ′
c(0)

∫ 1

0

F (c)

c
dc+O(K1 logK1)

− logK1 +O(1)
.

These estimates and assumptions (iii) and (iv) mean that (6.20) holds. The proof
is complete.
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Comment. Since the positive term in the condition (6.13) is very small for
high affinity buffers, the right-hand side of this inequality can very easily be
negative, hence ruling out the existence of any calcium waves. The prediction of
elimination of calcium waves by high affinity buffers agrees with experimental
results [26].

Remark 1. If we take a stronger assumption then Assumption (iii), that is
if

(6.22) F (c,K1) ≡ L(K1) = const. in c,

then we will get an estimate of the form

cT = O

(
1

ω logK1

)
,

which is more precise then that of (6.20). This estimate results from the fact
that the constant F0, which may be quite small, drops out under assumption
(6.22), because the quantity c+ does not depend on L(K1).

From the definition (6.9) of F and from (6.22) we obtain the equation for
the diffusivity D :

(6.23) (1 − L)αD = δL.

Two cases are interesting:

Case 1. L = 1 and δ = 0. Then D can be arbitrary positive. But, as it
follows from Table 1, δ = 0 implies ρ = 0 what means that the natural passive
resistance of the cell to deformations is ignored. In such a model, the high affinity
buffer can block the formation and propagation of calcium wave if its coefficient
of diffusion is high enough and if it is in a sufficiently large amount. The present
result is an extension of the suggestions of Sneyd, Dale and Duffy [7] who
gave a numerical evidence of such a phenomenon.

Case 2. 0 < L < 1. Now, Eq. (6.23) implies that the diffusivity D is constant
in c, what changes Eq. (5.11) to a very simple ordinary differential equation of
the first order for the traction τ . Such an equation has a solution satisfying the
two-point boundary conditions (1.8) only if

(6.24) D = D̄ =

∑n
i=0Dibi(1)∑n

i=0 bi(1)
.

Then, the traction is given the following explicit formula:

(6.25) τ(c) =
1

αD̄ + δ

n∑

i=1

(D̄ −Di)(bi(c) − cbi(1)).
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Hence, according to (6.20), in a cell of moderate stiffness (i.e., moderate value
of δ) an immobile high affinity buffer, if in large amount, can prevent the for-
mation and propagation of calcium wave. This is a new prediction compared to
those of [7], where mechanical effects were omitted.

Problem of bistability

In the above discussion we have assumed tacitly that g(c) and ητ(c) are such
that g0(c) defined by (5.2) is bistable. One can doubt, however, whether the
conditions (1.2) and (1.8) alone guarantee the bistability of g0(c). In general,
without imposing some additional conditions for g(c) and ητ(c) one can expect
that the answer to this question must be negative, what we see below. To simplify
the discussion we assume that g(c) is of the form (6.11), i.e.,

(6.26) g0(c) = F (c)(c− cT ) − η τ(c), 0 < cT < 1.

It follows from (6.26) and the assumed properties of the functions F (c) and τ(c)
that

(6.27) g0(0) = 0, g0(1) = 0, g′0,c(0) = −F ′
c(0) − η τ ′c(0) < 0.

Hence, g0(c) has two equilibria c = 0 and c = 1. The first point of equilibrium
is stable, but at the second state we have g′0,c(1) = F ′

c(1)(1 − cT ) − ητ ′c(1). In
order to have g0(c) bistable we have to impose an additional assumption that
g′0,c(1) < 0. We formulate this important result in the form of

Proposition 1. The necessary condition of bistability of the function g0(c)
is

(6.28) 0 < cT < 1 − η
τ ′c(1)

F ′
c(1)

.

Comment. It follows from the above considerations that the condition of
bistability imposes an additional, apart from (6.13), condition which has to be
satisfied by the threshold value cT . Each of the conditions (6.13) and (6.28),
on their own, can eliminate calcium waves. Let us note that, in general, the
fulfilment of (6.13) and (6.28) does not guarantee the existence of the calcium
waves, because (6.28) does not imply the bistability of the function g0. By the
assumption that (6.28) is satisfied, we conclude that g0(c) has at least one zero
in the open interval (0, 1). However, a bistable function has to have only one
zero in this interval. The class of functions satisfying (6.27) and (6.28) and
having a single zero in the open interval (0, 1) is very abundant and difficult to
be described briefly. On the other hand, it is usually very difficult to solve the
equation g0(c) = 0 and show that it has a solution in the interval (0, 1) and
that this solution is unique. Hence, a sufficient criterion would be desirable. The
simplest example is the following:
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Proposition 2. The function g0(c) defined by (6.26) is bistable on [0, 1] if
the condition (6.28) holds and if

(6.29) η
d

dc

(
τ(c)

F (c)

)
< 1

for c ∈ [0, 1].

P r o o f. The function g0 can be represented in the form:

(6.30) g0(c) = F (c)X(c), c ∈ [0, 1],

where

(6.31)

X(c) = c− cT − η
τ(c)

F (c)
, c ∈ (0, 1),

X(0) = −cT − η
τ ′c(0)

F ′
c(0)

,

X(1) = 1 − cT − η
τ ′c(1)

F ′
c(1)

.

We have X(0) < 0, and due to (6.28) we have X(1) > 0. Hence, X(c) has at least
one zero within the interval (0, 1). This zero is unique if, for example, X(c) is
monotonically increasing, what is expressed by (6.29). The proof is complete.

We see from the above discussion that the demand of the bistability of
Eq. (5.1), equivalently Eq. (5.9), imposes additional serious constrains for the
existence of calcium waves: the threshold parameter cT has to satisfy two restric-
tions (6.13) and (6.28) instead of only one as it is in the models which neglect
mechanical effects [7]. We have shown that not only the high affinity buffers but
also the mechanical effects alone can prevent the formation and propagation of
calcium wave. We have concluded that the remedy is a sufficiently strong supply
of calcium to the cell.
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