10th International Workshop Neural Coding 2012

Book of Abstracts

Prague, Czech Republic, September 2–7, 2012

10th International Workshop Neural Coding 2012

Book of Abstracts

Prague, Czech Republic, September 2–7, 2012

http://nc2012.biomed.cas.cz/

Local Organising Agency:

CONFORG, Ltd.

http://www.conforg.cz

Supported by:

Office of Naval Research Global

Grant No.: N62909-11-1-1111

Contents

Using the structure of inhibitory networks to unravel mechanisms of spatiotemporal patterning Maxim Bazhenov	1
On dependency properties of the ISIs generated by a two compartmental neuronal model Elisa Benedetto and Laura Sacerdote	3
Modelling of Sensory Pathway of Swimming Initiation in Young Frog Tadpole Spinal Cord: a Developmental Approach Roman Borisyuk, Kalam Abul AlAzad, Alan Roberts, Steve Soffe, Deborah Conte and Edgar Buhl	5
Determinism, Randomness and the Question of the "Free Will" – Examined from a Neural Coding Perspective Hans A. Braun	7
Fast learning in single synapses and behavioral learning times Guido Bugmann	9
A Simple Algorithm for Simulating Firing Times predicted by a LIF Model Aniello Buonocore, Luigia Caputo and Enrica Pirozzi	11
Precise coding of interaural level differences in the auditory brainstem Zbynek Bures	13
Image coding at the electrosensory lobe of pulse gymnotiforms Ángel Ariel Caputi, Ana Carolina Pereira and Alejo Rodríguez-Cattaneo	15
Interplay between Endogenous and Exogenous Rhythms in Recurrent Networks with Conductance-Based neurons Stefano Cavallari, Alberto Mazzoni and Stefano Panzeri	17
Independent components of wing kinematics in the fruit fly Drosophila Soma Chakraborty, Jan Bartussek, Steven N. Fry and Martin Zapotocky	19
FM responses of midbrain auditory neurons modeled with artificial neural network based on multiple trigger features T.R. Chang, T.W. Chiu and Paul W.F. Poon	21
Coding of woody and fruity odorant mixtures: Interactions of odorants with olfactory receptors and receptor neurons match the perceptual dynamics <i>M. A. Chaput, F. El Mountassir, T. Thomas-Danguin, A. M. Le Bon, B. Ferry and P. Viret</i>	23

Patterns of single-trial auditory evoked potentials on the human temporal cortex extracted with the adaptive filter	25
T.W. Chiu, W. Qiu, Paul W.F. Poon, Kirill Nourski, Hiroyuki Oya, John F. Brugge and Matthew A. Howard III	
Diffusion approximation of neuronal models revisited Jakub Cupera	27
Some remarks on a spike train model of interacting neurons Antonio Di Crescenzo, Maria Longobardi and Barbara Martinucci	29
Firing mechanisms in the stochastic Morris-Lecar neuron model and its embedded leaky integrate-and-fire model Susanne Ditlevsen	31
Brain States revealed by Bispectral Analysis of Microsleep Pierre Dutoit, Vladyslav V. Shaposhnyk, Alessandro E. P. Villa and Stephen Perrig	33
Coding in the presence of adaptation Wulfram Gerstner and Richard Naud	35
A simple estimator for mutual information Maria Teresa Giraudo, Laura Sacerdote and Roberta Sirovich	37
Neural Encoding of Saccadic Stimuli in the Retina Tim Gollisch, Vidhyasankar Krishnamoorthy and Christian B. Mendl	39
Inter Neuron Nearest Spike Intervals based Method to Measure Synchrony under Low Firing Rates Aldana M. Gonzalez-Montoro, Ricardo Cao, Christel Faes and Geert Molenberghs	41
The Mechanism of Orientation Selectivity in Primary Visual Cortex without a Functional Map David Hansel and Carl van Vreeswijk	43
Genesis, dynamics and role of nested theta to gamma oscillations in an attractor network model of cortical memory Pawel Andrzej Herman, Mikael Lundqvist and Anders Lansner	45
A computational modelling approach to the problem of odour mixture segmentation Pawel Andrzej Herman, Simon Benjaminsson and Anders Lansner	47
Activity Patterns in Networks Stabilized by Background Oscillations Frank Hoppensteadt	49
Channel Capacity of a Spiking Neuron Shiro Ikeda and Jonathan H. Manton	51
Inverse Problem for Leaky Integrate-and-Fire Neuronal Models using Spike-Times Data: The sinusoidally-driven case	53

Alexandre Iolov and Andre Longtin

Can discrete Response-Stimulus Correlation distinguish Integration from Coincidence Detection? Jacob Kanev, Achilleas Koutsou and Chris Christodoulou	55
Estimating Nonstationary Inputs from Firing Rate and Non-Poisson Irregularity in a Single Spike Train Hideaki Kim and Shigeru Shinomoto	57
A model-based inference of synaptic connectivity from simulated multi-neuronal spike data Katsunori Kitano and Ryota Kobayashi	59
A Bayesian approach for estimating time-varying input signals from membrane potential of a neuron Ryota Kobayashi, Shigeru Shinomoto and Petr Lansky	61
On reliable information transmission in simple neuronal systems Lubomir Kostal and Ryota Kobayashi	63
Input synchrony estimation in the Ornstein-Uhlenbeck model through the slope of depolarisation at threshold crossing Achilleas Koutsou, Petr Lansky, Jacob Kanev and Chris Christodoulou	65
Coding efficiency and detectability of rate fluctuations with non-Poisson neuronal firing Shinsuke Koyama	67
Non-markovian spiking statistics of a neuron with delayed feedback in the presence of refraction Kseniia Kravchuk and Alexander Vidybida	69
Estimating latency in the case of inhibitory response Marie Levakova and Petr Lansky	71
Information filtering by stochastic neurons Benjamin Lindner	73
An electrophysiological study of cortico-thalamic networks in PV depleted mice Alessandra Lintas, Beat Schwaller and Alessandro E. P. Villa	75
The effect of prestimulus oscillatory dynamics on the performance of a cortical attractor network model in a simulated stimulus detection task Mikael Lundqvist, Pawel Andrzej Herman and Anders Lansner	77
Stochastic pooling networks embedded in cortical networks of excitatory and inhibitory neurons Mark D. McDonnell, Pierre-Olivier Amblard and Minh-Son To	79
Optically Mapping Electrical Activity in the Ganglion of the Leech Hyrudo Medicinalis Majid Moshtagh Khorasani, Evan W. Miller and Vincent Torre	81
A novel mechanism for sparse and reliable stimulus coding in sensory cortices Martin Paul Nawrot and Farzad Farkhooi	83

Estimation of the information pathway for a motor command generation in an insect brain based on the physiological data Ikuko Nishikawa, Yoshihiko Yamagishi, Hidetoshi Ikeno, Tomoki Kazawa, Shigehiro Namiki and Ryohei Kanzaki	85
Coding of temporally incoherent odour mixtures in the antennal lobe of honeybees <i>Thomas Nowotny, C. Giovanni Galizia and Paul Szyszka</i>	87
Discrimination of binary patterns by perceptrons with binary weights Andrey Olypher and Jean Vaillant	89
The interplay between network topology and structural synaptic plasticity in a model of cortical sequence learning Daniel E. Padilla and Mark D. McDonnell	91
Effectiveness of information transmission in the brain-like communication models Bartosz Paprocki and Janusz Szczepanski	93
Noise correlations in cortical networks Nestor Parga	95
Calcium Activated Potassium Currents Contribute to High Fat Diet Induced Inhibition of POMC Neurons of the Mouse Hypothalamus Andreas Pippow, Moritz Paehler, Simon Hess, Lars Paeger, Merly C. Vogt, Tim Klöckener, Christop Pouzat, Jens C. Brüning and Peter Kloppenburg	97
Nonparametric estimation of interspike interval distribution and its characteristics Ondrej Pokora and Lubomir Kostal	99
Fano Factor Estimation Kamil Rajdl and Petr Lansky	101
Novelty detection and jamming avoidance share common computational mechanisms in pulse gymnotiforms Alejo Rodríguez-Cattaneo, Pedro Aguilera, Ana Carolina Pereira and Ángel Ariel Caputi	1 103
Response Properties of First- and Second-Order Neurons in the Olfactory Systems of a Moth and a Frog Jean-Pierre Rospars, Philippe Lucas and Patricia Viret	105
A model of Trial-to-Trial Variability in Monkey Motor Cortex Thomas Rost, Alexa Riehle and Martin P. Nawrot	107
Dependency problems in neuronal network modeling Laura Sacerdote, Massimiliano Tamborrino and Cristina Zucca	109
Spike-triggered covariance revisited Inés Samengo and Tim Gollisch	111
Ideal observer in the stochastic interpolation model of the auditory brainstem Pavel Sanda and Petr Marsalek	113
Synchronization of stochastic neuronal networks Lutz Schimansky-Geier	115

Order patterns networks (ORPAN) – Concept and applications Stefan Schinkel, Gorka Zamora-López, Olaf Dimigen, Werner Sommer and Jürgen Kurths	117
Inferring nonstationary input activities from non-Poisson firing of a neuron Shigeru Shinomoto	119
Slope-based suprathreshold stochastic resonance in populations of phasic neurons due to intrinsic ion channel noise Brett Schmerl, Daniel E. Padilla and Mark D. McDonnell	121
Analysis of non-renewal spiking in neuron models with adaptation Tilo Schwalger	123
(Leaky) Integrate and Fire models can be coincidence detectors Roberta Sirovich, Luisa Testa, Petr Lansky and Laura Sacerdote	125
Transmission efficiency in the brain-like neuronal networks. Information and energetic aspects Janusz Szczepanski and Bartosz Paprocki	127
Identification of noisy response latency in presence of a background signal Massimiliano Tamborrino, Susanne Ditlevsen and Petr Lansky	129
Modeling the Relations between Neuronal Membrane Potentials, Ion Currents and Ion Channel Dynamics Aubin Tchaptchet, Svetlana Postnova, Martin T. Huber and Hans A. Braun	131
Understanding disordered topography of auditory cortex through natural sound statistics Hiroki Terashima and Masato Okada	133
Analysis of synaptic action in stochastic interpolation model of the auditory brainstem Peter G. Toth and Petr Marsalek	135
Very Slow Synchronization and Variability of Interspike Intervals in a Globally Coupled Neuronal Oscillators Ryotaro Tsuneki, Shinji Doi and Junko Inoue	137
Structural phase transition in the neural networks Tatyana Turova	139
Network Inference with Stochastic Hidden Units Joanna Tyrcha and John Hertz	141
Computational investigation of Glutamate-AMPA interaction in synaptic transmission Francesco Ventriglia and Vito Di Maio	143
Efficient coding beyond the retina Jonathan D. Victor, Yunguo Yu and Mary M. Conte	145
Event-related potentials associated to decision-making in emotionally-primed Ultimatum Game <i>Alessandro E. P. Villa, Alessandra Lintas, Sarah Mesrobian and Marina Fiori</i>	147

Synthetic and elemental coding of the pineapple "accord" and its components	149
Patricia Viret, Petryszyn Sarah, Michel Chaput and Barbara Ferry	
Representational capacity of neural codes in the cortex	151
Lawrence York, Jan Pieczkowski and Mark van Rossum	
Dynamics of axon fasciculation and its consequences for ephaptic coupling	153
Martin Zapotocky and Debasish Chaudhuri	
Index of Authors	155

Effectiveness of information transmission in the brain-like communication models

Bartosz Paprocki Institute of Mechanics and Applied Computer Science, Kazimierz Wielki University Bydgoszcz, Kopernika 1, Poland bartekp@ukw.edu.pl

Janusz Szczepanski Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw, Pawinskiego 5B, Poland jszczepa@ippt.gov.pl www.ippt.gov.pl/~jszczepa/

The efficiency of information transmission by brain is one of the major interests that have been recently studied, both through data analysis and theoretical modeling [1, 2, 3]. Recent attempts to quantify information transmission have concentrated on treating neuronal communication process in the spirit of Shannon information theory. It was developed as a mathematical, probabilistic framework for quantifying information transmission in communication systems [4].

The fundamental concept of this theory is *mutual information*, which quantifies the information dependence of random variables or stochastic processes. If {*X*} and {*Z*} are input (e.g. stimuli) and output (e.g. observed reaction) stochastic processes, then mutual information between them is given as: I(X;Z) := H(X) + H(Z) - H(X,Z), where $H(\cdot)$ are entropies [5]. Entropies of processes with unknown distributions (containing output process *Z*) have to be estimated and we accomplished it with Strong estimator [3, 6] as it is reliable and computationally fast. Maximal mutual information, called channel capacity, $C = \sup_{p_X} I(X;Y)$, reflects the upper bound on amount of information that can be communicated over the channel.

For neuron model we chose that proposed by Levy & Baxter [3, 7]. Our *brain-like* neural network model (Fig. 1) consists of number of paired *excitatory E* and *inhibitory I* neurons. Such two neurons constitute a *node* (*E*, *I*). Output of one neuron within a given node becomes input of the other one in the next discrete moment. Inhibitory neurons act to hold back activation of excitatory neurons they are paired with. Each node (*E*, *I*)_{*i*} is connected with neighboring nodes (*E*, *I*)_{*i*-1} and (*E*, *I*)_{*i*+1} through output of neuron *E*_{*i*}. Other nodes can be connected through *long-range connections*. Some or all neurons *E*_{*i*} can be connected to the source of information, i.e a discrete, one-zero (*spike* or *no-spike*) stochastic process.

We search for maximal values of mutual information between input process {*X*} and outputs of excitatory neurons {*Z*}s. We ran multiple simulations for architectures presented in Fig. 1. The information source parameters were as follows: *firing-rate* $0 \le f_r \le 1$ in steps of 0.05 and sequences of 1 000 000 bits were generated to reach high accuracy. Parameters associated with neurons were:

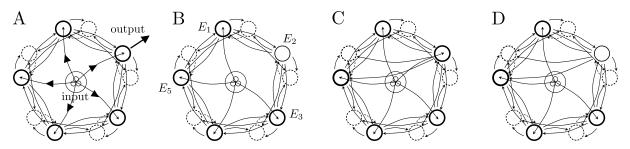


Figure 1: All *brain-like* neural architectures we studied. Each one has five nodes and source of size three. **A**, a *symmetric* case. **B**, E_2 has no access to the source of information. **C**, symmetric case with added *long-range* connection from E_2 to E_5 . **D**, a combination of B and C.

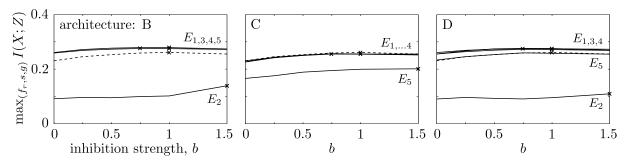


Figure 2: Mutual information between input process *X* and outputs of *E* neurons for architectures B, C, D (*symmetric* architecture result drawn with dashed line), maximized over: firing-rate f_r , synaptic success *s* and activation threshold *g*. Optimal values for each neuron marked with ×.

synaptic success $0 \le s \le 1$ in steps of 0.05, activation threshold $g \in \{0.2, 0.3, 0.5, 0.7, 0.9, 1, 1.2, 1.6\}$ and *amplitude fluctuations* were distributed uniformly on interval [0,1]. Neural network was parametrized with *inhibition strength* $b \in \{0, 1/4, 1/2, 3/4, 1, 3/2\}$ (relative to excitatory neurons strength).

Results are presented in Fig. 2. Most neurons reach the optimal information transmission around point where inhibition balances excitation, i.e. for b = 1. Generally, neurons are least efficient if there is no inhibition at all, i.e. for b = 0.

Efficiency of transmission of excitatory neuron lacking access to the source of information is decreased even by 62%, while other neurons efficiency rises by 7–13%, depending on inhibition strength. Long-range connection, if it originates from neuron having access to the source, brings 23–27% loss to target excitatory neuron transmission efficiency. If the connection originates from neuron without access to the source, the efficiency of target neuron is unchanged.

Acknowledgments: This paper has been supported by NCN grant N N519 646540.

Keywords: Brain-like network, Information transmission, Neuronal computation.

Bibliography

- [1] Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W. (1997) *Spikes. Exploring the Neural Code.* MIT Press, Cambridge, MA.
- [2] Sejnowski, T.J., van Hemmen, J.L. (2006) *23 problems in systems neuroscience*. Oxford University Press, Oxford.
- [3] Paprocki, B., Szczepanski, J. (2011) Efficiency of neural transmission as a function of synaptic noise, threshold, and source characteristics, *BioSystems*, **105(1)**: 62–72.
- Shannon, C. (1948) A mathematical theory of communication, *Bell System Technical Journal*, 27: 379–423, 623–656.
- [5] Ash, R. (1965) Information Theory. Interscience, New York.
- [6] Strong, S.P., Koberle, R., de Ruyter van Steveninck, R.R., Bialek, W. (1998) Entropy and information in neural spike trains, *Physical Review Letters*, **80**: 3197–200.
- [7] Levy, W.B., Baxter, R.A. (2002) Energy-efficient neuronal computation via quantal synaptic failures, *The Journal of Neuroscience*, **22**: 4746–4755.