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The main objective of the present paper is the development of identification procedure of the

constitutive model of elasto-viscoplasticity describing the behaviour of nanocrystalline titanium. We

intend to utilize the constitutive model presented by Perzyna (2010). The procedure is based on

experimental observation data obtained by Jia et al. (2001) for ultrafine-grained titanium and by

Wang et al. (2007) for nanostructured titanium. Hexagonal close-packed (hcp) ultrafine-grained

(UFG) titanium processed by sever plastic deformation (SPD) has gained wide interest due to its

excellent mechanical properties and potential applications as biomedical implants.

1. The constitutive model

We propose to introduce some simplification of the constitutive model developed by Perzyna

(2010) by assuming that the internal state variable vector µ = (ǫp, d, ξ) consists of two scalars and

one tensor, i.e. ǫp denotes the equivalent viscoplastic deformation, d defines the mean grain diameter

and ξ is the microdamage second order tensor, with the physical interpretation that (ξ : ξ)1/2 = ξ

defines the volume fraction porosity. The equivalent inelastic deformation ǫp describes the dissipation

effects generated by viscoplastic flow phenomena, the microdamage tensor ξ takes into account the

anisotropic intrinsic microdamage mechanisms on internal dissipation and d describes the dynamic

grain growth during intensive deformation process. We postulate the plastic potential function in the

form f = f(J1, J2, ϑ, µ), where J1, J2 denote the first two invariants of the Kirchhoff stress tensor τ

and ϑ is absolute temperature. The evolution equations are assumed as follows

d
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d
p denotes the rate of inelastic deformation tensor, Tm denotes the relaxation time for mechanical

disturbances, the isotropic work–hardening–softening function κ = κ̂(ǫp, ϑ, ξ, d), Φ is the empirical

overstress function, the bracket 〈·〉 defines the ramp function, Lυ denotes the Lie derivative and Ξ

and D denote the evolution functions which have to be determined.

Let us assume that the intrinsic microdamage process is generated by growth mechanism only.

Based on the heuristic suggestions and taking into account the influence of the stress triaxiality and

anisotropic effects on the growth mechanism we assume the evolution equation for the microdamage

tensor ξ as follows
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The tensorial function ∂g∗

∂τ represents the mutual micro(nano)crack interaction for growth process,

τeq = τ̂(ϑ, µ) denotes the threshold stress function for growth mechanism, Ig = b1J1 +b2

√

J
′

2 defines

the stress intensity invariant, bi (i = 1, 2) are the material coefficients which can depend on d. In the
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evolution equation (3) the function g = ĝ (τ , ϑ, µ) plays the fundamental role, and we introduce the

denotation ∂g∗
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. Assuming that the dynamic grain growth is the rate dependent

mechanism (cf. Perzyna (2010)) we postulate
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Ĝ(ϑ, µ)
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where G = Ĝ(ϑ, µ) is the material function, Id = c1J1+c2

√

J
′

2 represents the stress intensity invariant

for grain growth, ci (i = 1, 2) are the material coefficients which may depend on d, and τd = τ̂d(ϑ, µ)
denotes the threshold stress for dynamic grain growth mechanism.

2. The identification procedure

Let us introduce the particular form for the plastic potential function as follows
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, where J
′

2
denotes the second invariant of the stress deviator

of the Kirchhoff stress τ and n = n (ϑ, d) is the material function. From (1)1, (2)1 and (2) we have

the dynamical yield criterion in the form
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Taking advantage of the description of the microshear banding effects for nanocrystalline titanium we

can propose the relation for the relaxation time (cf. Perzyna (2010))
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where T 0

m, f 0

ms, a, b, p and ǫ̇P
s are material function of d. We propose that the identification procedure

consists of two parts. In the first part the determination of the material functions and the material con-

stants involved in the description of the dynamic yield criterion (5) is presented. As an experimental

base the results concerning experimental observation for ultrafine-grained titanium obtained by Jia et

al. (2001) and for nanostructured titanium obtained from the compression tests at high strain rates

(103−104 s−1) by Wang et al. (2007). The second part is focused on the determination of the material

functions and the material constants appeared in the evolution equations (3) and (4). To do that we

consider a dynamic process of compression test (cf. Wang et al. (2007)).

3. Final comments

There is our hope that proposed identification procedure for the thermodynamical theory of elasto-

viscoplasticity of nanocrystalline metals may be used as a base for the description of the behaviour

of hexagonal close-packed ultrafine-grained titanium processed by sever plastic deformation and may

allow to do the investigation of plastic strain localization and fracture phenomena in nano-mechanical

processes. These coming results and excellent mechanical properties of this kind of titanium make

potential applications possible as biomedical implants.

4. References

[1] P. Perzyna, Thermodynamical theory of elasto-viscoplasticity for description of nanocrystalline

metals, Engng. Trans., 58 (1–2), 15–74, 2010.

[2] D. Jia, Y. M. Wang, K. T. Ramesh, E. Ma, Y. T. Zhu, R. Z. Valiev, Deformation behavior and

plastic instabilities of ultrafine-grain titanium, Applied Physics Letters, 79, 611–613, 2001.

[3] Y. M. Wang, J. Y. Huang, T. Jiao, Y. T. Zhu, A. V. Hamza, Abnormal strain hardening in nanos-

tructered titanium at high strain rates and large strains, J. Mater. Sci., 42, 1751–1756, 2007.




