
 

 
59th Open Seminar on Acoustics 

Computer simulation of active sound intensity vector field 
in enclosure of irregular geometry 

 
M. Meissner 

 
Institute of Fundamental Technological Research of Polish Academy of Sciences, 

Adolfa Pawi skiego 5B, 02-106 Warszawa,  
e-mail: mmeissn@ippt.gov.pl 

  
Summary  

 
The modal expansion method has been used to formulate expressions for real and imaginary 
parts of the complex sound intensity inside enclosures. Based on theoretical results, the com-
puter program has been developed to simulate the active intensity vector field inside  
L-shaped enclosure. Calculation results have shown that a distribution of the active intensity is 
strongly influenced by the modal localization and the typical objects in the active intensity 
field are energy vortices and saddle points positioned irregularly inside the room. It was found 
that an increase in a sound attenuation results in the change of vortex positions and can cause 
the formation of new vortices. An influence of the wall impedance on the quantitative relation 
between the active and reactive intensities was also studied and it was concluded that for very 
small sound damping the behavior of the sound intensity is basically only oscillatory. 

 

1. Sound intensity in enclosures 

The sound intensity is very useful for studying the 
energetic properties of a sound field, therefore, it has 
received much attention in the past [1–4]. A concept of 
the sound intensity is based on a complex representa-
tion of the sound pressure for the monochromatic 
sound field. This pressure can be fully described by 
means of the spatially dependent real-valued amplitude 
P and phase function  
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where r  (x, y, z) is the position vector and   2  f is 
the angular frequency, with f being the frequency in 
Hz. The corresponding particle velocity u is expressed 
in terms of the gradient of the pressure according to the 
Euler's equation of motion, thus the formula for the 
complex particle velocity is given by  
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where  is the air density. The complex sound intensity 
vector Ic is expressed by the pressure p and the particle 
velocity u in the following form 

1
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where the superscript * denotes the complex conjugate 
and I, called the active intensity or acoustic intensity, 
and Q, termed as the reactive intensity, are given by 
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An inspection of Eq. (4b) clearly shows that the reac-
tive intensity is proportionally dependent on a gradient 
of the potential energy density wp, thus the vector Q is 
always irrotational. On the contrary, the active inten-
sity I is a rotational vector because the curl of the right-
hand side of Eq. (4a) is nonzero and equals 
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where c is the sound speed. When a weak sound 
damping is assumed, the steady-state pressure response 
of the room can be expanded in terms of rigid-walled 
modes, determined by specified sets of eigenfunctions 

m and the modal frequencies m, and the associated 
damping coefficient rm for each of these modes [5] 
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where V is the room volume and  
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where Qm is the modal source strength. It is easy to see 
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that Eq. (6) can be rewritten in the same form as Eq. 
(1), where P and   are expressed by 
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and the symbol  denotes a sum over m from zero to 
infinity. Inserting of Eqs. (8) into Eqs. (4) yields the 
following equations 
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which confirm that in each enclosure both kinds of the 
sound intensity simultaneously exist. Taking the curl of 
the active intensity vector gives 
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This result is of particular importance since it indicates 
that when the room is excited by a monochromatic 
sound source there is a circulating energy flow in a 
steady-state sound field. 

 
2. Numerical simulation and analysis 

The simulation was carried out for L-shaped room. 
The plane view of this room is depicted in Fig. 1. The 
dimensions of the room are the following (in meters): 
d1  d2  3, l1  4, l2  6, h  3. A sound source driving 
the room had the power of 10–3 W and was modeled by 
a point source located at the position (in meters): 
x0  4, y0  4, z0  1. It was assumed that the absorbing 
material is uniformly distributed on the room walls and 
its absorption properties describes the specific imped-
ance   Z /  c, where Z is the real-valued wall imped-
ance. In a numerical study the first steps towards 
calculating the intensity I were a computation of the 
eigenfunctions m and a determination of the modal 
parameters: m, rm and Qm. By means of the computer 
program a considerable amount of modes was found 
(mmax  240). Eigenfunctions m corresponding to 
these modes were computed by a numerical solution of 
two-dimensional wave equation [6], where the finite 
difference method (FDM) and the forced oscillator 
method (FOM) have been used. The simulation was 
performed for the source frequency of 70 Hz, which is 
close to the frequency of 15th eigenmode. 

The purpose of a numerical study was to investigate 
how the sound damping in the room system affects the 
active intensity I. In order to perform this task, a shape 
of vector field I was first studied in detail for the 
specific impedance  of 20 and 100, which are appro-
priate values of  for the moderate and small sound  

h

d1 d2
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x y
z

 

Figure 1. Room system under consideration having a 
shape resembling the capital letter L. 

attenuation. It was found that the random-incident 
absorption coefficient corresponding to these values of 
 are respectively equal to 0.297 and 0.0734. Figure 3 

illustrates vector fields I on the observation plane 
situated at a constant height from the floor (z  1.8 m) 
calculated numerically for the assumed values of . As 
seen, simulated distributions of active intensity stream-
lines are very complex and characteristic objects in the 
vector field I are energy vortices positioned irregularly 
inside the room. This type of vortices form such 
patterns of flow where acoustic energy flows continu-
ously around closed paths. For the assumed source 
frequency vortices are present mainly in the bottom 
part of the room because at this frequency the sound 
field is dominated by the 15th mode which is localized 
in the bottom part of the room. 

 

Figure 2. Active intensity I on the observation plane 
z  1.8 m for the source frequency of 70 Hz and the 
specific impedance  equal to: (a) 20, (b) 100. 
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A comparison between vector fields in Figs. 2a,b 
evidently shows that the sound attenuation inside the 
room affects considerably the intensity I distribution 
when a transition from moderate to small sound damp-
ing occurs. The modification of the vector field primar-
ily consists of changing the number and position of 
vortices. It is well illustrated by graphs in Fig. 3a,b 
where mapped distributions of the magnitude |I| of 
active intensity are depicted. As is evidenced from 
these figures, centers of vortices correspond exactly to 
local minima of |I| and this property results from the 
fact that in the vortex point the sound pressure should 
be zero theoretically [2]. Equations (4a,b) show that in 
this case the active and reactive intensities I and Q are 
zero at the vortex center. Another singular point of the 
active intensity field is the saddle point which can be 
thought of as a stagnation point because it represents 
the point where there is separation of the vortex region 
and the region where the intensity vectors form open 
lines. In Figs. 2a and 3a the exemplary vortex and 
saddle point are indicated by arrows. 

 

Figure 3. Magnitude |I| of active intensity for the 
source frequency of 70 Hz and the specific impedance 
 equal to: (a) 20, (b) 100. 

To illustrate properties of acoustic field at the vortex 
and the saddle point, in Fig. 4 changes in the normal-
ized pressure amplitude P/Pmax and normalized magni-
tudes |I|/|I|max, |  I|/|  I|max, |  |/|  |max with the y-
coordinate along a line segments covering the vortex 
center (x  4.1 m) and the saddle point (x  4.8 m) are 

depicted. In Fig. 3a these line segments are indicated 
by white dashed lines. Calculation results in Figs. 4a,b 
confirm that the pressure amplitude P and the magni-
tude of active intensity vector I reach the minimum 
values at the vortex center. In contrast to this property, 
the magnitude |  | of the gradient of the pressure 
phase peaks at this point (Fig. 4d). Theoretically, the 
value of |  | is going to infinity at the vortex center 
[2] which means that in the vortex region there is a 
jump of the pressure phase. At the saddle point, magni-
tudes of three acoustic variables I,  I,   reach 
their minimum values (Figs. 4f,g,h) because these 
quantities are zero at the saddle point theoretically [2]. 
The behavior of acoustic field at the saddle point was 
studied and physically interpreted by Chien and 
Waterhouse [3]. They found that at the saddle point 
there is a zero of the particle velocity or the phases of 
velocity and pressure differ by odd multiples of  /2 or 
a combination of the previous two situations occurs. 
From Eqs. (2), (4a) and (5) it follows that under the 
condition   0, the active intensity I and  I are 
zero but the complex velocity amplitude is non-zero 
because a real part of this amplitude vanishes only. 
However, Eqs. (1) and (2) imply that in this case the 
phases of velocity and pressure differ by  /2 which is 
the criterion for the saddle point.  

(d)

0 2 4 6
y (m)

0.01

0.1

1

|
| / 

| 
| ma

x

(c)
0.0001

0.001

0.01

0.1

1

|
I| 

/ |
I| 

m
ax

(b)
0.01

0.1

1

|I|
 / |I

| m
ax

(a)
0.01

0.1

1

P 
/ P

m
ax

(h)

0 2 4 6
y (m)

(g)

(f)

(e)

 

Figure 4. Changes in P/Pmax, |I|/|I|max, |  I|/|  I|max 
and |  |/|  |max with y-coordinate for x  4.1 m (a)-
(d) and x  4.8 m (e)-(h) for the frequency of 70 Hz.  
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So far numerical results were used to reveal details 
of the active intensity vector field but did not provide 
information about the intensity I magnitude but more 
importantly, about a quantitative relation between 
magnitudes of the active and reactive intensities I and 
Q. The problem will be analyzed by use of the parame-
ter |I|max/|Q|max denoting the ratio of maximal magni-
tudes of I and Q on the observation plane for a selected 
value of the specific impedance . Dependencies of 
|I|max/|Q|max on  at the assumed source frequencies for 
moderate and large values of  are depicted in Fig. 5, 
where points denote simulation data. In the range of 
moderate values of the specific impedance (  < 100), 
the ratio |I|max/|Q|max reaches a maximum value, which 
is slightly less than unity, and then continuously 
decreases with increasing  (Fig. 5a). A graphic recon-
struction of the sound intensity field has shown that 
when  is moderate, changes in a distribution of the 
active intensity vector field are observed. For large 
values of  the ratio |I|max/|Q|max fast decreases and its 
dependence on   is well approximated by the formula 

max max
,aI Q                                             (11) 

where a is the constant (Fig. 5b). In this case a recon-
struction of the sound intensity field has revealed that 
patterns of the active and reactive intensities do not 
change with the specific impedance. On the other hand, 
a great diminution of the parameter |I|max/|Q|max for 
large values of  indicates also that for the rooms with 
nearly rigid walls there is, in fact, no flow of acoustic 
energy because the behavior of the sound intensity 
inside the room space is essentially only oscillatory. 

 
3. Summary and conclusions 

In this study the modal expansion method was ap-
plied to simulate a low-frequency distribution of the 
active intensity vector field inside L-shaped room. In 
the theoretical section, a concept of the complex sound 
intensity was briefly presented and modal representa-
tions of the steady-state sound intensity were given. 
Calculated distributions of the active intensity vector 
have shown that the characteristic objects in the active 
intensity field are energy vortices and saddle points 
located in an irregular manner inside the room. Simula-
tions revealed that, according to the theory, the pres-
sure amplitude and the magnitude of active intensity 
have minima at the vortex center, where there is a peak 
of magnitude of the pressure phase gradient. On the 
other hand, at the saddle point there are minima of 
magnitudes of the active intensity, the curl of the active 
intensity and the gradient of the pressure phase. An 
impact of the specific impedance on vortex positions 
was also investigated and it was found that an increase 
in a sound damping results in the change of vortex 
positions and can cause the formation of new vortices 
when the sound damping is moderate. Finally, an 
influence of the specific impedance on a quantitative 
relation between the active and reactive intensities was 

analyzed. It was concluded that the ratio between 
maximal magnitudes of active and reactive intensity 
varies inversely with the specific impedance when 
there is no change in patterns of active and reactive 
intensities. It was found also that when the sound 
damping is negligible, there is essentially only oscilla-
tory sound energy flux inside a room space. 
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Figure 5. Dependence of |I|max/|Q|max on the specific 
impedance  for moderate (a) and large (b) values of . 
Source frequency of 70 Hz. 
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