
Sensors2012, 12, 11946-11956; doi:10.3390/s120911946
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Electrostatics of Planar Multielectrode Sensors with Application
to Surface Elastometry

Eugene Danicki ⋆ and Yuriy Tasinkevych

Institute of Fundamental Technological Research of the Polish Academy of Sciences,

5B Pawinskiego str., 02-106 Warsaw, Poland; E-Mail: yurijtas@ippt.gov.pl

* Author to whom correspondence should be addressed; E-Mail:edanicki@ippt.gov.pl;

Tel.: +48-22-826-1281 (ext. 285); Fax: +48-22-826-9815.

Received: 18 July 2012; in revised form: 2 August 2012 / Accepted: 6 August 2012 /

Published: 29 August 2012

Abstract: Systems of planar electrodes arranged on dielectric or piezoelectric layers are

applied in numerous sensors and transducers. In this paper electrostatics of such electrode

systems is presented and exploited in the analysis of distributed piezoelectric transducer

dedicated to surface elastometry of biological tissues characterized by large Poisson

modulus. The fundamental MatlabR© code for analyzing complex planar multiperiodic

electrode systems is also presented.
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1. Introduction

In many sensors, electric field is applied to investigate body by multiple electrodes which frequently

can be considered periodic. This for example is the case of surface wave sensors of gas, actuators and

linear ultrasonic motors utilizing planar metal strips as electrodes. Analysis of the field distribution and

the electric property of electrode systems is usually necessary for the design and evaluation of the sensor

parameters. The analysis of conducting strip is the generalsubject of this paper, and its application for

elastometry is proposed as an example of its usefulness.

Typically, elastic properties can be evaluated by measuring the ultrasonic wave time of flight over

certain distance. In the case of tissue however, small dimension of tissue sample and considerable wave

damping makes the task difficult. In this paper we show how to measure the wave velocity within one
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ultrasonic transducer applying multiple strip electrodeson a piezoelectric layer applied to the tissue

sample, in which case the detailed analysis of the strip system is indispensable because the frequency

characteristic of the system, instead of the time of flight, is measured.

2. A Template Electric Field

The known identity [1] lays foundation for the presented analysis:
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0 < θ < π, Re{µ} < 1/2. The involved Legendre functionPn(·) = P µ
n (·) for µ = 0 has the following

properties (for arbitrary realν andn integer)

P−ν−1 = Pν , Pn(−x) = Sn(−1)nPn(x), Sn =

{

1, n ≥ 0,

−1, n < 0,
(2)

Two equations can be casted from the above identity which canbe easily interpreted in electrostatic

terms (the second equation results from the first one after substitutionsv → v − π andϑ → ϑ− π)
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where the variableϑ is replaced byKx in order to accommodate the results to our purposes;

∆ = cosKw.

Figure 1. Periodic system of strips with external cross-less connections within the strip cells

including five strips; the arrangement used in the discussedsensor.
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The electrostatic interpretation of the above complementary set of functions is the following. The first

equation is the Fourier expansion of the normal electric induction on planar periodic perfectly conducing

strips arranged along axisx with periodΛ = 2π/K (K is the corresponding “wave-number” of strips),

and width2w. As known from electrostatics, the electric charge on strips equals the normal induction

discontinuity across the strips (cf. Figure 1) that is square-root singular at the strip edges. The second
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equation represent the Fourier expansion of the tangentialelectric field (similarly singular at the strip

edges), naturally vanishing on the perfectly conducting strips (as opposite, the electric charge vanishes

in the space between strips). These two expansions will be exploited as a template electric field in plane

of planar system of periodic strips. Note that the Legendre functions involved in the left-hand side of the

equations can be easily evaluated with help of efficient and robust numerical algorithm [2].

In order to make use of the above set of expansion, we need certain characterization of the electrostatic

medium the strips to be embedded in. Consider the dielectrichalfspacez > 0 of dielectric constantε.

Applying the electric potentialϕ = exp(−jpx) on the planez = 0 (which axis is considered normal

to the plane of strips), resulting in tangential electric field Ex = −∇xϕ = jp exp(−jpx), one easily

evaluate that the excited normal electric induction (atz = 0+) satisfying the condition of vanishing field

at z → ∞ is (superscript ‘+’ marks the considered field in the upper halfspace):

D+
z = −jεSpE

+
x (4)

(neglecting the exponential terms), which is exactly the case of the corresponding harmonic components

of the above two complementary Fourier series provided thatthe first equation is multiplied byε. The

corresponding field components arePn(∆) exp(−jnKx) andSnPn(∆) exp(−jnKx), for Dz andEx,

respectively. For the other halfspacez < 0 with dielectric constant̄ε and the field vanishing atz → −∞,

the corresponding equation to the above one isD−
z = jε̄SpE

−
x , which allows us to evaluate the electric

charge distribution on the planez = 0 between these two halfspaces asD = D+
z −D−

z = (1+ ε̄/ε)D+
z .

3. Arbitrary Potentials on Strips

The application of different electric potentials to subsequent strips breaks the electric field periodicity,

hence the above Fourier expansion must be generalized into Bloch expansion of the planar electric field

components by corresponding multiplication byαm exp(−j(r+mK)x) wherer ∈ (0, K) is constrained

to one Brillouin zone for uniqueness reason, yielding (pn = r + nK and series are simply rearranged;

the superscript “+” is dropped, as well as subscript “x” at tangential field andz at normal induction):

D(x) =

∞
∑

n=−∞
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ǫe αmPn−m(∆)e−jpnx,

E(x) =
∞
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(5)

(αm are arbitrary constants andǫe = ε + ε̄ is the surface effective dielectric permittivity). This

multiplication does not change the support domains of the normal inductionD (which remains

x ∈ (−w,w) in the periodΛ) norx 6∈ (−w,w) for the tangential fieldE.

Usually, the most interesting for applications are the strip potentials (which frequently are given)

and the resulting strip charges or currentsJ = jωD, where ω is the angular frequency of the

applied harmonic potentials to stripsVl exp(jωt) (l is the particular strip number). In the considered

case characterized by Equation (5), both these quantities can be evaluated explicitly using Dougall’s

identity [1], which, applying Equation (2), can be transformed into two equations:
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The lth strip potentialVl is evaluated by simple integration of electric tangential field, and, knowing

that this potential is constant over the entire strip, the integral can be evaluated at centers of strips, that

is atx = lΛ (cf. Figure 1); it is for given value ofr:

Vl(r) = −
∫

E(x)dx

= −j
∑
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e−j(r+nK)x|x=lΛ
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sin πr/K
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(7)

Analogous integral of the normal inductionD has constant values between strips (whereD = 0),

which allows us to evaluate this integral at the center of space between strips (that is atiΛ − Λ/2 or at

iΛ+Λ/2 on both side ofith strip). The value of theith strip charge is the difference of the integral values

at these two points: at the space centers after and before theith strip:

Qi(r) =

∫

Ddx|x=(i+1/2)Λ −
∫

Ddx|x=(i−1/2)Λ = ǫαmQ
(m)
r e−jriΛ,

Q(m)
r =

∫ Λ/2

−Λ/2

∑

n

Pn−m(∆)e−j(r+nK)xdx = ΛP−m−r/K(∆).
(8)

Note that bothQ andV are the spectral functions ofr (moreover,αm may depend onr as well). They

are, in fact, the Fourier transforms of discrete functionsQl andVl of values taken at the strip centers

x = lΛ.

4. Strips on Layered Media

If strips are placed on a layered substrate, the Equation (4) is no longer valid as the value ofε depends

on the component’s wavenumber of the Bloch series, as it is shown in Appendix A for particular example

of piezoelectric layer placed on a top of homogeneous elastic halfspace. The relation governing planar

wavefield is:

D(p) = −jǫ(p)SpE(p), ǫ(|p| > NK) ≈ ǫe. (9)

The fundamental feature of such system is that for large wavenumber value (say, for|r+nK| > NK, in

certain acceptable approximation), the surface effectivepermittivity reaches its constant limitǫe, making

Equation (4) valid for anyn 6∈ [−1 − N,N ] (assumingr > 0 within the allowed limits), that is for

infinite number of Bloch components in the expansion Equation (5).

We apply the field expansion Equation (5) including summation overm with weight αm, which

effectively means that each Bloch components ofD andE is the sum like:

Dr(x) =

∞
∑

n=−∞

Dne
−jpnx, Dn = ǫe

∑

m

αmPn−m(∆),

Er(x) =
∞
∑

n=−∞

Ene
−jpnx, En =

∑

m

jSn−mαmPn−m(∆),

(10)

(pn = r + nK), where the appended subscriptr marks the expansion dependence on spectral parameter

r ∈ (0, K). The summation limits overm, depending onN , is usually quite small and can be established

by careful inspection of the equations discussed below.
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These equations result from Equation (9) applied for any pair of harmonic amplitudes(Dn, En) of the

same harmonicsexp(−jpnx) in the above expansion:

∑

m

ǫ[1 − Sn−mǫ(pn)/ǫe]Pn−m(∆)αm = 0, (11)

for anyn ∈ (−∞,∞). Introducingǭn = ǫ(pn)/ǫe, the expression in brackets becomes:1 − ǭnSn−m

which is zero for|n| → ∞ provided thatm is finite. Noticing that̄ǫn = Sn for n 6∈ [−1 − N,N ],

according to Equation (9), it is easy to check that the discussed expression in bracket 1 − SnSn−m = 0

for anyn < −1−N orn > N provided that−1−N ≤ m ≤ N . This yields the condition for acceptable

domain ofm in Equation (10), which effectively yields the proper truncation of the discussed infinite

system of Equations [3]. It is evident that choosing largerN and wider range ofm, according the above

rule, will yield only trivial solution to the additionally included unknownsαm.

Note that the number of unknownsαm in Equation (10) is by one larger than the number of equations

Equation (11), for |n| ≤ N . The required additional equation results from the Kirchhoff’s laws applied

to the system of strips; the simplest one is the condition on the strip potentials exploiting Equation (7).

Evaluation of the strip voltages and currents (charges) requires integration of Equations (7, 8) over

the spectral variabler, that is:

Vl =
1

K

∫ K

0
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αmV
(m)
r e−jrlΛdr = Vkδkl,

Ik = jωQk = jωǫ
1

K

∫ K

0
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m

αmQ
(m)
r e−irkΛdr,

(12)

whereω = 2πf is the angular frequency of the applied voltage to strips (f is the frequency),δlk is the

Kronecker delta,Vk are the given strip potentials, andl, k ∈ (−∞,∞) are the strip numbers. It is evident

from the first of the above equations that

∑

m

αm(r)V
(m)
r = Vle

jrlΛ. (13)

This is the equation which, appended to Equation (11), allows one to evaluate all unknownsαm which,

substituted into the second equation presented above, finally yields [4] the admittance relation for simple

periodic strips:

Ik = jωǫeVl

∫ K

0

R(r)e−jr(k−l)Λ dr/K, (14)

whereIk is the current flowing tokth strip of unitary length, resulting from thelth strip potentialVl, and

R(r) =

∑

m αmP−m−r/K(∆)
∑

m(−1)mαmP−m−r/K(−∆)
sin π

r

K
.

5. Simple Elastometric Sensor

It is evident that the strip admittance depends on the piezoelectric and elastic property of the layered

media on which the strips reside. In the case of biological tissue of large Poisson module (ν < 1/2),

the most important and difficult task [5] is the determination of the shear wave velocityvt of the tissue,
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as the longitudinal wave velocityvl can be easily measured. The discussion below presents a method of

evaluation of the shear wave wavenumberkt = ω/vt by means of strip admittance measured over certain

frequency band.

In typical cases, the spectral functionR(r) is singular at the wavenumberr = kR of Rayleigh

wave (its value reduced to first Brillouin zone in the case of periodic system), but in order to make

the measurements simpler in the considered case of elastometry, the layered system is chosen such that

the Rayleigh–Lamb wave cannot propagate or it is not excited(see Appendix A for details). This feature

allows one to perform simple numerical integration of Equation (14); below, the Fast Fourier transform

is exploited for this task.

Figure 2. Typical frequency dependence (a) of normal induction excited on piezoelectric

layer residing on a tissue-like body, and (b) of corresponding signalS in infinite

periodic system.
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The fundamental properties of the considered layered system are described by its effective dielectric

permittivity ǫ(r;ω) for chosen value ofr and variableω, presented in Figure 2(a). This is the system

response (in the complex amplitude of the normal induction)to the applied tangential electric wave-field

on the system surface in the formexp j(ωt− rx). One can easily notice that the effective generation of

shear waves propagating along the system surface takes place at frequencyfo = ωo/(2π) of synchronism

of the propagating wave with the delivered surface electricfield spatial pattern:ωo = rvt. It should be

noted that similar phenomenon of generation of subsurface longitudinal waves takes place for much

lower frequencyrvl. The proposed and analyzed measurements concern, in fact, evaluation ofǫ(r;ω) by

means of the strip admittance dependence on angular frequency ω.

It is convenient to present first the results for infinite periodic system of 5-strip cells presented in

Figure 1, where the alternate periodic potentials are applied to second, fourth and fifth strips (and

periodically in other cells), and the excited current of theremaining strips makes the measured signal.

The system resemble a 3-phase interdigital transducer [6] and conveniently separates the generation and

the signal circuits.

Due to the system exact periodicity and different voltages within periodic cells, the summation over

the repeating strips (over indicesk, l) in Equation (14) results in spectral “spikes” atr = mK/M , where
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M is the number of strips within cells, in the discussed caseM = 5 andm = 0, 1, 2, 3, 4. The strip

voltages and currents can thus be presented in the form (see Figure 1):

Vl = ame
−j(mK/M)(lΛ),

Ik = jωǫeamR(mK/M)e−j(mK/M)(kΛ),
(15)

wherel, k = 0, 1, 2, 3, 4 andam are coefficients to be evaluated from the circuit equations:

V0 = V2 = 0, V1 − V3 = U, V4 = V3, I1 + I3 + I4 = 0;

we intend to measure the combined currentI0+I2. Naturally, the measured current in real system would

be the sum over all cells multiplied by the system aperture-width. For convenience of further discussion,

we define the observed signal asS = (I0+ I2)/ω−C, whereC is intended to reduce the signal resulting

simply from the capacitance of the signal strips to the voltage-supplied strips (this reduction can be

achieved by applying the trimmed capacitance to the supplied strip as shown in Figure 1).

In the case of finite number of cells, the Equation (14) must be applied with proper summation over

the applied strip potentials and currents, within cells andover all cells in the sensor. Concerning strip

potentials, the condition of equal but opposite bus-bar currents feeding the generating strips allows one

to evaluate the voltage distributions:V ± of upper and lower bus-bars, respectively;V +−V − = U is the

applied voltage to bus-bars. This corresponds to superposition of strip voltagesV ± = ±U/2 and certain

bias voltageUo. Noticing thatUo would excite almost exclusively the thickness vibration ofpiezoelectric

layer and normal longitudinal waves in the body, we may neglect Uo yielding only certain signal bias

like that caused by the strip mutual capacitances. Now, the above-mentioned double summation over

strip cells results in multiplication of analyticR(r) in Equation (14) by

L
∑

n=1

L
∑

m=1

e−jr(n−m)MΛ = (L sin x/x)2, x = πMLr/K, (16)

whereL is the number of strip cells in the sensor.

The resulting signalS(f) as Figure 3 shows is somehow distorted in comparison with that shown in

Figure 2(b), but still retains its useful features: max Im{S} appears at frequency close tofo (that is at

zero frequency deviation in the figure) even for large Im{kt} yielding good estimation to Re{kt}, and

the slope of Re{S} atfo dependence on Im{kt} can be used for estimation of the shear wave damping.

6. Multiperiodic Electrode System

In more general case, there are different strips within periodic cells. In the above-discussed sensor, for

example, strips number 3 and 4 can be joined without any spacebetween them. Such system is no longer

simple-periodic; it is called [7] “multiperiodic” and the “template electric field” presented above must

be suitably corrected. Appendix B presents the practical result of rather lengthy analysis [8,9] in form

of a MatlabR© code for direct evaluation of the spatial Fourier expansioncoefficients of the corrected

template functionFn, n = 0, 1, 2, 3, . . . (F−n = F ∗
n ) for periodic cells of periodΛ. Each cells include

even numberM of strips and they are identically “wired” (by external connections) within all cells.

This yields identical circuit equations except that the applied voltages can be arbitrarily scaled from

cell to cell.
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Figure 3. ExampleS(f) measured by sensor of 20 cells for several values of Im{kt}; the positions

of max Im{S} are near zero frequency deviation in all cases.
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The electric fields is constructed using these Fourier coefficients analogously to Equations (5)

and (10):

D(x) =
∞
∑

n=−∞

∑

m

ǫeαmFn−me
−j(r+nK)x,

E(x) =

∞
∑

n=−∞

∑

m

jSn−mαmFn−me
−j(r+nK)x,

(17)

where spectral variabler ∈ (0, K), K = 2π/Λ. There is certain difficulty in numerical evaluation of

potentials and charges of strips resulting from the above equation. Namely, integration ofD(x) and

E(x) may yield infinity if r = 0 (which happens ati = 0).

This can be avoided well by applying smallr instead of0 when applying the FFT procedure for

integration (r ∼ 10−4 is a good choice). Taking the output of FFT{[jSn−mFn−m/(r + nK)]} at

the given strip center yields the sought potential of the strips in the cell, and taking the difference of

FFT{[jFn−m/(r+nK)]} at the space centers after and before the strip yields the given strip charge,V (m)
l

andQ(m)
l respectively,l = 0, . . . ,M (expressions in brackets are the input vectors of FFT algorithm).

These values are exploited in the circuit equations for strip currents and voltages in order to evaluateαm;

other necessary equations result from Equation (4) (put p = r + nK) resulting in Equation (11) where

Pn−m should be replaced byFn−m.

7. Conclusions

Modern electronic technology allows one to easily fabricate planar system of strips, which contributes

to their wide applications in many electronic devices including sensors (SAW gas sensors, for instance)

and actuators (piezoelectric linear motors, for instance). Rigorous electric field analysis is usually

necessary for the design and evaluation of electric properties of such devices. In this paper, a method

of analysis of periodic strips or periodic groups of strips (with arbitrary width and spacing within
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cells) is presented in interesting application for surfaceelastographic sensor, which may contribute to

better accuracy of measurements of tissue properties required in medical investigation and diagnosis of

skin [10] for instance.
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Appendix A

Consider an isotropic elastic halfspacez < 0 characterized by Lamè constantsλ, µ and mass

densityρ, resulting in acoustic wave velocitiesvl =
√

(2µ+ λ)/ρ andvt =
√

µ/ρ, respectively for

longitudinal and shear waves. The plane acoustic wave-fields include displacementsu1,2 and normal

tractionT3i, i = 1, 3. The harmonic wave-field is considered in the form:exp(jωt− jpx− jqiz) where

qi =
√

(ω/vi)2 − p2, i = l, t with sign chosen to satisfy the radiation condition [4] at z → ∞; p is
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arbitrary. The wave-field is the superposition of longitudinal and shear wave-components (we drop the

time-dependence):
[

u1

u3

]

=

[

p −qt

ql p

][

e−jqlz 0

0 e−jqtz

][

Fl

Ft

]

e−jpx,

[

T31

T33

]

=

[

µu3,1 + µu1,3

λu1,1 + (λ+ 2µ)u3,3

]

, f,i = ∂f/∂xi

(18)

(x1 = x, x3 = z). For sliding contact with the piezoelectric layer atz = 0, one easily obtains the

p-dependent function evaluated atz = 0:

Z = T33/u3. (19)

Much more complicated is the characterization [4] of piezoelectric layer; the theory yields the

dependence of electric tangential field (E = jpϕ) and normal induction (D = D3) on the layer upper

side, which is considered traction-free on normal displacement (u3) and tractionT33 applied to its bottom

side which is considered metalized:

− jp

[

u3

ϕ

]

=

[

Z11 Z12

Z21 Z22

][

T33

D3

]

. (20)

Substitution of Equation (19) yields Equation (9).

Appendix B

Consider even numberM of strips placed within the domain[0, 1]: the strip left and right edges

are specified in two-column matrixg of M rows (for the algorithm convenience the edge positions are

modified in the line two). The algorithm presented below yields the data vectorF = [Fn], for specified

numbers of harmonics:n = 0, . . . , N − 1.

ne=length(g); %ne even!

g=g-sum(sum(g’)’/2)/ne; %shifting

h=1i*pi*sum(g’)’;

y=[1i;zeros(N-1,1)];

for m=1:ne;

t=cos(pi*(g(m,2)-g(m,1)));

a=1i;

b=1i*t;

z=[zeros(1,N-2) b*exp(h(m)) a];

for l=2:N-1;

c=(t*(2*l-1)*b-(l-1)*a)/l;

a=b;

b=c;

z(N-l)=c*exp(l*h(m));

end;
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for i=N:-1:1;

y(i)=2*z(1+N-i:N)*y(1:i);

end;

end;

y=[zeros(ne/2,1);y];

F=y(1:N);
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