
Vol. 121 (2012) ACTA PHYSICA POLONICA A No. 2-B

Proceedings of the 5th Symposium on Physics in Economics and Social Sciences, Warszawa, Poland, November 25–27, 2010

Student’s t-Distribution versus Zeldovich–Kompaneets
Solution of Diffusion Problem
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Student’s t-distribution is compared to a solution of superdiffusion equation. This t-distribution is a
continuous probability distribution that arises in the problem of estimating the mean of a normally distributed
population when the sample size is small. Formally it can written in the form similar to the Gaussian distribution,
in which, however, instead of usual exponential function, the so called K-exponential - a form of binomial
distribution - appears. Similar binomial form has the Zeldovich–Kompaneets solution of nonlinear diffusion-like
problems. A superdiffusion process, similar to a Zeldovich–Kompaneets heat conduction process, is defined by
a nonlinear diffusion equation in which the diffusion coefficient takes the form D = a(t)(1/f)n, where a = a(t)
is an external time modulation, n is a positive constant, and f = f(x, t) is a solution to the nonlinear diffusion
equation. It is also shown that a Zeldovich-Kompaneets solution still satisfies the superdiffusion equation if
a = a(t) is replaced by the mean value of a. A solution to the superdiffusion equation is given. This may be useful
in description of social, financial, and biological processes. In particular, the solution possesses a fat tail character
that is similar to probability distributions observed at stock markets. The limitation of the analogy with the
Student distribution is also indicated.
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1. Introduction
1.1. Student’s t-distribution

Student’s t-distribution (or the t-distribution) is a con-
tinuous probability distribution that arises in the prob-
lem of estimating the mean of a normally distributed
population when the sample size is small. It is the basis
of the Student’s t-tests for the statistical significance of
the difference between two sample means, and for confi-
dence intervals for the difference between two population
means.

It has been proposed a long time ago that t-distribution
is a good candidate for describing heavy tails of stock
markets distributions, [1–3].

In statistics, the t-distribution was first obtained as a
posterior distribution by Helmert [4–6] and Lüroth, [7].
In the English literature, a derivation of the t-distribution
was published in 1908 by William Sealy Gosset [5] while
he worked at the Guinness Brewery in Dublin. Due
to proprietary issues, the paper was written under the
pseudonym Student. The t-test and the associated the-
ory became well-known through the work of R.A. Fisher,
who called the distribution "Student’s distribution", [11].
Also Pearson’s 1895 paper introduced the type IV distri-
bution, which contains Student’s t-distribution as a spe-
cial case, predating Gosset’s subsequent use by several
years, [12].

Student’s distribution arises when (as in nearly all
practical statistical work) the population standard devi-
ation is unknown and has to be estimated from the data.
Student’s t-distribution has the probability density func-
tion
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)
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, (1)

where ν is known as the number of degree of freedom

of the distribution and Γ is the Gamma function. The
second moment or the variance is given for ν > 2 by
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. (2)

The fourth reduced moment or the kurtosis
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is always, for ν > 4, greater then 3, the value for the case
of linear diffusion, appearing when ν →∞.

The t-distribution is symmetric and bell-shaped, like
the normal distribution, but has heavier tails, meaning
that it is more prone to producing values that fall far
from its mean. This makes it useful for understanding
the statistical behaviour of certain types of ratios of ran-
dom quantities, in which variation in the denominator
is amplified and may produce outlying values when the
denominator of the ratio falls close to zero. The Stu-
dent’s t-distribution is a special case of the generalised
hyperbolic distribution.

1.2. Superdiffusion
Diffusion with constant coefficient is an idealised pro-

cess. A nonlinear process in which the diffusion coeffi-
cient is a negative power of probability density represents
a super-diffusion.

Let j denote an one-dimensional flux of Brownian par-
ticle diffusion. According to the Fick law

j = −D
∂f

∂x
, (4)

where f = f(x, t) is the distribution function which de-
pends on position x and time t. A nonlinear process in
which the diffusion coefficient takes the form

D = af−n, (5)
where a and n are positive constants, can be called the
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Zeldovich–Kompaneets nonlinear diffusion as it is analo-
gous to a nonlinear heat flow analysed by those authors
in 1950, [16, 17]. Such a dependence of D on f leads for
n > 0 to a diffusion with heavy tails, that is to superdif-
fusion.

The superdiffusion is opposite to the case treated in
[18] where a problem of diffusion without tails, it is the
subdiffusion, with D = afn, n > 0 was discussed, cf.
Fig. 1.

Fig. 1. Wigner semicircle distribution is an example of
subdiffusion with the diffusion coefficient D = af2 and
f(x, t) = 2

πx2
0

√
x2

0 − x2. The value of x0 is varying with

time t, as x2
0 = (4/π)A1/2, A = A(t) =

∫ t

0
a(τ)dτ . The

value of x0 is expanding with the time t.

In the present paper a superdiffusion process is consid-
ered in which the coefficient a in Eq.(5) is a prescribed
function of time a = a(t). Such variation of a can denote
modulation of diffusive process by external reasons with
flow of the time. For example, it may reflect seasonal
changes of moisture or nutrients in biology or societal
changes following fashions and trends in the economy.

As always the density f < 1, negative power f−n

sustains the diffusion coefficient and results in super-
diffusion, cf. Eq. (5).

In markets, super-diffusive behaviour is observed typ-
ically, [1, 13–15] in contrast to Bachelier’s ideal market,
for which the kurtosis is equal 3, [19].

In biology, super-diffusion can be the result of active
cellular transport processes, while sub-diffusion has been
used as a measure of macromolecular crowding in the
cytoplasm, cf. [20–23].

2. Zeldovich-Kompaneets diffusion with time
modulation

Consider one-dimensional nonlinear diffusion
∂f

∂t
=

∂

∂x

(
D

∂f

∂x

)
, (6)

where the coefficient D is given by (5). Thus the equation
of diffusion reads

∂f

∂t
= a

∂
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(
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∂x

)
. (7)

Obviously, the time variable t in the description of the

diffusion process, Eq. (7), has nothing common with the
variable t in the Student distribution, Eq. (1).

In our case, the dimension of f is [f ]=1/cm, the di-
mension of ∂

∂x

(
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)
is 1/cmn+3. Because the di-

mension of the left-hand side is (1/s)(1/cm), the dimen-
sion [a]=cmn+2(1/s). Introduce a new variable
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where
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and look for the solution in the form
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Eq.(7) to the ordinary differential equation
d
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= 0. (11)

This equation has a solution

ϕ = ϕ(ξ) =
[

n

2(2− n)
(
ξ2
0 + ξ2

)]−1/n

, (12)

where ξ0 is a constant of integration. It is convenient to
define

x0 = A
1

2−n ξ0 (13)
with A given by (9). If coefficient a in (5) is a constant,
then A = at and x0 ∝ t1/(2−n).

3. Initial value problem

Let at the initial instant t = 0, the diffusing particle
be at x=0 while f(x, 0) = 0,

f(x, 0) = δ(x) (14)
and at subsequent instants the density distribution
spreads in the space according to (10) and (12). The
integration constant ξ0 in (12) is given by normalization
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Integration leads to the Euler Beta function
B(x, y). Namely I ≡ ∫∞
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Hence expression (10) takes the form
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Function B can be written in terms of Euler’s Γ function
B
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where relation Γ( 1
2 ) =

√
π was used.

The Gamma function is the meromorphic function and
may be extended by analytic continuation to all com-
plex numbers except the non-positive integers (where the
function has simple poles). According to expression (17)
we avoid the infinities in our density distribution f if
power n < 2.

4. Moments of the distribution

The variance is given by

σ2 =
∫ ∞

−∞
x2f dx, (19)

where f = f(x, t) is given by (17). We get

σ2 =
n

2− 3n
x2

0. (20)

Here we arrive at further limitation of the power n. If
we want to keep finite value of variance σ2, the power n
should be less than 2/3.

The substitution

n =
2

ν + 1
(21)

and x2
0 = ν, gives the value (2) of the variance for the

Student’s t-distribution.
The kurtosis

κ =
(

1
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)2 ∫ ∞

∞
x4f dx = 3

2− 3n

2− 5n
(22)

is greater than 3 (the value for the case of linear diffusion,
n = 0), and less than infinity for n < 2/5. As could be
expected, the values (20) and (22) can be obtained from
the values of the variance and kurtosis for the subdiffu-
sion given in [18], if sign of n is there changed for the
opposite one.

The substitution (21) for n gives the value (3) of the
kurtosis for the Student’s t-distribution.

5. Linear diffusion

According to (18), for n → 0 we have ξ0 → 2/
√

n.
Moreover, in this limit B
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tion given by formula (10) is
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For n → 0 we have a → D and A → Dt. Hence, we get

f =
1
2

1√
πDt

e−
x2
4Dt , (24)

which is the solution of diffusion equation for the case of
constant coefficient of diffusion, it is for the linear case.

The variance for this case is given by (20) and (13),
with n → 0 and ξ0 → 2/

√
n. Moreover, because a = D

for n = 0

σ2 =
∫ ∞

−∞
x2f dx = 2Dt (25)

and we regain the Einstein result for the mean square
displacement in brownian diffusion.

6. Results

In Figure 2 the density distributions for two different
values n in nonlinear diffusion equation (7) are compared
and related to the numbers of degrees of Student’s distri-
bution. It is visible that the nonlinear diffusion equation
can generate distributions that take into account non-
gaussian behaviour (so called fat, heavy or thick tails)
observed on financial markets, [2].

Fig. 2. Superdiffusion for two different powers n of
nonlinearity in the diffusion coefficient D = af−n, n ≥ 0
for the same time. The powers of n are equal to 0
(Gauss’ shape) and 2/3. The corresponding numbers
of degrees of freedom of Student’s distribution ν are
equal to∞ and 2, respectively. This is a consequence of
relations n = 2/(ν + 1) or ν = (2/n)− 1, cf. Eq. (21).

It is shown, in this paper and in [18], that Zeldovich-
Kompaneets’ type solution describes a full range of non-
linear diffusion processes, from sub- to super-diffusion,
depending on the value n. This type of solution was
completed by adding a prescribed dependence of the dif-
fusion coefficient on time, D = a(t)f−n, Eqs. (5) and
(9).

It was shown also that Zeldovich-Kompaneets’ type so-
lution of diffusion problem is more general than Student’s
t-distribution, cf. Eqs. (1) and (17). These two distribu-
tions can be compared, if we, at first substitute n of Eq.
(17) for 2/(ν +1) of Eq. (1), and next we limit the value
x2

0 to the value ν, cf. Fig. 2. Here the analogy with the
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Student distribution finishes, as in the case of diffusion
x0 is not the parameter of the process but varies with the
time, cf. Eqs. (13), (16) and (9).

Further, it was shown that nonlinear diffusion equation
leads to Student’s t-distribution, if power of nonlinearity
is less than 2. Finite value of variance σ2 is secured if the
power n is less than 2/3, and the finite value of super-
diffusion kurtosis demands n < 2/5.
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