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Acoustically coupled spaces have recently been drawing more and more atten-
tion in the architectural acoustics community, thus a determination of shapes and
frequencies of eigenmodes in these room systems from computer-based models has
become increasingly significant. In this investigation, an eigenvalue problem was
solved numerically for a simple room system consisting of two connected rectan-
gular spaces. In a numerical procedure, the forced oscillator method with a finite
difference algorithm was applied. In order to determine the influence of irregular-
ity of system shape on eigenmodes frequency, a modal behaviour in the coupled
spaces was studied for several sizes of coupling area. Calculation results have shown
that with the exception of a fundamental mode, the changes in resonant frequencies
were relatively small. However, an increase in a system irregularity led to a coinci-
dence of frequencies of neighbouring modes and variations in a sequence of modes
on a frequency axis, which both contributed to a degeneration of eigenmodes.
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1. Introduction

A large amount of studies of vibration behaviours of acoustic field in enclosed
spaces was concerned with rectangular and cylindrical enclosures. The shapes
and frequencies of rigid-walled modes of these regular enclosures are well defined
analytically [1, 2], and have been used for predicting the acoustical characteris-
tics of lightly damped enclosures, which include a vibration spectrum, a pressure
response to acoustical or structural excitations and modal decay times [3, 4].
However, irregularly shaped enclosures are often encountered in practice. They
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usually consist of several partial rooms which are connected to each other, conse-
quently, they constitute room systems with acoustically coupled spaces. Examples
of such systems are theatres, churches or large-size halls with an irregular geom-
etry, thus acoustic properties of coupled spaces have been studied intensively
in the past [5–13]. Unlike regular rooms, the shapes and frequencies of rigid-
walled modes of irregular enclosures are not definable analytically, therefore an
application of modal analysis to such systems was possible through numerical
methods [14, 15].

In a room system consisting of two connected spaces, spatial distributions and
frequencies of modes depend on dimensions and shapes of partial enclosures and
the size of a coupling area. The consequence of a complex room geometry is the
phenomenon of mode localization which characterizes an irregular distribution
of mode amplitude. This effect is similar to that observed in resonators with
fractal boundaries [16] or irregularly shaped cavities [17]. The mode localization
strongly affects the sound pressure distribution in a steady-state and may cause
the double-sloped sound decay when one of enclosures contains a large amount
of acoustic absorption and the second one is more reverberant [18, 19].

As fundamental characteristics of acoustic fields in coupled spaces have an
enormous practical significance, there is a necessity to investigate how the mode
shapes and frequencies are modified with a change in the irregularity of enclosure.
A study of this problem is the subject of the present paper and it was realized for
a room system which consisted of two rectangular spaces coupled acoustically.
A diagram of this system is shown in Fig. 1, where the dimension d1 is a variable
and its change modifies a size of coupling area.
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Fig. 1. Irregularly shaped room in a form of two connected rectangular spaces.
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2. Numerical method

A theoretical modelling of acoustic field in enclosures, having dimensions com-
parable with a length of sound wave, is based on a solution of the wave equation
with specified initial and boundary conditions [1]. From this point of view, the ir-
regularly shaped room may be treated as a resonance system with characteristic
acoustic normal modes determined by eigenfunctions Φmn(x, y, z) with corre-
sponding eigenfrequencies ωmn (m,n = 0, 1, 2...). Eigenfunctions Φmn depend on
a room shape and boundary conditions, and are mutually coupled through the
impedance condition on room walls, but in a low-frequency range, where typical
materials are characterized by a small sound absorption, a distribution of eigen-
modes amplitude is well approximated by uncoupled eigenfunctions satisfying
the Neumann boundary condition (rigid-walled modes) [3]. For a room geometry
shown in Fig. 1, normalized eigenfunctions satisfying this condition are given by

Φmn =

{
Ψn(x, y)/

√
h, m = 0,√

2/h cos(mπz/h)Ψn(x, y), m > 0,
(1)

where h is a room height and Ψn are eigenfunctions which are normalized over
a surface S of room horizontal cross-section and Ψ0 = 1/

√
S. For the Helmholtz

mode (m,n = 0) the eigenfrequency ωmn is equal to zero and for remaining
modes, the eigenfrequencies normalized by the frequency ωr = πc/l are given by

Ωmn =
√

(ml/h)2 + Ω2
n, (2)

where Ωn is a non-dimensional eigenfrequency corresponding to the function Ψn

and Ω0 = 0, and ωr is the fundamental resonance frequency for a rectangular
room with dimensions d, h and l = l1 + l2 + l3, where c is the sound speed
and l is equal or greater than d and h. Distributions of eigenfunctions Ψn in
(x, y) plane were computed numerically via application of the forced oscillator
method [20] with a finite difference algorithm. Non-dimensional eigenfrequencies
Ωn were calculated from the expression

Ωn =
l

π

√√√√−
∫

S

Ψn∇2Ψn dx dy (3)

derived directly from two-dimensional eigenvalue equation: ∇2Ψn+(πΩn/l)2Ψn = 0.
Calculations of eigenfunctions Ψn were carried out for a room having the following
proportions: l1/l = 0.5, l2/l = 0.1, l3/l = 0.4 and d/l = 0.8. A modification of
the coupling area was realized by a variation of the dimension d1 of a room what
is equivalent to a change in the non-dimensional parameter d1/d. In a numerical
study, this parameter was assumed to vary from 0.05 to unity with an increment
δ = 0.05. Dependences of eigenfrequencies Ωn on d1/d were determined for the
first thirty eigenmodes. Values of Ωn for d1/d = 1 were calculated for a rectangle
with dimensions l and d.
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3. Analysis of calculation data

Calculation data presented in Fig. 2 depict changes in the eigenfrequency Ωn

with the parameter d1/d for the first eight eigenmodes. Numbers at each curve
denote mode numbers n, respectively. A substantial variation of the eigenfre-
quency is noted for the fundamental resonant mode (n = 1), for which the non-
dimensional frequency Ωn becomes nearly three times greater with an increase
of d1/d from 0.05 to 1 (Fig. 2a). Significant changes in Ωn are also observed for
mode 8 (Fig. 2b). It is easy to see that these modes for d1/d = 1 correspond to
the first and third lengthwise axial modes (modes excited in a rectangle due to
an acoustic resonance along a higher dimension, in our case in the x-direction).
For the remaining modes a variation of the ratio d1/d results in relatively small
changes in the eigenfrequency.

a) b)

Fig. 2. Non-dimensional eigenfrequency Ωn versus parameter d1/d for mode numbers n: a) 1–4,
b) 5–8.

For modes 2 and 3 one can observe a very interesting behaviour of eigenmode
frequency, namely a coincidence of frequencies of neighbouring modes with a de-
crease of coupling area (Fig. 2a). Explanation of this phenomenon can be found
in Fig. 3 exhibiting the shapes of eigenfunctions Ψn for modes 2 and 3 for three
different values of the parameter d1/d. The plots in Fig. 3 are in a form of filled
contour maps, which are a two-dimensional representation of three-dimensional
data, where contours define lines of constant value of Ψn. For d1/d = 1, modes 2
and 3 represent the first widthwise axial mode (modes excited in a rectangle due
to an acoustic resonance along a smaller dimension, in our case in the y-direction)
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and the first oblique mode, respectively. As d1/d decreases, frequencies of these
modes approach each other and finally, for value of d1/d close to zero they become
a pair of degenerate eigenmodes. Since an energy of these modes is concentrated
in the first or the second part of a room, they represent also a pair of localized
eigenmodes.
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Fig. 3. Shapes of eigenfunctions Ψn for modes 2 and 3 for d1/d equal to 0.1, 0.5 and 1.

To analyse theoretically an acoustic motion associated with the fundamental
resonant mode we assume that the system of coupled rooms, shown in Fig. 1,
represents a duct, where a plane wave motion parallel to the x-direction occurs
only, and the velocity potential φ is given by

φ(x, t) = [(A sin(kx) + B cos(kx)]ejωt, (4)
where A and B are unknown amplitudes and k = ω/c is a wave number. Using
Eq. (4) a general expression for the acoustic impedance can be found

Z(x) = −j
ρc

S0

A sin(kx) + B cos(kx)
A cos(kx)−B sin(kx)

, (5)

where ρ is the air density and S0 is the surface of a duct cross-section. For waves
travelling along x-axis the room system represents a connection of ducts with
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different cross-sections, thus at junctions the following conditions of continuity
of acoustic impedance must be satisfied:

Z(l−1 ) = Z(l+1 ),

Z[(l1 + l2)−] = Z[(l1 + l2)+],
(6)

where the notations a− and a+ respectively denote the values of x immediately
smaller and immediately greater than a. At positions x = 0 and x = l the duct
is terminated by rigid walls, thus using Eq. (5) it is easy to find that

Z(l−1 ) = j
ρc

S1
cot(kl1),

Z[(l1 + l2)+] = −j
ρc

S1
cot(kl3),

(7)

where S1 = dh. A resonant condition for lengthwise axial modes can be derived
from Eq. (6) after inserting Eq. (7) and applying Eq. (5). The result is

S1S2 cot(kl2) [cot(kl1) + cot(kl3)] + S2
2 cot(kl1) cot(kl3) = S2

1 , (8)

where S2 = d1h. Frequencies of modes 1 and 8 calculated numerically and reso-
nant frequencies computed from Eq. (8) are compared in Fig. 4. The analytical
model accurately predicts a tendency of eigenfrequency variations with a growth
of the ratio d1/d and evaluates well the values of Ωn for d1/d close to zero or
unity. This can be explained by the fact that an acoustic motion inside a room
system at extreme values of d1/d is nearly parallel to the x-axis. Larger discrep-
ancies between the numerical and analytical data are observed in a middle range
of d1/d values. It is due to the fact that in this case, eigenmodes have a more
visible two-dimensional structure, therefore the assumption that a distribution
of acoustic field inside a room system is one-dimensional, results in larger errors
in resonant frequency calculations.

Calculation results obtained for the next set of eigenmodes are shown in Fig. 5.
Since for some values of d1/d the frequencies of neighbouring eigenmodes are
very similar, a dependence of Ωn on the ratio d1/d for respective eigenmodes,
was determined using the similarity criterion∫

S

Ψ (1)
n Ψ (2)

n dx dy ≈ 1, (9)

where Ψ
(1)
n and Ψ

(2)
n are eigenfunctions computed for values of d1/d differing from

each other by δ. A coincidence of mode frequencies with increasing the room ir-
regularity, appearing previously for modes 2 and 3, one may note for modes 12
and 13 (Fig. 5a). The other interesting thing is that the curves obtained for some
neighbouring eigenmodes intersect. Consequently, a sequence of eigenmodes on
a frequency axis may change with a variation of coupling area, and for values of
d1/d corresponding to intersection points there exist pairs of degenerate eigen-
modes.
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a)

b)

Fig. 4. Non-dimensional eigenfrequency Ωn versus parameter d1/d for mode numbers n: a) 1
and b) 8. Points: numerical data. Solid lines: calculation results from Eq. (8).

a) b)

Fig. 5. Non-dimensional eigenfrequency Ωn versus parameter d1/d for mode numbers n: a) 9–13,
b) 14–18.
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Figure 6 presents calculation data for the last twelve eigenmodes. The graphs
obtained for modes 20–22 indicate that a change in a coupling area can force
such variations of eigenmode frequency that multiple changes in a sequence of
neighbouring modes on a frequency axis are observed (Fig. 6a). Another thing
of special interest, which needs a wider explanation, is untypical behaviour of
eigenmode frequency for two pairs of modes: 19, 20 and 29, 30, because curves
corresponding to each pair are joined for d1/d = 1. In these particular cases
a conversion of two separate eigenmodes into degenerate modes is caused by
a special proportion between dimensions d and l of a room.

a) b)

Fig. 6. Non-dimensional eigenfrequency Ωn versus parameter d1/d for mode numbers n:
a) 19–24, b) 25–30.

A horizontal room cross-section for d1/d equal to unity has a form of rectangle
with normalized eigenfrequencies given by the expression

Ωn =

√
m2

1 + m2
2

(
l

d

)2

, (10)

where m1 = 0, 1, 2... and m2 = 0, 1, 2... are mode indices for lengthwise and
widthwise resonances, respectively. Since d/l = 0.8, the first pair of degenerate
eigenmodes occurs for m1 = 0, m2 = 4 and m1 = 5, m2 = 0 and it corresponds
to the value of Ωn equal to 5. The second pair is formed by eigenmodes for which
m1 = 0, m2 = 5 and m1 = 5, m2 = 3 and in this case Ωn = 6.25. Shapes
of eigenfunctions Ψd

n for the first pair of degenerate eigenmodes, together with
shapes of eigenfunctions Ψn for separate eigenmodes (d1/d = 0.95), are shown
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in Fig. 7. These graphs imply that functions Ψn for modes 19 and 20 just after
a separation are a sum of eigenfunctions Ψd

n with a certain proportion. This
regularity can be written as

Ψn ≈ anΨd
n + bnΨd

n+1,

Ψn+1 ≈ an+1Ψ
d
n + bn+1Ψ

d
n+1,

(11)

where an, bn and an+1, bn+1 are unknown coefficients. Since eigenfunctions are
normalized over a room horizontal cross-section, expressions for these coeffi-
cients are

am ≈
∫

S

ΨmΨd
n dx dy,

bm ≈
∫

S

ΨmΨd
n+1 dx dy,

(12)

where m is equal to n or n + 1. From Eq. (11) it results that am and bm must
satisfy the condition

a2
m + b2

m ≈ 1. (13)

mode 19 mode 20

max min0
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 /d

 =
 1

d 1
 /d

 =
 0

.9
5

Fig. 7. Shapes of eigenfunctions Ψd
n (d1/d = 1) and eigenfunctions Ψn (d1/d = 0.95) for modes

19 and 20.

Values of am and bm calculated from Eq. (12) for modes 19, 20, 29 and 30
are collected in Table 1. As it may be seen, when d1/d = 0.95 the condition (13)
is not fulfilled with a good precision for some cases and it is satisfied much more
accurately for the value of d1/d somewhat closer to unity (d1/d = 0.975).
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Table 1. Coefficients am and bm calculated from Eq. (12) for modes 19, 20, 29, 30 and d1/d
equal to 0.95 and 0.975.

d1/d m am bm a2
m + b2

m

0.95 19 0.4983 0.8632 0.9935

0.95 20 −0.8841 0.4258 0.9630

0.95 29 0.6617 0.7418 0.9880

0.95 30 −0.7478 0.5721 0.8865

0.975 19 0.5682 0.8216 0.9979

0.975 20 −0.9114 0.3992 0.9901

0.975 29 0.7240 0.6862 0.9950

0.975 30 −0.7867 0.5858 0.9621

4. Conclusions

Enclosed spaces which are coupled together by an open area are known to
exhibit some interesting phenomena like a confinement of an acoustic vibration
in a restricted part of enclosure, commonly known as the mode localization, and
variations of initial and late decay times with a distribution of absorbing material
on room walls, often referred to as the double-sloped sound decay. These effects
are strongly frequency-dependent because fundamental acoustic characteristics
of coupled spaces are shapes and frequencies of eigenmodes generated inside the
enclosure as a response to acoustical or structural excitations.

In a simple system of coupled spaces consisting of two connected rectangular
enclosures, the shapes of eigenmodes and resonant frequencies depend on dimen-
sions of partial enclosures and a size of a coupling area, which is a measure of
the room irregularity. In this study it was found that a change in the coupling
area contributes to relatively small variations of eigenfrequencies. An exception is
the fundamental resonant mode for which the eigenfrequency decreases approx-
imately three times in the considered range of a coupling area. As was shown
for lengthwise axial modes, the ranges of eigenfrequency variations are fairly well
predicted by the theory based on a plane wave transmission within the room
system. Larger differences between numerical and analytical data are noted for
a moderate room irregularity. In this case eigenmodes have a more visible two-
dimensional structure, therefore the assumption that a distribution of acoustic
field inside a room system is one-dimensional, results in larger errors in frequency
calculations.

Along with a change in a coupling area one might observe the effect of a mode
degeneration and it was found that there are two main reasons for this. Firstly, the
degeneracy is connected with a coincidence of frequencies of neighbouring modes
with an increase of a room irregularity and it appears for a coupling area close
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to zero, where an energy of modes is concentrated inside the first or the second
part of a room. Thus, this kind of a mode degeneration is associated directly with
a phenomenon of mode localization. Another reason for a mode degeneration are
variations in a sequence of modes on a frequency axis, with a modification of
a coupling area. In this case, frequencies of modes are equal to each other just
before a change in a sequence of modes.

Owing to a particular geometry of coupled spaces, the mode degeneracy was
also present in a room system without a shape irregularity, i.e. for enclosed spaces
forming a rectangular enclosure. When a system geometry deviated slightly from
a regular shape, a conversion of degenerate eigenmodes into two separate modes
occurred. It was demonstrated that eigenfunctions corresponding to the sepa-
rate modes are a sum of eigenfunctions of degenerate eigenmodes with certain
proportions.
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