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R. WojnarKineti equation for a gas with attrative fores asa funtional equationAbstrat. Di�usion problems studied in the time sale omparable with timeof partiles ollision lead to kineti equations whih for step-wise potentialsare funtional equations in the veloity spae. After a survey of derivation ofkineti equations by projetive operator method, an attention is paid to theLorentz gas with step potential. The gas is omposed of N partiles: N−1 ofwhih are immovable; between those N −1 immovable partiles � satterers,partile number 1 is moving, and we desribe its movement by means ofone-partile distribution funtion satisfying a kineti equation. Solutions ofthe kineti equation for some simple potentials are given. We derive alsoa kineti equation for one-dimensional Lorentz gas, whih is a funtionalequation.1. IntrodutionGeneral kineti equations with onvolution time integral (hene nonloal intime and non-markovian) were �rst derived and disussed by the Brussels group,headed by Ilya Prigogine, [1℄. Di�erent orrelation funtions used to desribenon-equilibrium proesses satisfy suh equations, [2℄ � [7℄.A omparison of the theory of the Brussels group, with the Bogolyubov theory,then being developed by the Uhlenbek group was given in a paper by Steki andTaylor, [8℄. These results were next extended and ordered by the Brussels group,[9℄. Robert Zwanzig, [4, 10℄ desribed a new method of derivation of kineti equa-tions. The main tool of this derivation is the use of projetion operators in theHilbert spae of Gibbsian ensemble densities. It was noted by Nelkin and Ghatakthat the Van Hove self-orrelation funtion Gs(r, t) for a dilute �uid is determinedby a linearized Boltzmann equation idential to that ouring in the theory ofneutron di�usion, [11℄.The kineti equation (KE) desribing di�usion in time sale omparable withtime of the partiles ollision, is also a time onvolution kineti equation, whih forAMS (2000) Subjet Classi�ation: 82C41, 82C70, 92B05.Volumes I-VII appeared as Annales Aademiae Paedagogiae Craoviensis Studia Mathematia.



[92℄ R. Wojnara step-wise interation potential takes form of a funtional equation in the veloityspae.We work in the framework of kineti theory of a Boltzmann gas, with useof statistial mehanis methods. The gas is omposed of N partiles, and theproblem disussed onerns the di�usion of a marked partile (number 1) amid
(N − 1) other lassial dilute gas partiles.Applying to the Liouville equation the proper projetion operator, a kinetiequation for one-partile distribution funtion f(k,v1, t) is derived. Here k denotesthe Fourier vetor variable (wave vetor) after transformation of spaial oordinate
r1, whih denotes the position of partile number 1. The vetor v1 is the veloityof this partile, while t is a time. Funtion f(k,v1, t) is Fourier transform ofone-partile distribution funtion fs(r,v1, t), whih represents the probability of�nding a partile at time t at r with veloity v1, if the same partile was at time
t = 0 at r = 0 with the given distribution of veloity v1, e.g. the Maxwellian.Right-hand side of KE has a form of time onvolution of a sattering operator
G = G(k, t) and funtion f = f(k,v1, t). It is valid not only for long times (inomparison with time of ollision, as it is in ase of the Boltzmann equation andin Brownian movement theory) but also for short times.KE onsidered here was found previously by Jan Steki, [12℄, f. also [13, 14℄.This is a time onvolution equation for a gas whih partiles interat by attrative-repelling potential with step dependene on distane. In suh a ase the phasespae onsists of distinly separated regions and the kineti equations is trans-formed from a onvolutive one into a funtional equation.1.1. NotationThe gas oupies volume V and onsists ofN partiles, numbered by indies i =
1, . . . , N , and mi, vi and ri are the mass, veloity and position of partile number
i, respetively. Cartesian oordinates of vetor vi are denoted by vix, viy, viz andthose of ri by xi, yi, zi.The Maxwell distribution funtion of the veloity is denoted by
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Ēkin =
3

2
kBT =

3

2β
.The seond law of thermodynamis states that any two interating systems willreah the same average energy per partile and hene the same temperature.In equilibrium, the probability of �nding a partile with veloity vi in the in-�nitesimal element dvi = [dvix, dviy, dviz ] about veloity vi = [vix, viy , viz] is

ϕM (vi)dvixdviydviz or ϕM (vi)dvi.



Kineti equation for a gas with attrative fores as a funtional equation [93℄The interation potential uij between partiles number i and number j dependson distane between these partiles only:
uij = uij(|ri − rj |).Hene the total potential energy of the system
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uij ,where rij = |rij | = |ri − rj |.1.2. Physial meaningThe funtion f = f(k,v1, t) is related to sattering phenomena. Essential forinterpretation of inoherent sattering experiments is the Van Hove funtion
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[94℄ R. Wojnarand
FN (t) = e−tKNFN (0)with
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(4)is the N -partile Liouville operator.Normalization fator in (3)
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∫
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e−βU drN , where drN = dr1dr2 . . . drNis known as the partition funtion or sum-over-states.The partition funtion Q is related to thermodynamial properties of the sys-tem, f. [20℄, [21℄, [22℄. With a model of the mirosopi onstituents of a system,one an alulate the mirostate energies, and thus the partition funtion, whihwill then allow us to alulate all the other thermodynamial properties of thesystem.Researh in the predition of binding a�nities has been a ontinuing e�ort formore than half a entury, [23, 24℄. An important appliation of the on�gurationintegral lies in the development of omputational models for the ligand-reeptorbinding a�nities. Their study onstitutes the most important problem in ompu-tational biohemistry. Espeialy, the predition of absolute ligand-reeptor bindinga�nities is essential in a wide range of biophysial questions, from the study ofprotein-protein interations to struture-based drug design.In a ligand-reeptor binding, a ligand is in general any moleule that binds toanother moleule; the reeiving moleule is alled a reeptor, whih is a protein onthe ell membrane or within the ell ytoplasm. Suh binding an be represented bythe hemial reation desribing nonovalent moleular assoiation A+B ↔ AB,where A represents the protein (reeptor), B the ligand moleule, and AB theprotein-ligand omplex. The hange in the Gibbs free energy an be expressed asa ratio of on�guration integrals, [25℄.An alternative form of the kineti equation (2) is
(−iz + ikv1)f(k,v1, z) − f(k,v1, t = 0) = G(k, z)f(k,v1, z) (5)where f(k,v1, z) is the Laplae transform of f(k,v1, t) de�ned as f(z) =
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0 eiztf(t) dt. We use the same letter for a funtion and its Laplae transform,but it does not lead to onfusion, beause all arguments are expliitly written.If m1 ≫ mi, i = 2, 3, . . . , N we have the Brownian di�usion of partile num-ber 1. If m1 ≪ mi, i = 2, 3, . . . , N - the Lorentz gas is dealt with, f. also[26, 27℄.



Kineti equation for a gas with attrative fores as a funtional equation [95℄1.3. Diffusion in biologyFor big times and for isotropi medium the Van Hove funtion Gs = Gs(r, t)is given by a solution of the lassial Fik's equation, namely,
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.In spite of passing to the limit, residual information about the dynamis of systemis still ontained in the di�usion oe�ient D. For example, in the random walkdi�usion the oe�ient D = h2

2τ
, with h and τ being the length and duration ofone step in the walk, respetively.The laws of di�usion (in whih oe�ient D is used) were disovered in 1855by physiian and physiologist Adolf Eugen Fik, [28℄ � [30℄.At the beginning of the 20th entury, Einstein and Smoluhowski, indepen-dently, have found relation between marosopi di�usion oe�ient D and theBrownian movement phenomenon, explaining it in mirosopi, moleular terms,f. [31, 32℄. The phenomenon was �rst expliitly desribed in 1828 by the physi-ian and botanist Robert Brown, who observed in aqueous suspensions of pollengrains from Clarkia pulhella a rapid, ontinuous, short-range motion of small in-luded partiles that �arose neither from urrents in the �uid nor from its gradualevaporation, but belonged to the partile itself�, [33, 34℄.After disovery of Fik's laws, in physiology dominated the opinion that dif-fusion laws should explain all problems of metabolism. It was widely believedin XIX entury that di�usion is responsible for suh organi proesses as gas ex-hange in the leaves of plants, gas exhange in the lungs of animals, the uptake ofthe produts of digestion from the gut.However, the development of knowledge on the ell struture has permitted togather an abundant evidene on inadequay of di�usion theory for explaining muhof the movements of substanes in organisms, studied in biology and mediine. TheFik di�usion alone ould desribed physiologial proesses only in dead tissues.In 1912 medial dotor and physiologist, Otto Heinrih Warburg publisheda disovery: oxygen utilization requires strutural elements in the ell � a solidphase. These strutures, now reognized as mitohondria, had been desribed bylight mirosopists two deades before Warburg's publiation, and 80 years laterwere found to be plaes where Brownian motors work, [35℄.



[96℄ R. WojnarThe assumptions of the Einstein�Smoluhowski model are not even approxi-mately met in vivo. The ell ontains a highly onentrated and heterogeneousassembly of deformable, interating and inelastially olliding partiles; muh ofthe solvent (water) is bound to solid strutures whih, although not neessarilylong-living, have huge surfae areas; and in any ase the onditions only tendto thermodynami equilibrium after death. The model representing the �miro-sopi� aspet of di�usion theory assumes a dilute, homogeneous suspension ofrigid, non-interating and elastially olliding partiles, a monophasi system withthe solvent (largely) unbound, and a tendeny towards equilibrium. Also, themodel assumes that there are no net solvent movements, and this is undoubtedlyrelevant in intraellular transport, [36, 37℄, also [38℄.After the idea arose that the ell internum does, at least in part, behave as a gel,the di�usion through gels beame an important subjet of study. Investigationsof di�usion in gels put a question on appliability of Fik's laws in the �eld.Bigwood has shown in 1930 that not only is di�usion in gels highly dependenton the absolute onentration of di�using substane (in ontrast to the lassiallinear Fik's theory that di�usion rates depend only on onentration gradients),but that it is both slow and unpreditable, partiularly when the gel is made ofprotein, as the gel state of the ell internum should be, f. [39, 40℄. It beamelear then that in desription of biologial ell extreme order has to be reoniledwith a �uid anatomy. Two kinds of intraellular transport are possible: one, whihaounts for the movements of maromoleules and assemblies; and seond, whihwill aount for the movements of small moleules and ions, [41℄.In 1949 Hans Ussing onduted investigations with use of radioative traersand gave the systemati moleular level aount of a �seretion� proess in biology,as an opposite to the �di�usion� desription. Ussing de�ned the term �ativetransport�, whih means the reation of a genuinely �uphill� onentration gradient,f. [42, 43℄. Ative transport is now an aepted part of biologial knowledge, andindividual ative transport mehanisms are frequently objets of researh.In 1950 BBC leture J.Z. Young onluded: the more we ome to know ofthe �ux of hemial hanges in the body, the more one great weakness of themahine analogy stands out. The onept of a dynami organization, suh as thatof a whirlpool, demands a onsideration of time � of before and after and of gradualdevelopment and hange of pattern, but the mahine models of physiology allowno plae for this element. In the tissue spaes, as well as inside the ell, there is�uid irulation among solid-state elements, [44℄.The di�usion onepts persisted for a long time in desription of respiratoryproesses. Until now, the method of �di�usion apaity� is pratiised as a mea-surement of the lungs ability to transfer gases. Oxygen absorption may be limitedby di�usion in irumstanes of low ambient oxygen or high pulmonary blood�ow. Carbon dioxide is not limited by di�usion under most irumstanes. The�di�usion apaity� is part of omprehensive test series of lung funtion alled pul-monary funtion testing. It is known, however, di�usivity estimates are seriouslyproblemati even with modern equipment. Longmuir wrote: �If simple di�usionis the sole mehanism of tissue oxygen transport as proposed by Krogh (1919),it is di�ult to see how alimatization ould our without a redution in the



Kineti equation for a gas with attrative fores as a funtional equation [97℄di�usion oe�ient. The kinetis of oxygen transport annot be explained by pas-sive di�usion alone; the searh for other mehanisms led to the observation thatall kineti data ould be explained by hannels in ells along whih the oxygendi�uses faster than in water, [45, 46℄.�The ell internum is far more omplex organised right down to the moleularlevel than was hitherto appreiated, to the point where ideas of a relatively solid-state hemistry model have ooured. The �ow theory of enzyme kinetis � a roleof solid geometry in the ontrol reation veloity in live animals. This ontrastssharply with the former onept that di�usion is the way by whih moleulesinterat within an aqueous solution of the ell internum, [47℄ � [52℄.In living systems, most moleules do not generally move, but are moved, whenwe onsider what would happen if everything depended upon Brownian motionand the law of mass ation. R.P.C. Johnson in 1983 reognised a grey area at themoleular level when onsidering the movement of moleules within living ells:�This is the region of sale where �ow and di�usion are not learly separated;where the onepts of temperature and moleular movement overlap; where it isnot lear whether moleules move or are moved; where the ideas of ative andpassive lose their meaning�, [53, 48℄, also [54℄ and [55℄.Until now, biologists use the term �di�usion� in a twofold meaning. One isFik's di�usion, and the seond one is vernaular, for spreading proess, when�di�usion� is not adhered to a spei�, de�ned sienti� term. For an ativetransport the term ative di�usion is sometimes used, as an opposite to passive(i.e. Fikian) di�usion.The ompliation in the desription of biologial proesses may be found inappliation of the Smoluhowski di�usion with drift equation. In this equation analeatory aspet is oupled with deterministi. The drift fore ontrols di�usionand di�usion re�ets the in�uene of thermal vibrations of the evironment on theproess.All phenomena, biologial also, are developing in given thermal onditions,and the appliation of thermodynamis is inevitable. The �mirosopi� aspetof di�usion theory, is that random thermal motions of moleules in liquids areresponsible for return of di�usion, partiularly Brownian movement theories, intoontemporary biophysis.Brownian or moleular motors are biologial �nanomahinees� and are the es-sential agents of movement in living organisms. A motor is regarded as a deviethat onsumes energy and onverts it into motion or mehanial power. Adenosinetriphosphate (ATP) is the fuel for the moleular motors ation. Many protein-based moleular motors onvert the hemial energy present in ATP into me-hanial energy. The ATPase moleular motors are found in the membranes ofmitohondria, the mirosopi bodies in the ells of nearly all living organisms, aswell as in hloroplasts of plant ells, where the enzyme is responsible for onvertingfood to usable energy, [56℄ and [57℄.It was shown by Streater that the Smoluhowski equation for a Brownian par-tile potentially an be supplemented by an equation for the dynamis of the tem-perature, so that the �rst and the seond laws of thermodynamis are obeyed. Heonsidered also a model studied by David Smith, known as the dumbbell model,



[98℄ R. Wojnarin whih the Brownian partile is a two-level atom, and had shown that underisothermal onditions, the free energy an be given a natural de�nition out ofequilibrium, and is a dereasing funtion of time, [58℄, also [59℄. Smith has appliedhis model to desribe a myosin moleule, [60, 61℄, also [62℄ and [63℄.Maromoleular partiles playing a role in protein motors are heavy (Brown-ian) in omparison with solvent (water) moleules, but are light (Lorentzian) inomparison with mass of substratum (mitohondrium).Another biologial example in whih the passive di�usion plays a role is pro-vided by alimentation proesses in artilage, tissue whih supplies smooth surfaesfor the movement of artiulating bones. The artilage is built of ells, alled hon-droytes, produing a large amount of extraellular matrix omposed of ollagen�bers, abundant ground substane rih in proteoglyan, and elastin �bers. Unlikeother onnetive tissues, artilage does not ontain blood vessels. The hondro-ytes are fed by di�usion, helped by the pumping ation generated by ompressionof the artiular artilage or �exion of the elasti artilage. Thus, ompared to otheronnetive tissues, artilage grows and repairs more slowly, [64℄.The di�usion proess appears in biology also as the property of homeostasis inorganisms.Homeostasis (from Greek: hómos, �equal�; and istemi, �to stand� lit. �to standequally�; oined by Walter Bradford Cannon) is the property of either an opensystem or a losed system, espeially a living organism, that regulates its internalenvironment so as to maintain a stable, onstant ondition. Multiple dynami equi-librium adjustment and regulation mehanisms make homeostasis possible. Theonept ame from that of milieu interieur that was reated by Claude Bernard,often onsidered as the father of physiology, and published in 1865.With respet to any given life system parameter, an organism may be a on-former or a regulator. Regulators try to maintain the parameter at a onstantlevel over possibly wide ambient environmental variations. On the other hand,onformers allow the environment to determine the parameter. For instane, en-dothermi animals maintain a onstant body temperature, while exothermi ani-mals exhibit wide body temperature variation. Examples of endothermi animalsinlude mammals and birds, examples of exothermi animals inlude reptiles andsome sea animals.Most homeostati regulation is ontrolled by the release of hormones into thebloodstream. However other regulatory proesses rely on simple di�usion to main-tain a balane.Homeostati regulation extends far beyond the ontrol of temperature. Allanimals also regulate their blood gluose, as well as the onentration of theirblood. Mammals regulate their blood gluose with insulin and gluagon. Thesehormones are released by the panreas, the inadequate prodution of the two forany reason, would result in diabetes. The kidneys are used to remove exess waterand ions from the blood. These are then expelled as urine. The kidneys performa vital role in homeostati regulation in mammals, removing exess water, salt,and urea from the blood. These are the body's main waste produts, [65℄.



Kineti equation for a gas with attrative fores as a funtional equation [99℄2. Projetive operator methodThe projetion operator is introdued, [66℄,
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[100℄ R. Wojnarand �nally
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Kineti equation for a gas with attrative fores as a funtional equation [101℄The �rst terms of the expansion are
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ikr1e−βuϕM (v2).For k = 0 and z = 0 the sattering operator redues to the Boltzmann satteringoperator. It also takes the Boltzmann form for k = 0, arbitrary z and su�ientlyhigh veloity v1.4. Lorentz gasThe Lorentz gas orresponds to the asem2 → ∞, v2 → 0 and ϕM (v2) → δ(v2).Only the veloity of partile 1 remains and is denoted by v1 = v. The Lorentzmodel is widely studied as a simple model of a rystal, f. for example [67℄ � [78℄.
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Figure 1. Spherial potential: hard ore of radius b (blak irle) and well (whitering) with internal radius b and external radius aThe Lorentz gas was examined in [66℄ for the following ase of repulsive � attrativepotential, see Figure 1,
u(r) = ∞ if r < b, u(r) = −u0 < 0 if b < r < a, u(r) = 0 if r > a,where r is the radius in polar oordinates. Thus, the potential possesses spherialrigid repulsive ore of radius b surrounded by a well (b < r < a) of depth −u0,



[102℄ R. Wojnar
u0 > 0. Sattering operator for this potential, for the dilute Lorentz gas has thefollowing form
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2

)

eikri(−z + kv)
f(k, z,v)

ϕM (v)
.The KE for three-dimensional Lorentz gas of N − 1 �xed rigid spheres with thesquare-well attrative potential was given also in [66℄. It is an integral (in on-�gurational spae) and funtional (in veloity spae) equation for the unknowndistribution funtion ψ(v) whih links the values of ψ(v) at 8 di�erent values ofargument v.5. Lorentz gas of rigid spheres with finite time of ollision τ ∗The potential of rigid sphere with retangular well hanges the time of intera-tion of the light partile with satterer, is ontrast to the zero time of interationwith the rigid sphere potential alone. To avoid additional onsideration of satter-ing trajetory we aept the rigid sphere potential (R1 = R2), in whih, however,the interating partiles remain onneted for a ertain time τ∗. This time ofollision is negative in ase of the potential well. In this ase

G12f(k, z,v) = vϕM (v)
N

V

a2

4

∫

dΩ
[

Ψ(k, z,v′)eizτ∗

− Ψ(k, z,v) + 1 − eizτ∗]

,where integration is performed over the full solid angle and
Ψ(k, z,v) ≡

f(k, z,v)

ϕM (v)
.We introdue the following notation

πa2v
N

V
= ε−1

0 ,
1

4π

∫

dΩ = P̂ .Kineti equation takes the form
(−iz + ikv + ε−1

0 )Ψ − h = ε−1
0 eizτ∗

(P̂Ψ) + 1 − eizτ∗

.Here h = δ(v − v′) is the initial ondition. Hene
Ψ =

ε−1
0 eizτ∗

−iz + ikv + ε−1
0

P̂Ψ +
h+ 1 − eizτ∗

−iz + ikv + ε−1
0

.Therefore the solution reads
Ψ =

ε−1
0 eizτ∗

−iz + ikv + ε−1
0

(

1 −
eizτ∗

kvε0
arctan

kvε0
1 − iε0z

)−1

× P̂
h+ 1 − eizτ∗

−iz + ikv + ε−1
0

+
h+ 1 − eizτ∗

−iz + ikv + ε−1
0

.



Kineti equation for a gas with attrative fores as a funtional equation [103℄For the hydrodynami pole we have
−iz = ε−1

0 + kv cot[(cos zτ∗ − i sin zτ∗)kvε0].If the time of ollision τ∗ = 0, KE equation beomes
(−iz + ikv + ε−1

0 )Ψ − h = vϕM (v)
N

V

a2

4

∫

dΩ.This is the lassial Boltzmann equation for the Lorentz gas. Its solution has theform disussed by Hauge in [78℄.6. One-dimensional KEThe 3 dimensional dynamis, even for the Lorentz gas, is still too ompliatedto be e�etively solved and for this reason we limit ourselves to 1-dimensionalmodel. It posseses some important features of 3-dimensional ase, but mehanisof the light partile motion is more simple. It may be expeted that the obtainedresults will have a more general meaning. Suh proedure is often used, see [79℄ �[82℄.The one-dimensional onsiderations permitted Fermi, Pasta, Ulam and MaryTsingou to �nd that the behaviour of a 32-atom hain is quite di�erent fromintuitive expetation. Instead of thermalisation, a ompliated quasi-periodi be-haviour of the system was observed, [83℄, also [84℄.Morita and Fukui onsidered the heat transfer in one-dimensional gas, [85℄,while Ka [86℄ � [89℄ and MKean [90℄ onsidered one-dimensional analogues ofthe linear Boltzmann equation.

-x
6

potential
- b r0

u1
-u0 b- a a

-light partileV IV III II I
Figure 2. Con�gurational spae of one-dimensional model. Light partile movesin potential of a well of depth −u0 < 0 and a repulsive ore of hight u1 > 0



[104℄ R. WojnarThe Lorentz gas is examined here in one dimension, for the ase of attrative� repulsive potential
u(x) =











u1, |x| < b,

−u0 < 0, b < |x| < a,

0, |x| > a.The quantity −u0, with u0 > 0 is the depth of the potential well, while u1 > 0denotes the height of the potential barrier, see Figure 2.6.1. Kineti equation in 1 dimensionThe KE has still struture of (5) but vetors are now one-dimensional
(−iz + ikv)f(k, v, z) − f(k, v, t = 0) = G(k, z)f(k, v, z).Sattering operator for the dilute Lorentz gas of N partiles in one-dimensionalsegment L, (−L

2 < x < L
2 ), has the following form

G(k, z)f(k, v, z) = i(−z + kv)
N

L

∫

dx e−βuϕM (v)e−ikx

×

∞
∫

t1

dt eizt
(

e−tK2 − e−tK0
2

)

eikxi(−z + kv)
f(k, z, v)

ϕM (v)

(6)Here K2 is the two partile Liouville operator, see (4), for N = 2. In alulations
L → ∞ but N

L
is kept onstant. Suh proedure is known as the thermodynamilimit (one inreases the volume together with the partile number so that theaverage partile number density remains onstant). Thus, integration with respetto x extends from minus to plus in�nity. Below we put

Ψ(v) =
f(k, z, v)

ϕM (v)
.The phase spae is now two-dimensional only: one-dimension for positions andanother for veloities of the light partile. The position spae is divided into 5regions, from I to V, see Figure 2, while the veloity spae in eah of these regionsis divided, in dependene of kineti energy of the partile (whether it permits forbounded or unbounded motion of the partile).6.2. Bounded motionsThe bounded motion of partile ours in regions of the potential well, II andIV, only, if simultaneously the partile kineti energy is less than the depth of thewell u0.



Kineti equation for a gas with attrative fores as a funtional equation [105℄Regions b ≤ x ≤ a and −a ≤ x ≤ −bLet us onsider bounded motion of our partile in segment b ≤ x ≤ a withveloity v <
√

2
m
u0. The position of partile along its trajetory is given byrelation

e−tK2x = x(−t)

= x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)η(t4 − t)

− . . .− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t4 − t3) + v′′′′(t5 − t4)

+ . . .+ v(2n)(t2n+1 − t2n) + v(2n+1)(t− t2n+1)]η(t − τ2n+1).Similarly, the veloity is given by
e−tK2v = v(−t)

= vη(t1 − t) + v′(t− t1)η(t2 − t) + v′(t− t1)η(t2 − t)

+ v′′η(t− t2)η(t3 − t) + v′′′η(t− t3)η(t4 − t)

+ . . .+ v(2n−1)η(t− t2n−1)η(t2n − t)

+ v(2n)η(t− t2n)η(t2n+1 − t) + v(2n+1)η(t− t2n+1).In the equation above we have
v′ = −v, v′′ = v, . . . , v(2n−1) = −v, v(2n) = vand 2n denotes the number of full periods performed by the partile in the time

t. Moreover, tm, m = 1, 2, . . . denotes the moment of bouning from the wall ofthe well. The instant of the �rst ollision of the partile with wall is given by
t1 =

x− b

|v|
(7)and the next instants satisfy relations

t2 − t1 = t3 − t2 = . . . = tm − tm−1 = τ =
a− b

|v|
.Di�erenes between the subsequent moments are idential and equal τ . Thereforethe period of bouning is 2τ .For the time being we replae the in�nity in the upper limit of time integral in(6) by T , and next extend T → ∞ and n→ ∞.

(G(k, z)f(k, v, z))IIA

= i(−z + kv)
N

L
eβu0ϕM (v)

a
∫

b

dx e−ikx

{ t2
∫

t1

dt ei(z+kv)te−ik2vt1 i(−z − kv)tΨ(−v)



[106℄ R. Wojnar
+

t3
∫

t2

dt ei(z−kv)te−ik[vt1−v(t2−t1)−vt2]i(−z + kv)tΨ(v)

+

t4
∫

t3

dt ei(z+kv)te−ik[vt1+vt3]i(−z − kv)tΨ(−v)

+

t5
∫

t4

dt ei(z−kv)te−ik[vt1−v(t4−t3)−vt4]i(−z + kv)tΨ(v)

+ . . .+

t2n
∫

t2n−1

dt ei(z+kv)te−ik[vt1+vt2n−1]i(−z − kv)tΨ(−v)

+

t2n+1
∫

t2n

dt ei(z−kv)te−ik[vt1−v(t2n−t2n−1)−vt2n]i(−z + kv)tΨ(v)

+

T
∫

t2n+1

dt ei(z+kv)te−ik[vt1+vt2n+1]i(−z − kv)tΨ(−v)

−

T
∫

t1

dt ei(z−kv)ti(−z + kv)tΨ(v)

}

.We take n so large that
T − t2n+1 < τ.We integrate at �rst with respet to t, and next with respet to x. Variable x isfound only in time of the �rst ollision t1 = x−b

v
, f. (7). After integration andpassing with n to in�nity, there appear series ot type

1 + eiz2τ + eiz4τ + . . .+ eiz2nτ + . . . =
1

1 − eiz2τ
for n→ ∞.Finally we �nd the following KE

(−iz + ikv)Ψ(v) − h(v) = C[Ψ(−v) − Ψ(v)]with
h(v) =

f(k, v, t = 0)

ϕM (v)
and C =

N

L
|v|

1 − 2eizτ cos(kvτ) + eizτ

1 − eizτ
eβu0 .Remark that C is even in v. The solution of KE reads

Ψ(v) =
(−iz − ikv + C)h(v) + Ch(−v)

−z2 − 2izC + k2v2
.Idential relation desribes the bound motion in segment −a ≤ x ≤ −b, withveloity v < √

2
m
u0.



Kineti equation for a gas with attrative fores as a funtional equation [107℄6.3. Unbounded motionsThe phase subspaes of bounded and unbounded one-dimensional motions ofthe partile are separated by the value of its kineti energy, in the dilute gasapproximation. The partile one trapped in bounded motion, persists in it forever,and a partile in the phase subspae where unbounded motion ours an neverbeome bounded.6.3.1. Region I: (a < x < ∞)The partile whih is at the time t = 0 in this region is subjet to 3 aelerationsif its kineti energy is less then the height of the potential barrier u1 (Case IA) or4 aelerations if it is higher (Case IB).Case IA: if 0 < v <
√

2
m
u1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− t3)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t3 − t)η(t− t2) + v′′′η(t− t3)with

v′ =
v

|v|

√

v2 +
2

m
u0, v′′ = −v′, v′′′ = −v (8)and

t1 =
x− a

|v|
, t2 = t1 +

a− b

|v′|
, t3 = t2 +

a− b

|v′|
= t1 + 2

a− b

|v′|denote the moments of subsequent ollisions. As before (Setion 6.2), the positionvariable x is hidden in t1.After straightforward alulations we get the part of right hand side of (6)linked to this subregion
Gf(IA) =

N

L
|v|ϕM (v)

{[

1 − e
i(z−kv′) a−b

|v′|

]

Ψ(v′)

+
[

1 − e
i(z+kv′) a−b

|v′|

]

e
i(z−kv′) a−b

|v′| Ψ(−v′) + e
iz2 a−b

|v′| Ψ(−v) − Ψ(v)
}Case IB: if v > √

2
m
u1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)η(t4 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t4 − t3) + v′′′′(t− t4)]η(t− t4)



[108℄ R. Wojnarand
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t3 − t)η(t− t2)

+ v′′′η(t4 − t)η(t− t3) + v′′′′η(t− t4)with
v′ =

v

|v|

√

v2 +
2

m
u0, v′′ =

v

|v|

√

v2 −
2

m
u1, v′′′ = v′, v′′′′ = v (9)and

t1 =
x− a

v
, t2 = t1 +

a− b

v′
, t3 = t2 +

2b

v′′
t4 = t3 +

a− b

v′
.In this subregion

Gf(IB) =
N

L
|v|ϕM (v)

{[

1 − e
i(z−kv′) a−b

|v′|

][

1 + e
i(z−kv′′) 2b

|v′′| e
i(z−kv′) a−b

|v′|

]

Ψ(v′)

+
[

1 − e
i(z+kv′′) 2b

|v′′|

]

e
i(z−kv′) a−b

|v′| Ψ(v′′)

−
[

1 − e
i(z−kv′)2 a−b

|v′| e
i(z−kv′′) 2b

|v′′|

]

Ψ(v)
}

.6.3.2. Region II: b < x < aThe bounded motion in this region was desribed in Setion 6.2.The partile whih is at the time t = 0 in this region and has kineti energyhigher than the depth of the well u0, is in an unbounded motion and has undergone2 aelerations if its kineti energy is lower than the hight of potential barrier u1(Case IIA) or 3 aelerations if its kineti energy is higher than the barrier (CaseIIB).Case IIA: if √

2
m
u1 > v >

√

2
m
u0 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)with

v′ = −v, v′′ = −
v

|v|

√

v2 −
2

m
u0 and t1 =

x− b

|v|
, t2 = t1 +

a− b

|v|
.Now

Gf(IIA) =
N

L
|v|eβu0ϕM (v)

[

1 − e−i(z+kv) a−b

|v|

]

{[

1 − ei(z+kv) a−b

|v|

]

Ψ(−v) + ei(z+kv) a−b

|v| Ψ(v′′)) − Ψ(v)
}

.



Kineti equation for a gas with attrative fores as a funtional equation [109℄Case IIB: if v > √

2
m
u1 we have

x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)η(t3 − t)

− [vt1 + v′(t2 − t1) + v′′(t3 − t2) + v′′′(t− t3)]η(t− τ3)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)η(t3 − t) + v′′′η(t− t3)with

v′ =
v

|v|

√

v2 −
2

m
(u0 + u1), v′′ = v, v′′′ =

v

|v|

√

v2 −
2

m
u0 (10)and

t1 =
x− b

v
, t2 = t1 +

2b

|v′|
t3 = t2 +

a− b

|v|
.Now

Gf(IIB) =
N

L
|v| eβu0ϕM (v)

[

1 − ei(z−kv) a−b

|v|

]

×
{[

1 − e
i(z−kv′) 2b

|v′|

]

Ψ(v′) + e
i(z−kv′) 2b

|v′| ei(z−kv) a−b

|v| Ψ(v′′′)

+
([

1 − ei(z−kv) a−b

|v|

]

e
i(z−kv′) 2b

|v′| − 1
)

Ψ(v)
}

.6.3.3. Region III: −b < x < bThe partile being at t = 0 in this region, has undergone 2 aelerations. Thetime dependene of its position and veloity is the following
x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)η(t2 − t)

− [vt1 + v′(t2 − t1) + v′′(t− t2)]η(t− t2)and
v(−t) = vη(t1 − t) + v′η(t2 − t)η(t− t1) + v′′η(t− t2)with
v′ =

v

|v|

√

v2 +
2

m
(u0 + u1), v′′ =

v

|v|

√

v2 +
2

m
u1 (11)and

t1 =
x+ b

|v|
, t2 = t1 +

a− b

|v′|
.Now

Gf(III) =
N

L
e−βu1 |v|ϕM (v)

[

1 − ei(z−kv) 2b

|v|

]

×
{

e
i(z−kv′) a−b

|v′| Ψ(v′′) +
[

1 − ei(z−kv′) a−b

|v′|

]

Ψ(v′) − Ψ(v)
}

.



[110℄ R. Wojnar6.3.4. Region IV: −a < x < −bThe partile whih is at the time t = 0 in this region and has kineti energyless than the depth of the well, is in the bounded motion (see setion 6.2). In theopposite ase, the partile has undergone 1 aeleration.If v > √

2
m
u0 we have
x(−t) = x− vtη(t1 − t) − [vt1 + v′(t− t1)]η(t− t1)and

v(−t) = vη(t1 − t) + v′η(t− t1)with
v′ =

v

|v|

√

v2 −
2

m
u0 and t1 =

x+ a

|v|
.Then

Gf(IV ) =
N

L
eβu0 |v|ϕM (v)

[

1 − ei(z−kv) a−b

v

]

[Ψ(v′) − Ψ(v)].6.3.5. Region V: −∞ < x < −aIn this region the potential vanishes and operators exp(−tK2) and exp(−tK2)are idential, and ontribution of this region to the integral operator G is zero.7. Kineti equation in 1 dimensionWe gather all ontributions to the sattering operator found in the previoussetion to get KE for unbounded motions (v2 > 2
m
u0). At �rst we introdueommon de�nitions of veloities appearing in the equation. These are

v1 =
v

|v|

√

v2 −
2

m
(u0 + u1) for v2 ≥

2

m
(u0 + u1) cf. (10)1

v2 =
v

|v|

√

v2 −
2

m
u1 for v2 ≥

2

m
u1 cf. (9)2

v3 =
v

|v|

√

v2 −
2

m
u0 for v2 ≥

2

m
u0 cf. (10)3

v4 =
v

|v|

√

v2 +
2

m
u0 cf. (8)1

v5 =
v

|v|

√

v2 +
2

m
u1 cf. (11)2

v6 =
v

|v|

√

v2 +
2

m
(u0 + u1) cf. (11)1in the form

(−iz + ikv)Ψ(v) − h(v) = GΨ(v)



Kineti equation for a gas with attrative fores as a funtional equation [111℄with
h(v) =

f(k, v, t = 0)

ϕM (v)and
GΨ(v)

=
N

L
|v|

1

ϕM (v)

[

Gf(III) +Gf(IV )

+ η(v2 <
2

m
u1)

(

Gf(IA) +Gf(IIA)

)

+ η
(

v2 >
2

m
u1

) (

Gf(IB) +Gf(IIB)

)

]or
GΨ(v)

=
N

L
|v|

[

e−βu1
(

1 − ei(z−kv) 2b

|v|
)

{

e
i(z−kv6) a−b

|v6| Ψ(v5)

+
[

1 − e
i(z−kv6) a−b

|v6|

]

Ψ(v6) − Ψ(v)
}

+ eβu0

[

1 − ei(z−kv) a−b

v

]

[Ψ(v3) − Ψ(v)]

+ η
( 2

m
u1 − v2

)

{[

1 − e
i(z−kv4) a−b

|v4|

]

Ψ(v4)

+
[

1 − e
i(z+kv4) a−b

|v4|

]

e
i(z−kv4) a−b

|v4| Ψ(−v4) + e
iz2 a−b

|v4| Ψ(−v) − Ψ(v)
}

+ eβu0

[

1 − e−i(z+kv) a−b

|v|

]

×
{[

1 − ei(z+kv) a−b

|v|

]

Ψ(−v) + ei(z+kv) a−b

|v| Ψ(−v3) − Ψ(v)
}

+ η
(

v2 −
2

m
u1

)

{[

1 − e
i(z−kv4) a−b

|v4|

][

1 + e
i(z−kv2) 2b

|v2| e
i(z−kv4) a−b

|v4|

]

Ψ(v4)

+
[

1 − e
i(z+kv2) 2b

|v2|

]

e
i(z−kv4) a−b

|v4| Ψ(v4)

−
[

1 − e
i(z−kv4)2 a−b

|v4| e
i(z−kv2) 2b

|v2
|
]

Ψ(v)
}

+ eβu0

[

1 − ei(z−kv) a−b

|v|

]{[

1 − e
i(z−kv1) 2b

|v1|

]

Ψ(v1)

+ e
i(z−kv1) 2b

|v1| ei(z−kv) a−b

|v| Ψ(v3)

+
([

1 − ei(z−kv) a−b

|v|

]

e
i(z−kv1) 2b

|v1| − 1
)

Ψ(v)
} ]For k, z → 0, it is for the long waves and low frequenies, the sattering operatorof our KE hanges to the Boltzmann operator

GΨ((v) =
N

L
|v| [Ψ(−v) − Ψ(v)] . (12)Our sattering operator takes also the form of the Boltzmann operator for su�-iently high veloity v, if the time of ollision of light partile with heavy partileof rystal an be negleted.From mathematial point of view, we see that our KE generates an in�nitesequene of funtional equations. Its solution is a problem for the next publiation.
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