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The aim of our study is to discuss a new methodology to account for the
effect of strain rate on ductile fracture phenomena. Theory of inelastic
materials accounting for the effects of microshear bands and microdama-
ge is presented. The influence of microshear bands is explained by means
of a function describing the instantaneous contribution of shear banding
in the total rate of plastic deformation. The experimental investigations
of the effect of strain rate on ductile fracture with use of the results of
a dynamic double shear test of DH-36 steel with thermographic obse-
rvations are reported. The registration of temperature evolution during
the deformation process can provide additional data for the identifica-
tion of the shear banding contribution function and the onset of ductile
fracture.

Key words: effect of strain rate, ductile fracture, dynamic double shear
test, DH-36 steel, thermographic observation

1. Introduction

The effect of impact loading and strain rate on failure, in particular on ductile
fracture of metals, is one of less understood phenomena in thermo-mechanics
of solids. Phenomenological failure criteria are often considered, in which the
critical failure strain depends on an accumulated equivalent strain and stra-
in rate, which is usually averaged over a certain gage volume. Sometimes, a

1This is an extended version of the joint contribution with Wojciech K. Nowacki
published in the Proceedings of the Workshop in Memory of Prof. J.R. Klepaczko,
May 13-15, 2009, Metz, ed. by A. Rusinek and P. Chevrier, LaBPS ENIM and LPMM
University of Metz
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stress triaxiality parameter and an internal variable representing microdamage
are included, c.f. e.g. Arias et al. (2008), Perzyna (2005). The analysis of the
results of recent studies show that an adequate prediction of dynamic frac-
ture processes should account for physical mechanisms activated on different
levels of observation. In particular, the multiscale mechanism of shear ban-
ding plays pivotal role in evolution of ductile fracture. Although the effects
of shear banding were implemented in the phenomenological models of plasti-
city and viscoplasticity (Pęcherski, 1998; Nowak et al., 2007), however these
phenomena were not accounted for the modelling of ductile fracture proces-
ses. Furthermore, in numerical simulations of inelastic deformations in solids
subjected to dynamic loading conditions, a very fine finite element mesh is
necessary to account for the effects of adiabatic microshear banding, what
increases remarkably costs of computations, cf. Klepaczko et al. (2009).

The aim of our paper is to formulate theoretical foundations and to pro-
pose an outline of a new methodology to account for the effect of strain rate
on ductile fracture phenomena. The influence of the multi-scale hierarchy of
shear bands which develop during advanced plastic strains is described by me-
ans of a scalar function describing locally the instantaneous contribution of
shear banding in the total rate of plastic deformation, cf. Pęcherski (1998),
Nowak et al. (2007), Kowalczyk-Gajewska and Pęcherski (2009). In Nowacki
et al. (2007), experimental investigations of the effect of strain rate on ductile
fracture with use of the results of a dynamic double shear test of DH-36 steel
associated with thermographic observations were reported. The registration
of temperature evolution during the process provides additional data, which
can be used for the identification of the shear banding contribution function
by the solution of a certain inverse problem, in which the numerical simula-
tion of thermo-mechanical process simulating the performed test is implemen-
ted, cf. Frąś et al. (2010). Also the general scheme of determination of the
fracture model to the investigated experimentally material (DH-36 steel) was
presented.

2. Experimental foundations

2.1. Double shear tests

Let us consider the double shear test of the DH-36 steel sheet in quasi-static
as well as in dynamic loading conditions. This kind of test, proposed in Gary
and Nowacki (1994) as an elaboration of Yoshida and Myauchi (1978) idea of
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”double shear” specimen, was chosen to illustrate the proposed methodology
of analysing the strain rate effect on ductile fracture. A simple shear test
is particularly attractive, since the application of this type of loading path
can result in large strains without the occurrence of plastic instability. The
mechanical characteristics and the temperature distributions of the sample
surface obtained by a thermovision camera during the deformation processes
were recorded, processed and stored in the computerized registration system.
Investigations of the initiation and further development of fracture locus at
various strain rates using the infrared technique were performed. In the case
of dynamic loading, the Split Hopkinson Pressure Bar (SHPB) was used. The
scheme of the applied shear device is shown in Fig. 1a. A new shear device
was used by Gary and Nowacki (1994) to perform tests under high strain
rates on specimens having the form of metal sheets. The loading and the
displacements of this device are controlled by the SHPB acting in compression.
The role of the special device is to transform the compression into a plane
shear.

Fig. 1. (a) Scheme of shear testing – two shear zones, (b) shear device

The shear device for investigations at high strain rates as well as in quasi-
static conditions consists of two coaxial cylindrical parts: the external tubu-
lar part and the internal massive part (see Fig. 1b). Both cylinders are divi-
ded into two symmetrical parts, and between them the sheet to be tested is
fixed.

Two boundaries of the specimen between the internal and external parts
of the device are in plane shear when these cylinders move axially one toward
the other, Fig. 2.
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Fig. 2. Scheme of simple shear. Loading and displacement are controlled by SHPB
acting in compression

The highest strain rate in the specimen was obtained with application of
one bar of the SHPB system. In this experimental technique, the flat projectile
strikes directly the double shear specimen placed in the device in front of the
transmitting bar. The details of proper dimensioning of the specimen are given
in Nowacki et al. (2007). In our case, the material sheet has a nominal thickness
of 0.64mm. In the case of dynamic test at high strain rates, the specimens of
the strain gauge length 20mm were used (cf. Rusinek et al., 2002). Design of
the specimen for dynamic testing in simple shear is presented in Fig. 3.

Fig. 3. (a) Scheme of the specimen used in double shear tests, (b) specimen after
and before simple shear deformation

2.2. Quasi-static tests in simple shear

Deformation processes always modify temperature fields in materials while
temperature variations influence the stress-strain characteristic. Strong effects
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of the thermo-mechanical coupling are observed during the process of the sim-
ple shear test. During this test, the first invariant of stress tensor ∆σii = 0,
thus, in elastic range of deformation temperature does not change, Kelvin
(1853). The following plastic deformation is accompanied by an increase in
temperature. It is caused by transformation of a significant part of the plastic
energy into heat, Rusinek et al. (2002). The goal of our investigation was obta-
ining the mechanical characteristics of the material as well as the temperature
distributions in the shear areas. The samples were placed in a specially de-
signed grip for quasi-static tests, transforming the compression into a simple
shear process (Fig. 4a). The grip was fitted in the testing machine, working in
the compression mode. A change of temperature of the surface of two shear
paths has been observed in situ during the test.

Fig. 4. (a) Photograph of the shear test device, (b) example of thermogram obtained
during the simple shear test of DH-36 steel

The tests were performed at room temperature (295K), with the shear
strain rates equal to 10−3 s−1, 10−1 s−1 and 100 s−1. During deformation, the
load vs. crosshead displacement and the distribution of infrared radiation,
emitted by the specimen, were continuously registered. The distribution was
measured using the thermovision camera coupled with a computer system
of data acquisition and conversion. The mechanical characteristics made it
possible to derive the stress-strain relations. The distribution of intensity of
the infrared radiation registered in the same time allowed us to reconstruct
thermal pictures (Fig. 4b) of the samples and, in this way, to find the tempe-
rature changes of the sample subjected to shear test. The mean-square error
of temperature evaluation was about 0.2-0.5 K. In order to ensure higher and
more homogeneous emissivity, the surfaces of the shear zones of the steel she-
et specimens were blackened with a carbon powder. As a result of the study,
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we have obtained stress-strain and temperature-strain characteristics. See, for
example, Fig. 5a and Fig. 5b at shear strain rates 10−1 s−1 and 1 s−1.

Fig. 5. (a) Stress-strain and mean temperature changes curves of DH-36 steel at the
rate of deformation equal 10−1 s−1; (b) stress-strain and mean temperature changes

curves of DH-36 steel at the rate of deformation equal 1 s−1

For the DH-36 steel, temperature does not change in the elastic range
of shear. The rapid increments of temperature are observed in the region of
plastic deformation. The temperature increases with an increase of the rate
of deformation. During unloading, the temperature smoothly decreases due to
the heat transmission to the grips and surroundings.

2.3. Dynamic tests in simple shear at high strain rates

The device with the double-shear specimen is placed between two bars
of the SHPB (Fig. 6). The mechanical impedance of the shear device and the
SHPB must be the same to avoid the noise in the interface signal (cf. Nowacki,
2001). The impulse is created by the third projectile bar. The impact velocity
is measured by the set-up consisting of three sources of light and three inde-
pendent photodiodes. The time interval during crossing of a projectile by two
rays of light is recorded by the time counter. The impulses are registered at
the strain resistance gauges.

The comparison of the shear stress-shear strain curves in the case of dy-
namic loading (direct impact test) at the shear strain rate 6.3 · 103 s−1 with
quasi-static curves is shown in Fig. 7.
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Fig. 6. Standard SHPB apparatus; P – projectile, Bi – incident bar,
Bt – transmitting bar, S – shear device with double shear specimen, D – damper,
L – source of light, F – photodiodes, TC – time counter, T1, T2 and Ts – strain
gauges, A – amplifier, DO – digital oscilloscope, PC – microcomputer,

R – xy recorder or graphic printer, THC – thermovision camera, THV – oscilloscope
of thermovision set

Fig. 7. Comparison of stress-strain curves obtained in quasi-static and dynamic
shear tests

3. Thermo-elasto-viscoplastic model of a material

3.1. Basic assumptions and definitions

Let us assume that a continuum body is an open bounded set B ⊂ R
3, and

let φ : B → S be a C1 configuration of B in S. The tangent of φ is denoted
F = Tφ and is called the deformation gradient of φ.
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Let {XA} and {xa} denote coordinate systems on B and S, respectively.
Then we refer to B ⊂ R

3 as the reference configuration of a continuum body
with particles X ∈ B and to S = φ(B) as the current configuration with points
x ∈ S. The matrix F(X , t) = ∂φ(X , t)/∂X with respect to the coordinate
bases EA(X) and ea(x) is given by

F aA(X, t) =
∂φa

∂XA
(X, t) (3.1)

where the mapping x = φ(X , t) represents motion of the body B.
We consider the local multiplicative decomposition

F = FeFp (3.2)

where (Fe)−1 is the deformation gradient that releases elastically the stress
on the neighbourhood φ(N (X)) in the current configuration.
Let us define the total and elastic Finger deformation tensors

b = FF⊤ be = FeFe⊤ (3.3)

respectively, and the Eulerian strain tensors as follows

e =
1

2
(g − b−1) ee =

1

2
(g − be−1) (3.4)

where g denotes the metric tensor in the current configuration.
By definition (cf. Perzyna, 1995)

ep = e− ee = 1
2
(be−1 − b−1) (3.5)

we introduce the plastic Eulerian strain tensor.
To define objective rates for vectors and tensors, we use the Lie derivative

(cf. Marsden and Hughes, 1983). Let us define the Lie derivative of a spatial
tensor field t with respect to the velocity field υ as

Lυt = φ∗
∂

∂t
(φ∗t) (3.6)

where φ∗ and φ∗ denote the pull-back and push-forward operations, respecti-
vely.
The rate of deformation tensor is defined as follows

d♭ = Lυe
♭ =
1

2
Lυg =

1

2
(gacυ

c|b + gcbυc|a)ea ⊗ eb (3.7)
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where the symbol ♭ denotes the index lowering operator and ⊗ the tensor
product

υa|b =
∂υa

∂xb
+ γabcυ

c (3.8)

and γabc denotes the Christoffel symbol for the general coordinate sys-
tems {xa}. The components of the spin ω are given by

ωab =
1

2
(gacυ

c|b − gcbυc|a) =
1

2

(∂υa
∂xb
− ∂υb
∂xa

)
(3.9)

Similarly

de
♭

= Lυe
e♭ dp

♭

= Lυe
p♭ (3.10)

and

d = de + dp (3.11)

Let τ denote the Kirchhoff stress tensor related to the Cauchy stress tensor σ
by

τ = Jσ =
ρRef
ρ
σ (3.12)

where the Jacobian J is the determinant of the linear transformation
F(X , t) = (∂/∂X)φ(X , t), ρRef (X) and ρ(x, t) denote the mass density in
the reference and current configuration, respectively.

3.2. Constitutive postulates

Let us assume that: (i) conservation of mass, (ii) balance of momentum,
(iii) balance of moment of momentum, (iv) balance of energy, (v) entropy
production inequality hold.

We base on the fundamental postulates already presented in the paper of
Perzyna (2005) (see details) and we assume that the evolution equation for
the internal state variable vector µ is assumed in the form as follows

Lυµ = m̂(e,F, ϑ,µ) (3.13)

where the evolution tensor function m̂ has to be determined based on careful
physical interpretation of a set of the internal state variables and analysis of
available experimental observations.

For our practical purposes, it is sufficient to assume that the internal state
vector µ has the form

µ = (ǫ p, ξ) (3.14)
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where ǫ p is the equivalent viscoplastic deformation, i.e.

ǫ p =

t∫

0

√
2

3
dp : dp dt (3.15)

and ξ is volume fraction porosity and takes into account micro-damaged ef-
fects.

Let us introduce the plastic potential function f = f(J1, J2, ϑ,µ), where
J1, J2 denote the first two invariants of the Kirchhoff stress tensor τ .

Let us postulate the evolution equations as follows

dp = ΛP ξ̇ = Ξ (3.16)

where for the elasto-viscoplastic model of a material we assume (cf. Perzyna,
1963, 1966)

Λ =
1

Tm

〈
Φ
(f
κ
− 1
)〉

(3.17)

Tm denotes the relaxation time for mechanical disturbances, the isotropic
work-hardening-softening function κ is

κ = κ̂(ǫ p, ϑ, ξ) (3.18)

Φ is the empirical overstress function, the bracket 〈·〉 defines the ramp function

P =
∂f

∂τ

∣∣∣
ξ=const

(∥∥∥
∂f

∂τ

∥∥∥
)−1

(3.19)

Ξ denotes the evolution function which has to be determined.

3.3. Intrinsic micro-damage mechanisms

To take into consideration experimentally observed time dependent effects
it is advantageous to use the proposition of the description of the intrinsic
micro-damage process presented by Perzyna (1986) and Duszek-Perzyna and
Perzyna (1994).

Let us assume that the intrinsic micro–damage process consists of the
nucleation and growth mechanisms.

Physical considerations (cf. Curran et al., 1987; Perzyna, 1986) have shown
that the nucleation of microvoids in dynamic loading processes, which are cha-
racterised by very short time duration, is governed by the thermally-activated
mechanism. Based on this heuristic suggestion and taking into account the
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influence of the stress triaxiality on the nucleation mechanism, we postulate
for the rate dependent plastic flow

(ξ̇)nucl =
1

Tm
h∗(ξ, ϑ)

[
exp

m∗(ϑ)|In − τn(ξ, ϑ, ǫ p)|
kϑ

− 1
]

(3.20)

where k denotes the Boltzmann constant, h∗(ξ, ϑ) represents the void nuc-
leation material function which is introduced to take account of the ef-
fect of microvoid interaction, m∗(ϑ) is a temperature dependent coefficient,
τn(ξ, ϑ, ǫ

p) is the porosity, temperature and equivalent plastic strain dependent
threshold stress for microvoid nucleation

In = a1J1 + a2

√
J ′2 + a3

3

√
J ′3 (3.21)

defines the stress intensity invariant for nucleation, ai (i = 1, 2, 3) are mate-
rial constants, J1 denotes the first invariant of the Kirchhoff stress tensor τ ,
J ′2 and J

′
3 are the second and third invariants of the stress deviator τ

′.

For the growth mechanism, we postulate (cf. Johnson, 1981; Perzyna, 1986;
Dornowski and Perzyna, 2000)

(ξ̇)grow =
1

Tm

g∗(ξ, ϑ)

κ0
[Ig − τeq(ξ, ϑ, ǫ p)] (3.22)

where Tmκ0 denotes the dynamic viscosity of a material, g
∗(ξ, ϑ) represents

the void growth material function and takes account for void interaction,
τeq(ξ, ϑ, ǫ

p) is the porosity, temperature and equivalent plastic strain depen-
dent void growth threshold stress

Ig = b1J1 + b2

√
J ′2 + b3

3

√
J ′3 (3.23)

defines the stress intensity invariant for growth and bi (i = 1, 2, 3) are material
constants.

Finally, the evolution equation for the porosity ξ has the form

ξ̇ =
h∗(ξ, ϑ)

Tm

[
exp

m∗(ϑ)|In − τn(ξ, ϑ, ǫ p)|
kϑ

− 1
]
+

(3.24)

+
g∗(ξ, ϑ)

Tmκ0
[Ig − τeq(ξ, ϑ, ǫ p)]

To have consistent theory of elasto-viscoplasticity, we can replace the expo-
nential function in the nucleation term and the linear function in the growth
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term by the empirical overstress Φ, then the evolution equation for the poro-
sity ξ takes the form as follows (cf. Perzyna, 2005)

ξ̇ =
1

Tm
h∗(ξ, ϑ)

〈
Φ
[ In
τn(ξ, ϑ, ǫ p)

− 1
]〉
+

(3.25)

+
1

Tm
g∗(ξ, ϑ)

〈
Φ
[ Ig
τn(ξ, ϑ, ǫ p)

− 1
]〉

This determines the evolution function Ξ.

3.4. Thermodynamic restrictions and rate type constitutive equations

Suppose the axiom of the entropy production holds. Then the constitutive
assumption on the existence of the free energy function and evolution equations
(3.16) lead to the results as follows

τ = ρRef
∂ψ̂

∂e
η = −∂ψ̂

∂ϑ
(3.26)

−∂ψ̂
∂µ

Lυµ−
1

ρϑ
q gradϑ ­ 0

where q is the heat flux vector.

The rate of internal dissipation is determined by

ϑî = −∂ψ̂
∂µ

Lυµ = −
( ∂ψ̂
∂ǫ p

√
2

3

)
Λ− ∂ψ̂

∂ξ
Ξ (3.27)

Operating on the stress relation Eq. (3.26)1 with the Lie derivative and
keeping the internal state vector constant, we obtain (cf. Duszek-Perzyna and
Perzyna, 1994)

Lυτ = L
e : d−Lthϑ̇− [(Le + gτ + τg) : P] 1

Tm

〈
Φ
(f
κ
− 1
)〉

(3.28)

where

L
e = ρRef

∂2ψ̂

∂e2
L
th = −ρRef

∂2ψ̂

∂e∂ϑ
(3.29)

Substituting ψ̇ into the energy balance equation and taking into account
the results from Eq. (3.26)3 and Eq. (3.27), gives

ρϑη̇ = − divq + ρϑî (3.30)
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Operating on the entropy relation, Eq. (3.26)2, with the Lie derivative and
substituting the result into Eq. (3.30), we obtain

ρcpϑ̇ = − divq + ϑ
ρ

ρRef

∂τ

∂ϑ
: d+ ρχ∗τ : dp + ρχ∗∗ξ̇ (3.31)

where the specific heat

cp = −ϑ
∂2ψ̂

∂ϑ2
(3.32)

and the irreversibility coefficients χ∗ and χ∗∗ are determined.

So, the set of constitutive equations of the rate type has the form as follows

Lυτ = L
e : d−Lthϑ̇− [(Le + gτ + τg) : P] 1

Tm

〈
Φ
(f
κ
− 1
)〉

ρcpϑ̇ = − divq + ϑ
ρ

ρRef

∂τ

∂ϑ
: d+ ρχ∗

1

Tm

〈
Φ
(f
κ
− 1
)〉
τ : P+ ρχ∗∗ξ̇ (3.33)

ξ̇ =
1

Tm
h∗(ξ, ϑ)

〈
Φ
[ In
τn(ξ, ϑ, ǫ p)

− 1
]〉
+
1

Tm
g∗(ξ, ϑ)

〈
Φ
[ Ig
τn(ξ, ϑ, ǫ p)

− 1
]〉

All the material functions and material constants should be identified based
on available experimental data.

3.5. Account for shear banding

3.5.1. Microshear banding effects

The derivation of viscoplasticity model accounting for shear banding effects
was presented in (cf. Nowak et al., 2007; Perzyna, 2008). Accordingly, the
relaxation time Tm depends on the active microshear bands contribution in
the total rate of viscoplastic deformation fms and on the rate of equivalent
viscoplastic deformation ǫ̇P , i.e.

Tm = Tm(fms, ǫ̇
P ) (3.34)

In particular, the above relation takes form

Tm = T
0
mφ1(fms)φ2(ǫ̇

P ) (3.35)

For example, for DH-36 steel, we can postulate

φ1(fms) = [1− fms(ǫP )] =
[
1− f0ms

1

1 + exp(a− bζ)
]

(3.36)
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and

φ2(ǫ̇
P ) =

( ǫ̇P

ǫ̇Ps
− 1
) 1
m2 (3.37)

where f0ms, a, b and m2 are material parameters.
Finally, we have

Tm = T
0
m

[
1− f0ms

1

1 + exp(a− bζ)
]( ǫ̇P

ǫ̇Ps
− 1
) 1
m2 (3.38)

According to the derivation of the viscoplasticity model accounting for she-
ar banding effects (cf. Nowak et al., 2007), also the isotropic work-hardening-
softening function κ depends on the shear banding contribution function fms

κ = (1− fms)2κ̂(ǫ p, ϑ, ξ) (3.39)

and

κ =
[
1− f0ms

1

1 + exp(a− bζ)
]2
κ̂(ǫ p, ϑ, ξ) (3.40)

The variable ζ takes into account the effect of the type of strain path and its
change on the development of shear banding mechanism and its instantaneous
contribution to the rate of plastic deformation. In agreement with the study
of this problem by Kowalczyk-Gajewska and Pęcherski (2009), the variable ζ
is given as follows

ζ =

√
3

2
ǫ p(1− α| cos 3θ|) 0 ¬ α ¬ 1

(3.41)

| cos 3θ| = 3
√
6
∣∣∣ det
( dp

‖dp‖
)∣∣∣

where α is a material parameter that describes to what extend the scheme
of strain path affects the contribution of microshear banding into the rate of
plastic deformation for the considered material.

3.6. Fracture criterion based on the evolution of micro-damage and shear

banding

We base the fracture criterion on the evolution of the porosity internal state
variable ξ. The volume fraction porosity ξ takes into account microdamage
effects.
Let us assume that for ξ = (ξ : ξ)

1

2 = ξF catastrophe takes place (cf.
Perzyna, 1984), that is

κ = κ̂(ǫ p, ϑ, ξ)
∣∣
(ξ:ξ)

1

2=ξF
= 0 (3.42)
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It means that for (ξ : ξ)
1

2 = ξF the material loses its carrying capacity. The
above condition describes the main feature observed experimentally that the
load tends to zero at the fracture point.

It is noteworthy that the isotropic hardening-softening material function
κ̂ proposed in Eq. (3.18) should satisfy the fracture criterion Eq. (3.42).

3.7. Length-scale sensitivity of the constitutive model

The constitutive equations for a thermo-elastic-viscoplastic model implici-
tly introduce a length-scale parameter into the dynamic initial-boundary value
problem, i.e.

l = βcTm or l = βcT 0mφ1(fms)φ2(ǫ̇
P ) (3.43)

and, as an example, for mild steel we have

l = βcT 0m

[
1− f0ms

1

1 + exp(a− bζ)
]( ǫ̇P

ǫ̇Ps
− 1
) 1
m2 (3.44)

where Tm is the relaxation time for mechanical disturbances, and is directly re-
lated to the viscosity of the material, c denotes the velocity of the propagation
of the elastic waves in the problem under consideration, and the proportio-
nality factor β depends on the particular initial-boundary value problem and
may also be conditioned on the microscopic properties of the material.

The relaxation time Tm can be viewed either as a microstructural para-
meter to be determined from experimental observations or as a mathematical
regularization parameter.

It is noteworthy to stress that the length-scale sensitivity of the constitu-
tive structure is of great importance for proper description of mesomechanical
problems.

4. Identification procedure

4.1. Assumption of the material functions for adiabatic process

To do the proper identification procedure, we first make an assumption on
the material functions. In order to simplify the numerical considerations, in
this paper we consider strain driven processes without the evolution equation
for the porosity ξ.
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The plastic potential function f is assumed in the form (cf. Perzyna, 1984;
Shima and Oyane, 1976)

f = {J ′2 + [n1(ϑ) + n2(ϑ)ξ]J21 }
1

2 (4.1)

where for simplicity

n1(ϑ) = 0 n2(ϑ) = n = const = 0 (4.2)

The isotropic work-hardening-softening function κ for DH-36 steel is postula-
ted as (cf. Klepaczko et al., 2009)

κ = κ̂(ǫP , ϑ) = {A+B(ǫP )n}[1− ϑm3 ] (4.3)

where

ϑ =
ϑ− ϑ0
ϑm − ϑ0

The overstress function Φ((f/κ) − 1) is assumed in the form (cf. Perzyna,
1963)

Φ
(f
κ
− 1
)
=
(f
κ
− 1
)m1

(4.4)

The dynamic yield condition for the overstress function Φ Eq. (4.4) takes the
form

κ = κ̂(ǫP , ϑ) = {A+B(ǫP )n}
[
1− Tm

( ǫ̇P

ǫ̇Ps

) 1
m1

)
[1− ϑm3 ] (4.5)

As in the infinitesimal theory of elasticity, we assume linear properties of
the material, i.e.

L
e = 2µI+ λ(g ⊗ g) (4.6)

where µ and λ denote the Lamé constants. The thermal expansion matrix is
postulated as

L
th = (2µ+ 3λ)θg (4.7)

where the thermal expansion constant e.g. for steel θ = 48W/m ◦C.

4.2. Determination of material constants

To determine the material constants assumed, we take advantage of the
experimental observations presented by Nemat-Nasser and Guo (2003). They
investigated the termomechanical response for steel specimens simulating com-
pression processes. The material used in their study was structural steel DH-36
tested over a wide range of strain rates and temperatures. DH-36 steel is a high
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Table 1. Chemical composition of DH-36 steel Nemat-Nasser and Guo (2003);
components defined in wt%

Name C Mn Cu Si Cr Mo

DH-36 0.14 1.37 0.14 0.22 0.08 0.03

Name V Ti Al Nb P S

DH-36 0.001 0.003 0.017 0.03 0.007 0.001

strength structural steel used in naval constructions. The chemical composi-
tion of this material after Nemat-Nasser and Guo (2003) is given in Table 1.
Let us now consider an adiabatic dynamic process for a thin steel plate

under condition of plane stress state and assume an elastic-plastic model of a
material. Additionally, we assume a material of the specimen DH-36 steel and
we simplify the considered adiabatic process by postulating that the evolution
equation for temperature Eq. (3.33)2 has the form

ϑ̇ =
χ

cp
τ : dp (4.8)

i.e. we postulate χ∗∗ = 0, χ∗ = χ and we neglect the nondissipative term. In
fact, we idealize the initial-boundary value problem investigated by Nemat-
Nasser and Guo (2003) and by Nowacki et al. (2006) by assuming the velocity
driven adiabatic process for a thin steel plate. The problem has been solved
by using the finite element method.
Based on these assumptions we proceed calculations similarly as in previous

paper of Klepaczko et al. (1999). For the experimental results of Nowacki et
al. (2007) and Nemat-Nasser and Guo (2003), we assume that the response
is described by Eq. (4.4) and determine the parameters by the method of
least squares. The method of least squares requires the residual sum in stress
between the experimental observations and model prediction to be minimized.
For DH-36 steel, the quasistatic stress-strain curve looks like that in Fig. 8,
and the determined constants are presented in Table 2.

Table 2. Constants determined for DH-36 steel for Perzyna’s model

A B n (-) T 0m ǫ̇Ps m1 m2 m3 ϑ0 ϑm
[MPa] [MPa] [–] [s] [s−1] [–] [–] [–] [K] [K]

810 1130 0.4 5 · 10−6 0.001 3.45 12.5 0.32 50 1773

All the material constants has been determined for an adiabatic process
and are presented in Table 3.
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Fig. 8. Quasi-static compression stress-strain relation for DH-36 steel; the dashed
line Eq (4.5), ♦ marks the experimental results by Nemat-Nasser and Guo (2003)

Table 3. An DH-36 steel material constants for an adiabatic process

m1 = 3.45 ϑ = 293 K v = 0.3

m2 = 12.5 n=0.4 E = 208GPa

m3 = 0.32 T 0m = 5µs ρRef = 7850 kg/m
3

θ = 48W/m◦C χ = 0.9 cp = 455 J/kg K

5. Numerical example

We analyse the impact loaded plate (Fig. 3a). The material of the plate is
DH-36 steel modelled as a elasto-viscoplastic material with isotropic harde-
ning effects. We assume that the material softening is caused by the adiabatic
mechanism. The height of one shear zone in our sample is equal to 3mm,
width is 20mm and thickness is 0.64mm. The plane stress state is considered.
As it is shown in Fig. 9, this specimen is loaded symmetrically to the sample
axis. Similar boundary value problems for plates were analysed numerically
by Klepaczko et al. (1999).

To obtain the solution to the initial-boundary value problem formulated,
the finite element method for regularized elasto-viscoplastic model has been
used2. The loading condition is modelled by the velocity of nodes lying on the
edge section in center with length of 20mm, according to the relation

2Numerical modelling of localized fracture phenomena in inelastic solids in dynamic lo-
ading processes by means of the finite element method was presented by Łodygowski and
Perzyna (1997).
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Fig. 9. Experimental dynamic test of DH-36 steel; (a) deformed sample, (b) axial
force versus time

V (t) =






V0
t

tr
for t ¬ tr

V0 for tr ¬ t ¬ tc

V0 − V0
t− tc
te − tc

for t > tc

(5.1)

The rise time tr is fixed at 50.0 µs, tc = 340 µs, te = 440 µs and the speed
impact V0 = 19.7m/s. The initial conditions of the problem are homogeneous.
In the discussion of the numerical results, the attention is mostly focused on
the phenomenon of localized shear bands.

Fig. 10. (a) The impact velocity diagram and the loading condition, (b) the shape of
half of the specimen and initial mesh (5226 C3D8R elements)

The finite element ABAQUS program with the explicit time integration
scheme (conditionally stable) is used. The stress state in a nodal environment is
determined by the iterative procedure of solving the dynamical yield condition
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with respect to the norm of the plastic deformation rate tensor. We assume
a nonuniform mesh of nodes which contain 7 488 nodes. The smallest size of
mesh has the dimensions ∆Υ 1 = 200 µm and ∆Υ 3 = 213 µm, the time
increment ∆t = 0.0356 µs. The mesh is shown in Fig. 10b.

5.1. Numerical results for simple shearing

The shear band region which undergoes significant deformation has be-
en analysed numerically. Its evolution until the occurrence of final fracture
has been simulated. The shear band advance as a function of time has been
determined. Our numerical simulation of the dynamic initial boundary value
problem enables qualification of the local strain as a local fracture strain.

Fig. 11. A pattern of points for presentation of the results

A qualitative comparison of the numerical results with experimental obse-
rvation data prove the usefulness of the elasto-plastic and elasto-viscoplastic
theories in the numerical investigation of rate dependent dynamic fracture.
The numerical solution results for the initial velocity V = 19.7m/s is shown
in Fig. 12. In Fig. 12, the distribution of temperature in the shear band region
for t = 340 µs and the evolution of temperature in selected points indicated
in Fig. 11 are presented.

From Fig. 12 we can observe a very exact shear band and the initiation of
fracture region in the finally deformed specimen.

The modelling of the localized fracture in high strength steels can be exa-
mined, and the influence of impact velocity on local failure can be determined.
Repeating the tests for different impact velocities, we can find the dependence
of local fracture strain on the rate of deformation.
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Fig. 12. A contour plot of temperature distribution for t = 340 µs in the shear
region and the temperature evolution in the pattern of points versus time of the

shear process

6. Conclusions

Concluding the presented discussion and analysis, the following outline of a
new methodology of analysing the effect of strain rate on ductile fracture can
be proposed. It consists of the steps as follows:

(i) experimental determination of stress-strain characteristics of a material
(e.g. DH3-steel) under quasi-static and dynamic loading conditions, in
tension, compression or simple shear tests associated with registration
in situ of temperature evolution and microstructural observations of de-
formed and damaged specimens,

(ii) numerical simulation of the investigated processes to identify the vi-
scoplasticity model accounting for shear banding with use of additional
data obtained from a thermovision camera and to simulate the tests until
fracture initiation,

(iii) calculation of the evolution of equivalent strain and local strain rate at
the critical site of the specimen (detected during the test with use of the
thermovision camera),
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(iv) determination of the fracture strain from the comparison between the
experimentally registered force-displacement curve and numerical simu-
lations,

(v) analysis of the effects of strain rate by means of the sequence of numerical
simulations of the dynamic tests performed with variable initial velocity.

The aforementioned outline presents in fact a broad research program
which requires long-term investigations and cooperation of several research
laboratories devoted to the solution of the discussed question of the strain-
rate effect on ductile fracture. Realisation of such a program would be at the
same time the fulfilment of the scientific heritage of our late Colleague and
Friend Wojciech Krzysztof Nowacki.
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Nowa metoda analizy wpływu prędkości odkształcenia na zniszczenie

plastyczne metali

Streszczenie

W pracy przedstawiono nowy sposób analizy zjawiska zniszczenia ciągliwego me-
tali z uwzględnieniem wpływu prędkości odkształcenia. Przedstawiono teorię materia-
łów niesprężystych z uwzględnieniem efektu pasm ścinania i mikrouszkodzeń. W opi-
sie zjawiska płynięcia plastycznego uwzględniono wpływ mikropasm ścinania przez
wprowadzenie funkcji opisującej chwilowy udział mikropasm ścinania w całkowitej
prędkości deformacji plastycznej. Przedstawiono wyniki badań doświadczalnych okre-
ślających wpływ prędkości odkształcenia na zniszczenie i sposób wykorzystania obser-
wacji termograficznych w dynamicznej próbie podwójnego ścinania dla stali DH-36.
Pomiary zmian temperatury podczas procesu deformacji dostarczają dodatkowych
danych ułatwiających zidentyfikowanie funkcji udziału mikropasm ścinania dla dane-
go materiału.
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