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 A class of congrunces of principal Volterra-type effective dislocation lines associated 

with a dislocation density tensor is distinguished in order to investigate the kinematics of 

continuized defective crystals in terms of their dislocation densities (tensorial as well as sca-

lar). Moreover, it is shown , basing oneself on a formula defining the mean curvature of glide 

surfaces for principal edge effective dislocation lines, that the considered kinematics of con-

tinuized defective crystals is consistent with some relations appearing in the physical theory 

of plasticity (e.g. with the Orowan-type kinematic relations and with treatment of the shear 

stresses as driving stresses of moving dislocations). 

 

 

  1. Introduction 

 

 If the macroscopic properties of a crystalline solid with many dislocations are 

considered, a continuous limit approximation can be defined by means of the condi-

tion that, at each point of the body, a characteristic mesoscopic length, say of the 

order of 10-100 nm, can be approximately replaced with the infinitesimal length [1]. 

Although, in this continuous limit, the global long-range order of crystals is lost in 

the presence of dislocations, nevertheless their local long-range order still exists [2]. 

We restrict our investigation to the Bravais crystal, because this crystal has the 

smallest amount of different defect types, but enough to study the general principles. 
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 The mesoscopic observation level scale enables to consider the so-called meso-

plasticity approach to the description of plastic deformations [3]. In the mesoplastic-

ity approach, plastic deformation can be, at least in principle, predicted by an 

Orowan-type theoretical model, that is, by generalization of the so-called Orowan 

kinematic relation [3, 4]: 

(1.1) [ ] [ ]1 1, s , cbv vγ ρ γ ms ,− −= = =  

where γ  denotes the macroscopic strain rate, ρ  is the mean density of mobile dislo-

cations defined as the length of all moving dislocation lines included in the volume 

unit, b is the mean strength of these dislocations (i.e. the mean modulus of their Bur-

gers vectors), and v is the mean dislocation speed. There are two basic types of dislo-

cation movement, glide in which the dislocation moves in a surface ,called the glide 

surface, which contains its line and Burgers vector, and climb in which the disloca-

tion moves out of the glide surface normal to the Burgers vector [4]. Glide of many 

dislocations results in slip, which is the most common manifestation of plastic de-

formation in crystalline solids. The glide motion of an effective dislocation line ([6] 

and Section 3) can be considered as an elementary act of the mesoscale-type con-

tinuous limit description of plastic deformations [5, 6]. It is shown that the geometric 

theory of continuously dislocated crystals presented in [1] and [6] admits a continu-

ous counterpart of the Orowan kinematic relation (1.1) (Sections 4-6 and [7]). 

 The appearance of dislocations generates a bend of originally straight lattice 

lines. For example, the lattice lines in a continuized dislocated Bravais crystal form a 

system of three independent congruences of curves and tangents to these curves de-

fine local crystallographic directions of this crystal. Planes spanned by two local 

crystallographic directions are local crystal planes. If a distribution of these planes is 

integrable [1], then its integral manifolds constitute a family of crystal surfaces. Note 
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that in the case of a crystalline body with many dislocations, the mean value nκ  of 

normal curvatures of its crystal surfaces in their local crystallographic directions (see 

e.g. [1, 8]) can be approximated (in a continuous limit) by  

(1.2) [ ] [ ] [ ]1 2
n n, cm , cm ,b bκ ρ κ ρ− −= = = cm,=  

where ρ  denotes the mean density of dislocations defined here as the length of all 

dislocation lines included in the volume unit, and b is the mean strength of the con-

sidered dislocations [6, 9]. It appears that the proposed theory of continuously dislo-

cated crystals is consistent with this relation (Section 6; see also [6]) 

 It is known that the occurrence of many dislocations in a crystalline solid is ac-

companied with the appearance of point defects created by the distribution of dislo-

cations [10]. The influence of these secondary point defects on metric properties of a 

continuously dislocated Bravais crystal can be represented by a Riemannian material 

space, defined by the assumption that the body under consideration is additionally 

endowed with the such Riemannian internal length measurement that reduces to the 

Euclidean length measurement if the dislocations are absent (Section 2) [1]. The in-

fluence of secondary point defects on the slip phenomenon can be then taken into 

account by means of treatment of the congruences of effective dislocation lines, crys-

tal surfaces and the virtual slip surfaces as those located in this material space (Sec-

tions 3 and 5). Note that such surfaces can be, at least locally, isometrically embed-

ded in the Euclidean ambient space of the dislocated crystalline body [1]. Moreover, 

if a counterpart of Eq. (1.2) holds in the Riemannian material space, then the mean 

curvature of crystal surfaces, considered as submanifolds of this space, takes the 

physical meaning of a material parameter that characterizes the influence of secon-

dary point defects on the slip phenomenon (Sections 6 and 7). 
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  2. Dislocation densities 

 

 Let 3B E⊂  denote a body identified with its distinguished spatial configuration 

being an open and contractible to a point subset of the three-dimensional Euclidean 

point space 3E  (e.g. [2]). We will consider the curvilinear coordinate systems 

 defined on an open subset U  and such that  

and we will denote 

( AX X ; A 1, 2,3= = ) mB⊂ AX c⎡ ⎤ =⎣ ⎦

( ) 3XX p= ∈  for p U∈ . The body under consideration is a 

continuous solid body with its material structure defined as a continuous limit ap-

proximation of a Bravais crystal with many dislocations (see Section 1). A distin-

guished vector base  of the linear module W(B) of vector fields 

on B tangent to B (see [1], Appendix), called further on the Bravais moving frame, is 

considered as the one defining a system of three independent congruences of lattice 

lines of the continuized crystal as well as scales of an internal length measurement 

along these lines [1]. The condition that the bend of lattice lines due to dislocations 

(see Section 1) is not generated by a global deformation of the body means that the 

so-called object of anholonomity 

( a ; a 1,2,3Φ = =E )

( )c
abC C B∞∈  defined by (see [1], Appendix) 

(2.1) [ ] c
a b ab c, C=E E E ,  

does not vanish. This object of material anholonomity describes the long-range dis-

tortion of a Bravais crystal due to dislocations [1].  

 Let us denote by ( )W B∗  the linear module of covector fieds on B dual to ( )W B  

[1]. The vectorial base ( )aE∗Φ =  of ( )W B∗  dual to the moving frame  and 

called further on a Bravais moving coframe, is uniquely defined by the condition: 

( aΦ = E )

(2.2) 
a a

A Aa A a
A Aa A ba b

, E X E , δ ,e e d e e= ∂ = ⇒ = =E E a
b  
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where, according to the assumed dimensional convention, we have: 

(2.3) [ ] [ ] 1 a A
a A cm , E X cm.d− ⎡ ⎤ ⎡ ⎤= ∂ = = =⎣ ⎦ ⎣ ⎦E  

We can define the tensorial representation [ ]ΦS  of the object of anholonomity. 

Namely, if  is a Bravais moving frame and ( aΦ = E ) ( )aE∗Φ =  is the Bravais mov-

ing coframe dual to Φ , then we define [1, 11]: 

(2.4) 
[ ] a c a b

a ab c

c c c
a b ab ab

E S E E
1S C , S cm
2

d

−

Φ = ⊗ = ⊗ ⊗

⎡ ⎤= − =⎣ ⎦

S E

1

,

.

E
 

[ ]ΦS  characterizes the existence of many dislocations in this sense that 

(2.5) [ ] a
aiff / , a 1, 2,3,ξΦ = ∂ ∂ =S 0 E  

where ( )aξ ξ= , , is a coordinate system on B and  means that a relation 

is valid in a distinguished coordinate system. Thus, the tensor field 

a cmξ⎡ ⎤ =⎣ ⎦

[ ]ΦS  can be in-

terpreted as a nondimensional measure of the long-range distortion of the dislocated 

Bravais crystal due to bending of originally straight lattice lines [1]. This long-range 

distortion of the dislocated Bravais crystal can be quantitatively measured by the so-

called Burgers vector [ ]γb , corresponding to a closed smooth contour γ  (called a 

Burgers circuit) in the considered defective crystalline solid body B [1]: 

(2.6) 
[ ] [ ] [ ]

[ ] [ ]

a a
a

a

ab , b E ,

1, b cm, 1,
γ

γ γ γ ε

γ γ

= =

⎡ ⎤⎡ ⎤ ε= = =⎣ ⎦ ⎣ ⎦

∫b C

b ±
 

where ε  defines the Burgers vector orientation and ( )a ; a 1, 2,3C = =C  is an ortho-

normal Cartesian base of the Euclidean vector space  of translations in 3E 3E . 

 It seems to be physically reasonable to take into account the influence of secon-

dary point defects on the Burgers vector. It can be done e.g. in the following way. 



 6 

Firstly, let us note that although translational symmetries of the crystal are lost in the 

above mentioned continuous limit approximation, nevertheless the base vector fields 

of a Bravais moving frame can be considered as those that define the scales of an 

internal length measurement along local crystallographic directions of the dislocated 

Bravais crystal (Section 1). Namely, we can define the following intrinsic material 

metric tensor g of an internal length measurement within the dislocated Bravais crys-

tal [1]:  

(2.7) 
[ ]

[ ]

a b A
ab AB

a b
2

AB ab A B

δ E E g X X

  g δ , cm ,

d d

e e

= Φ = ⊗ = ⊗

= =

g g

g

B,
 

describing a distortion of the globally Euclidean length measurement within a crys-

talline body B (embedded in its configurational Euclidean point space 3E ) due to 

many dislocations. Since the Riemannian metric is locally Euclidean, therefore it is 

an internal length measurement consistent with the observed phenomenon that dislo-

cations have no influence on the local metric properties of the crystalline body. Next, 

let us consider a Burgers circuit Bγ ⊂  as the one located in the Riemannian material 

space ( ,gB B= )g , where  is the intrinsic metric tensor defined by Eq. (2.7). Then, 

the integrals of Eq. (2.6) that define components 

g

[ ]ab γ , , of the Burgers 

vector 

a=1,2,3

[ ]γb , can be treated as functionals in the Riemannian space gB , defining a 

mapping [ ] 3
gBγ γ⊂ → ∈b E . Let BΣ ⊂  be a surface possessing the closed contour 

γ  as its boundary and treated as a two-dimensional compact, connected and oriented 

Riemannian submanifold of gB . Since 

(2.8) [ ]a ab ,dEγ ε
Σ

= ∫  
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it follows from the Stokes theorem in a Riemannian manifold [12] that the compo-

nents [ ]ab γ  of the Burgers vector [ ]γb  can be written in the following form [1]:  

(2.9) 
[ ]a ba

b b b

b a
a ab a a

b α , l

l δ l , l l 1, l ,
g

d d dγ
Σ

= Σ Σ = Σ

= = = =

∫
l l a

,

E
 

where ( )W B∈l  is a unit vector field normal to the surface element  of  and it 

was denoted  

dΣ Σ

(2.10) ba a cdb ba
cdα S , α cm ,eε 1−⎡ ⎤= =⎣ ⎦  

where and abc abce ε  denotes the permutation symbol associated with the Bravais-

moving frame Φ  and considered as components in this base of a contravariant 3-

vector density of weight +1 in gB . The dislocation density tensor  is defined as 

[1]: 

α

(2.11) [ ]ab 3
a bα , cm .−⊗ =α E E α=  

Likewise, the scalar volume dislocation density ρ  of a finite total length ( )dL B  of 

dislocation lines located in B is defined by the following formula: 

(2.12) 

( ) ( ) [ ]

( )

2
d d

1 2 3 1 2 3 1 2 3

a
3

A AB

0 V , cm,

E E E X X E , V X X X ,

det , det g , cm ,

g gB B

g g

g

L B d L B

ed d d d gd d d

e e g g

ρω ρ ρ

ω

ω

−⎡ ⎤< = = < ∞ = =⎣ ⎦

= ∧ ∧ = ∧ ∧ =

⎛ ⎞ ⎡ ⎤= = = =⎜ ⎟ ⎣ ⎦⎝ ⎠

∫ ∫ cm ,

 

where gω  is the volume 3-form of ( ),gB B= g  defined by Eqs. (2.2) and (2.7) and 

 denotes the material volume element. gVd

 The components  of the dislocation density tensor can be written in the fol-

lowing form [1]: 

abα
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(2.20) ( ) [ ]

ab ab ab

ababab ab cab
c

α γ σ ,
1γ α , σ α t ,
2

e

= +

= = =
 

where, according to Eqs. (2.4) and (2.10), we have: 

(2.21) bc b
a abc abt α C , 1,e ε ε= = = ±

)

 

and  denote the permutation symbols associated with the Bravais 

moving coframe  and considered as components in this base  of a covariant 3-

vector density of weight  in 

abc
abc abc (e ε ε=

∗Φ

1− gB . It follows from Eqs. (2.4), (2.10), and (2.20) that 

(2.22) [ ]
c c
ab abda bC t dcγ .eε δ= −  

Therefore, the long-range distortion of the continuously dislocated Bravais crystal 

with secondary point defects characterizes the following pair ( )γ, t  defined in the 

Riemannian material space gB  [1]: 

(2.23)  
ab ab ba

a b

a a ab ab a 1
a b

γ , γ γ ,

t , t δ t ; γ t cm−

⊗ =

⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦

γ = E E

t E .

 

 

  3. Effective dislocations 

 

 Let us rewrite Eq. (2.9) in the following form: 

(3.1) 
[ ]a a

a ba a
b

b b ,

 b l α , b c

dγ ρ

ρ
Σ

= Σ

⎡ ⎤= =⎣ ⎦

∫
m,

 

where ρ is the scalar density of dislocations defined by Eq. (2.12), and [ ]C l  is a con-

gruence in the material space gB  defined by the unit vector field , [a
all = E ] 1cm−=l , 

and by the following condition [6]: 
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(3.2) , 1
g

ρ ,= =b lα l  

where  

(3.3) 
[ ]

( )

a a
a

1/ 2a c
a a ac

b , b cm, 1;

b b 0, b δ b , cm.g gg
b b

⎡ ⎤= = =⎣ ⎦

⎡ ⎤= = > = =⎣ ⎦

b E b

b
 

We will identify a geometric curve of this congruence with an effective dislocation 

line [6]. A line in gB  with its unit tangent l and endowed with the nonvanishing local 

Burgers vector b, can be interpreted as the edge (effective) dislocation line if [6] 

(3.4) a a
a ab l m lgb 0,⋅ = = =b l  

where it was denoted: 

(3.5) 
( ) [ ]1/ 2a a

a a

, 0,

m , m m 1, cm

g g

g

b b
−

>

= = =

b = m

m E m m 1,=
 

or - as the screw (effective) dislocation line if  

(3.6) [ ], 0,η η η= ≠ =b l cm. 

In other cases an effective dislocation line is interpreted as the mixed dislocation line. 

 Introducing the designations: 

(3.7) 

( )

, ,

1/ 2a 1
a

cos , 0 ,

t t , cm ,

g

g gg

t

t t

ϕ ϕ π

−

⋅
= ≤ ≤

⎡ ⎤= = =⎣ ⎦

l t l t
l t

t
 

and 

(3.8) 

a
a

a bca
b c ,

μ , 1,

1 1μ t l e , sin 0,
2 2

g

gt

μ

μ ϕ

= =

= = ≥l t

μ = E m m
 

we can write, according to Eqs. (2.11), (2.13), (3.2) and (3.8), the local Burgers vec-

tor b in the form [6] 
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(3.9) 
, 0,

1, 0,
g g

ρ μ μ= + ≥

= = ⋅ = ⋅

b
=

γl m
l m l m t m  

where 

(3.10) , ,cos , cos .g gb bρ ρ ϕ ϕ⋅ = = = ⋅b l b lb l lγl b l/  

For effective screw dislocation lines we have , 0ϕ =b l  or π . For mixed or edge effec-

tive dislocation lines ( ), 0,ϕ π∈b l . The family ( ),π l m  of planes spanned by the 

vector fields l and m constitute then an uniquely defined two-dimensional distribu-

tion on gB  (see [1], Appendix) and the unit vector field n normal to these planes is 

uniquely defined up to its orientation. The planes of this distribution are local slip 

planes for the congruence [ ]C l  if 

(3.11)  0,⋅ =b n  

or equivalently: 

(3.12) 0.=nγl  

In this case l defines locally Volterra-type effective dislocation lines [6]. 

 The ordered triple ( )ϒ = l, m, n , defined by Eqs. (3.9)-(3.11) and the condition 

(, 0, )ϕ π∈b l , is called further on a Volterra moving frame [6]. It defines the two-

dimensional oriented distribution ( ),πn l m  of local slip planes associated with the 

considered congruence of mixed (or edge) effective dislocation lines. If this oriented 

two-dimensional distribution is integrable ([12, 13]; see also [1], Appendix), then 

through each point of gB  passes an oriented unique maximal integral manifold of the 

distribution. These integral manifolds are virtually slip surfaces (Section 1) for effec-

tive mixed dislocations of the considered congruence [ ]C l  and the unit vector field n 

defines the congruence [ ]C n  of curves normal to this family of (virtual) slip sur-
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faces. The Volterra moving frame ϒ  as well as the Bravais moving frame  span 

the linear module 

Φ

( )W B  of all smooth vector fields on B tangent to B. Note that if 

(3.13) 3,=n E  

then the family  of local oriented slip planes defined by is in coincidence 

with the distribution 

( ,πn l m) ϒ

( )1 2,π π= E E  of local crystal planes. In this case, the integral 

manifolds of the distribution π  define crystal surfaces being virtual glide surfaces 

for the considered congruence [ ]C l  of Volterra-type effective dislocation lines [6]. 

 Let us consider a Frenet moving frame ( )a ; a=1,2,3ℑ = e  of vector fields on gB  

associated with the above-defined congruence [ ]C l  of Volterra-type mixed effective 

dislocation lines, that is such that the generalized formulae of Frenet [6] 

(3.14) 

( )

1

1

1

1 2

2 1 3

3 2

, 0,

, 0,

, , C

g

g

g ,B

κ κ

κ τ τ

τ κ τ ∞

= ∇ = 〉

∇ = − + ≥

∇ = − ∈

e

e

e

κ e e

e e e

e e

 

where g∇  denotes the Levi-Civita covariant derivative based on the Riemannian me-

tric g (e.g. [14]), are valid. Moreover 

(3.15) 1 =e l  

is the (unit) tangent,  is the principal normal, and  is the second normal of this 

congruence. Vector  is the curvature vector of the congruence and scalars 

2e 3e

2κ=κ e κ  

and τ  of Eq. (3.14) are the curvature and torsion of the congruence, respectively. A 

Frenet moving frame defines (at least locally) three two-dimensional distributions of 

planes: -osculating planes, ( 1 2,π e e ) ( )2 3,π e e -normal planes and -

rectifying planes [6]. It follows from Eqs. (3.9), (3.12) and (3.15) that 

( )3 1,π e e

(3.16) ( ) ( )b b ,l m=b l + m  
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and 

(3.17) 1 2 3, cos sin , sin cos .ϑ ϑ ϑ ϑ= + = − +e = l e m n e m n  

Consequently, according to Eq. (3.14), we obtain that:  

(3.18) 
( ) ( ) ( ) ( )

( ) ( ) ( )

b b cos b b cos

b b sin , 0.

g
l m m l

m l

κ ϑ κ ϑ

τ ϑ κ ϑ κ

⎡ ⎤ ⎡∇ = ∂ − + ∂ +⎣ ⎦ ⎣
⎡ ⎤− ∂ + >⎣ ⎦

l l l

l

b l

+ n

⎤
⎦m

 

Therefore, at each body point, the local Burgers vector b of the congruence, as well 

as its variation g∇l b  in the l direction, are located in the same local slip plane normal 

to the n direction iff [5] 

(3.19) ( ) ( ) ( )b b sin 0, 0m lτ ϑ κ ϑ κ .−∂ + = >l  

Note that, according to Eq. (3.10) with , / 2ϕ π=b l , the considered congruence con-

sists of edge effective dislocation lines iff 

(3.20) ( ) ( )b 0, b 0.l m= ⋅ = ≠b l  

So, in this case, Eq. (3.19) reduces to the following representation of the torsion τ : 

(3.21) 0.τ ϑ= ∂ ≥l  

In the following, we will consider the congruence of effective mixed dislocation lines 

restricted by the above condition. This means that the climb component (see [6])  

(3.22) ( )b sin , 0,g
l κ ϑ⋅∇ = ⋅ =ln b n b   

of the local Burgers vector variation is admitted. Next, let us observe that Eq. (3.17) 

can be rewritten in the following complex form: 

(3.23) ( )2 3 , ,ii i e ϑ
1+ = + =N = m n e e l e  

where 

(3.24)  0, 2, 1,∗⋅ ⋅ ⋅ = ⋅ =N N = l N = N N l l
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and the asterisk denotes the complex conjugation. Introducing the complex variable 

ψ  of the form:  

(3.25) , 0,ie ϑψ κ κ= >  

where  is the curvature of the congruence, and taking into account Eq. (3.21), we 

can rewrite the generalized formulas of Frenet (3.14) and Eq. (3.15) in terms of the 

Volterra moving frame (l, N) and the complex variable 

κ

ψ : 

(3.26) ( )1 , .
2

gκ ψ ψ ψ∗ ∗= ∇ −lN + N N = l   

 Let ( )( )a , ,t t t I +Φ = Φ = ⋅ ∈ ⊂E , be a time-dependent Bravais moving frame. 

The instantaneous metric tensor [ ]t t= Φg g  is defined then by Eq. (2.7). Namely, if 

 denotes the Bravais moving coframe dual to , and  ( )( aE ,t t∗ ∗Φ = Φ = ⋅ ) tΦ

(3.27)  ( ) ( )( ) ( ) ( )( )
a

A a A
a AAa

, X , , E , X ,pp t e p t p t e p t d= ∂ =E pX ,  

then ( ) ( ), tp t pg = g = g , ( ),p t B I∈ × , where 

(3.28) 

( ) [ ]( ) ( ) ( ) ( )( )
( )( ) ( ) ( )

( ) ( ) ( ) ( )

a b
ab

A B A A
AB

a b

AB A B ab

δ E , E ,

g , , X

g , , , δ , X ,

t t t

t p X

p p p t p t p

p X X t dX dX dX d

X t e X t e X t X p

= Φ = ⊗

= ⊗ ≡

= =

g g g

g

,

,

X

 

and it is assumed that ( )p p X=  iff ( )XX p= . The instantaneous long-range dis-

tortion of the continuized dislocated Bravais crystal is characterized by the family 

[ ] [ ]t tΦ ≡ ΦS S t I∈, , of tensor fields dependent on time as a parameter: 

(3.29) 
[ ] ( )( ) [ ] ( )( )

( ) ( ) ( ) ( ) ( )c a b
ab cS , E , E , , t

t t

t

p X p X

.X t X t X t X X

Φ = Φ

⊗ ⊗ ≡

S S

E S
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Thus, taking into account Eqs. (3.28) and (3.29), we can define the instantaneous 

dislocation density tensor by Eqs. (2.10), (2.11) and the instantaneous scalar density 

of dislocations by - Eq. (2.12). 

 The above defined Volterra and Frenet moving frames are time-dependent too. 

The time-dependent scalars κ  and τ  of the generalized Frenet formulas (3.14) can 

be treated now as those that distinguish one class of congruences of moving effective 

dislocation lines from another. Consequently, the time-dependent complex version of 

Eqs. (3.21)-(3.28) of these formulas needs additional kinematic equations defining 

the evolution of curvature and torsion. A method of deriving such equations, based 

on the Frenet formulas for a single curve in the Euclidean space , has been formu-

lated in order to describe the motion of a very thin, isolated vortex filament [15] (see 

also [16]) and it has been generalized in order to describe a congruence time-

dependent curves in a Riemannian space [5]. Namely, putting 

3

(3.30) 1 2

3 4 5

,

,
t

t

ω ω ω

ω ω ω

∗

∗

∂ = + +

∂ = + +

N N N

l N N

l

l

/ 2,

 

and noting the relations of Eq. (3.24) and their partial derivatives with respect to ti-

me, we obtain 

(3.31)  1 1 2 3 4, 0, / 2,iω ς ω ω ω ω ω ω∗= = = = − = −

where ω  and ς  denote the complex and real scalar defined on B I× , respectively. 

So, we have 

(3.32) 
( )

[ ] [ ] 1

1 ,
2

, s

t

t i

ω ω

ω ς ω ς

∗ ∗

.−

∂ = − +

∂ = + = =

l N N

N l N
 

The system of equations is not closed. Therefore, some additional conditions are 

needed. For example, it follows from Eqs. (3.26) and (3.32), that the condition 

(3.33) ( ) ,g g
t t∂ ∇ = ∇ ∂l lN N  
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leads to the following kinematic consistency equations: 

(3.34) ( ) (
0,

Im ,
2

t

t

i
i )
ψ ω ςψ

ς ωψ ω ψ ω ψ∗ ∗ ∗

∂ + ∂ − =

∂ = − =

l

 

and means that the equation  

(3.35) ( )g
t tκ∂ = ∇ ∂l l  

should be fulfilled. If the scalar ω  is real, then Eq. (3.34) reduces to the following 

system of three real equations for four real variables κ , ϑ , ς  and ω : 

(3.36) 
( )
sin , cos 0,

sin 0,
t

t

ς ωκ ϑ κ ϑ ω

κ ς ϑ ϑ ω

∂ = ∂ + ∂ =

− ∂ + ∂ =
l l

l

 

where the versor l is treated as a fixed variable. It admits a broad class of nonlinear 

models of kinematics of the effective dislocation lines [5]. Particularly, if 

/ 2,ϑ π= then Eq. (3.36) reduces to the relations 

(3.37) 0, , ,tκ ω ςκ ς ωκ∂ = ∂ = ∂ = −l l  

admitting a static congruence of effective Volterra-type edge dislocation lines of 

torsion zero, being intersections of two orthogonal families of surfaces in gB : crystal 

surfaces (on which the dislocations are located) and virtual slip surfaces [6]. 

 

 

  4. Material flow 

 

 The Bravais moving frame ( )aΦ = E  defines a plastic distortion tensor P such 

that [1, 7] 

(4.1) a a a b, δ ,ab= =E PC C cC  
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where  is a Cartesian basis defined on the Euclidean point space ( a ; a 1, 2,3C = =C )

3E  endowed with the Euclidean metric tensor c. The Bravais moving coframe 

( )aE∗Φ =  can be represented by a vectorial basis ( )a ; a 1, 2,3g
∗Φ = =E  of the linear 

module ( )W B  (see [1], Appendix) uniquely defined by the following conditions: 

(4.2) a a a a
b b b bE , δ , a, b 1, 2,⋅ ≡ = =E = E E E gE 3. 

 Then 

(4.3) ( )Ta a 1, , δ ,a a
b b

∗ ∗ −= =E P C P P C cC =

b

 

and the intrinsic material metric tensor can be written in the form [1] 

(4.4)  1 a
abδ .∗ −= = ⊗g P cP E E

 Now, let us consider a time-dependent Bravais moving frame (Section 3). The 

partial derivative  with respect to the time parameter is also designated further on, 

for simplicity, by a dot over letters. For example, it follows from Eqs. (3.27) and 

(4.1)-(4.3) that 

t∂

(4.5) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

A
a A aa

1 A B
B A

A B
B A

, , , ,

, , , S ,

, P , .

t p

p

t

X t e X t X t X t ,

,X t X t X t X t dX

X t X t dX

−

= ∂ ∂ =

= = ∂

= ∂ ∂ ⊗

E S

S P P

P

⊗

E

 

Thus, taking into account Eqs. (3.28) and (4.3)-(4.5), we obtain the following rela-

tions: 

(4.6) 
( )T

A B C
AB AB AC B

12 , ,
2

S X X , S g S

p p p p

p d d

− = +

= ⊗ =

g = D D L L

L .
 

 Elastic behavior of matter is usually classified as reversible, inelastic behavior as 

irreversible. Like in thermodynamics, irreversibility in mechanics is much more in-

volved than reversibility. Therefore it has not been possible to develop a unified the-
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ory which covers all the diverse inelastic phenomena. Nevertheless, it is a distinctive 

feature of inelasticity that the decisive motion processes occur in the interior of the 

bodies [17]. Thus, let us consider a smooth mapping : B I Bχ × → , 0,I T= . The 

mapping is called a material flow if for each t I∈ , the mapping ( ) ( ),t tχ χ⋅ = ⋅  is a 

local diffeomorphism ( )0 0:t t tB B Bχ χ→ = ⊂ B  such that 0 idBχ = . If 

( )aξ ξ ; a 1,2,3= =  and ( )AX X ; A 1, 2,3= =  are two coordinate systems on B and  

is treated as a reference coordinate system defined on 

ξ

0B , then we can consider  as 

a convective Lagrange coordinate system 

X

( )A AX ξ, tχ= , A 1, 2,3= , defined on B at 

each instant t I∈  and such that for each 0q B∈ , the following relations hold [7]:  

(4.7) ( )( ) ( )( ) ( )( ) ( )A A A A
0 aξ , X , X δ ξ ,tq t q q qχ χ χ= = a  

where 

(4.8) ( ) ( )A A A A 1 3
tχ ξ, χ ξ , χ X χ ξ : ,t tt −= = →  

denotes the (local) coordinate description of mappings tχ , t I∈ . The mapping χ  

defines an intrinsic material velocity field v on B by  

(4.9) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
t

1

0

, T , ,

, ,
T , , , ,

t p t t

t t t

t q qq

p t p B p U B

t I
q t B t q t q U Bχ

χ

χ
ϕ ϕ χ

−

= ∈ ∈ ⊂

= ∈

= ∈ = ∈ ⊂

v v

v V
V

 

where qϕ  denotes the vector field tangent to the curve :q I Bϕ →  and (  is a 

coordinate system on 

), ξU

0B . In the coordinate description of Eqs. (4.7) and (4.8) of χ  

we have [7]: 

(4.10) 
( ) ( )( ) ( )

( )( ) ( )

A B
A

A A A 1

, v X , , ,

v ξ, , ξ, , [v ] cms .

tp

t

p t p t p U

t t t

χ

χ χ −

= ∂ ∈

= ∂ =

v
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 Let us consider the intrinsic counterpart G of the so-called right Cauchy-Green 

tensor defined as the time-dependent metric g pulled back by tχ , , that is [7, 

18]: 

t I∈

(4.11) 
( ) ( ) ( )( ) a b

ab

A B A A
ab a b AB a a 0

, G ξ , ξ ξ ,

G g , ,
t t q qq t q q t d d

q B

χ

χ χ χ χ χ

∗= = ⊗

= = ∂

G g

.∈
 

The corresponding material volume 3-form is given by [18]: 

(4.12) 
( ) ( )

1 2 2

2 A
ab a

ω ω ξ ξ ξ ,

det , det ,
G t g Gd d d

G G J g J

χ

χ

∗= = ∧ ∧

= = =
 

where  

(4.13) 
( ) ( ) ( )g 0

1 2 3 A B C
g ABC

ω ω , ω , ,

1ω E E E ,
6

g t t ,p t p p B t

e dX dX dX

χ= = ∈

= ∧ ∧ = ∧ ∧

I∈
 

ABCεABCe e= ,  denotes the permutation symbol associated with the cobase fields 

, , and Eqs. (2.12) and (3.28) were taken into account. The intrinsic 

plastic strain tensor  is given by 

ABCε

AXd A 1, 2,3=

pE

(4.14) ( )0
1 .
2p = −E G g  

 Let  denote an extended Lie differentiation operator [18]. Then (see 

Appendix)  

L t= ∂ +'
v Lv

(4.15) 
( )A B

AB AB A B B A

L L , L 2 , ,

1D X X , D v v
2

g t

g g
g d d

= + = ∂

= ⊗ = ∇ +∇

'
v v vg g g g D g = g

D ,
 

where gD  is called the intrinsic rate of stretchings tensor [7], and 

(4.16) 
( ) ( )g

                   L ω ω L ω ,

L ω div ω , ω ln ω .

g t g g

g g t g t g

= ∂ +

= ∂ = ∂

'
v v

v v g

 

Moreover 
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(4.17) gtr div ,g =D v  

and [18] 

(4.18)  ( ) ( )L , L ω ω .t t t gχ χ∗ ∗= ∂ = ∂' '
vg G t g  

 Let P denote the time-dependent plastic distortion tensor defined by Eqs. (3.27), 

(4.1) and let (see Eq. (4.5)): 

(4.19)   a a .p=E S E

It follows from Eqs. (4.6) and (4.15)-(4.19) that  

(4.20) 1 L ,
2 g p= −'

vg D D  

and, according to Eq. (4.14), we have  

(4.21) ( )1 .
2p t gχ∗ −E = G = D D p  

 It follows from Eq. (4.21) that if 

(4.22) ( ) ( )0, , ,pq t B I q t ,∀ ∈ × =E 0  

then, since 0 idBχ = , we have 

(4.23) ( ) ( ) ( )0 0, , t tq t B I q qχ∗∀ ∈ × =g g ,  

and it should be 

(4.24) .p gD = D  

Moreover, it follows from Eqs. (4.6) and (4.16)-(4.18) that then 

(4.25)  2 g= −g D  

and 

(4.26) ln div 0.t gg∂ + v =  
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If the conditions (4.23) and (4.24) are fulfilled, then we will say that the material 

flow : B I Bχ × →  is consistent with the time-dependent internal length measure-

ment (represented by the instantaneous material spaces tB , t I∈ ). Because  

(4.27) 
( )

( ) ( ) ( )

a 1 a
0

1
0

E E ,

: W W ,

t

t tB B

χ

χ

−

∗

− ∗ ∗

∗

=

→
 

where , ( )a
0 0EΦ = ( )a a

0E E , 0= ⋅ , is a Bravais moving coframe considered at the in-

stant  and (0t = )1
tχ
−

∗
 is the tangent mapping acting according to the following for-

mulae: 

(4.28)  
( )

a a
a A a c

A 0 0 ,c

a a
c 1 a A

A ,A 0 ,A ,,c

E e X , E e ξ ,

e e , δ ,t t t t t b

d d

χ χ χ χ χ−

= =

= = a
b

the instantaneous metric tensor tg  is an intrinsic counterpart of the so-called left 

Cauchy-Green tensor defined as the push-forward of 0g  by tχ , , that is [18]:  t I∈

(4.29)  
( )1 A B a

0 ,AB 0 0,ab

c d
a b 1

,AB ,A ,B 0,ab 0,ab 0 0 cd,a ,b

g X X , g ξ ξ ,

g g , g e e δ ,

t t t

t t t t

d d d dχ

χ χ χ

−

∗

−

= = ⊗ = ⊗

= =

g g g b

where [ ]0 = Φg g 0  and Eqs. (4.7), (4.8) and (4.11) were taken into account. More-

over, if a material flow is consistent with the instantaneous internal length measure-

ments, then it follows from Eq. (4.26) that the condition 

(4.30) div 0g =v  

is equivalent to the preservation of the body material volume in a rate-sensitive plas-

tic regime. Thus, it is a counterpart of the incompressibility condition in the theory of 

perfectly plastic materials. A material flow consistent with the instantaneous internal 

length measurements and fulfilling the above incompressibility condition will be 

called the conservative material flow. Note that the above preservation of volume 
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applies to the plastic motion only. However, it has been accepted in most macro-

scopic theories of elastoplasticity, that hydrostatic pressure and tension have a negli-

gible influence: elastoplastic flow does not alter the density of the body [17]. This 

situation changes at very high pressure only. If we restrict ourselves to sufficiently 

low pressures, then there is no volume change by the total elastoplastic deformation, 

hence also no volume change by the elastic part of the total deformation [17]. 

 

 

  5. Conservative material flows 

 

 Let us consider a Bravais moving frame ( )aΦ = E  and a Volterra moving frame 

 defined by Eqs. (3.9)-(3.15), and let us assume that these moving 

frames are time-dependent. It defines a time-dependent congruence 

( , ,ϒ = l m n)

[ ]C l  of mixed 

Volterra-type effective dislocation lines located in the time-dependent material space 

gB . The local slip planes of this congruence are identical with the local crystal 

planes normal to the -direction of the Bravais moving frame Φ  and that is why 

we will call them local glide planes. We will say that a material flow is consistent 

with the distri-bution  of local glide planes associated with the considered 

Volterra moving frame, if the corresponding intrinsic rate of stretchings tesor 

3E

( ,πn l m)

gD  is 

constrained by the following counterparts of kinematic conditions considered in the 

theory of perfect plasicity [7]: the material flow is conservative and the local glide 

planes are instantaneously inextensible planes. The last condition can be formulated 

as follows ([7], cf. [19]): if u is a vector field on gB  such that 

(5.1) ( ) ( ) ( )u 0, i.e., u u ,n l m= ⋅ = = +u n u l m  
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then 

(5.2) A B
AB0, i.e., D u u 0.g = =uD u  

The intrinsic material velocity field v of a material flow consistent in this sense with 

the Volterra moving frame is called the dislocation flow velocity [7]. The modulus 

g g
v = v  of this velocity will be called the dislocation flow speed. The components 

 of the intrinsic rate of stretchings tensor ABD gD  corresponding to a dislocation flow 

velocity has the following representation [7]: 

(5.3) 

( ) ( ) A
AB A B A B A B A B A

A 2 B
A A AB g A A

D γ S n n S s n n s , s n 0,

S S 1 δ , S g S δ l m s ,

δ D / D , D , γ D , γ,
g g

g nl nm nl g nm g g

D

S S

D S

= + = + =

= = + = = + =

= = = =nD l nD m
Ag

=

 

where the versor  is a Riemannian counterpart of the so-called direction of 

shear and , 

A
As= ∂s

γ [ ] 1γ s−= , denotes the rate of inelastic shear in this direction. The pair 

 defines the local slip system with a resulting slip conditioned by a local glid-

ing of Volterra-type effective dislocation lines in the m-direction and by additional 

local slips along these lines (cf. [6]). Note that  

( ,s n)

(5.4) 1cos > 0, < < .
2 2gS
π πψ ψ= ⋅ −s m =  

 Let us consider the case of an infinitesimally conformal equidistant material 

space gB  defined by the following condition [1, 20] (cf. [21]): 

(5.5) 
( )A B AB

A
A A A

g , 0 C ,

n , n n 1, 0,

g

g g

Bϕ α α

ϕ ϕ ϕ

∞∇ = ≠ ∈

= = >
 

where [ ]( A
BC

g∇ = Γ g )  denotes the Levi-Civita covariant derivative with its Christof-

fel symbols [ ]A
BCΓ g  corresponding to the metric tensor g (dependent in general on 

time treated as a parameter). It follows from Eq. (5.5) that 
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(5.6) 
( )A A

A
A B

, C

n n 0,g

,Bϕ ϕ ϕ ∞= ∂ ∈

∇ =
 

and the space gB  is foliated by the family ( ),c cΣ = Σ ∈  of surfaces of the form  

(5.7) ( )1 , 0c c dϕ ϕ− ,Σ = ≠  

being, according to Eq. (3.13), crystal surfaces normal to the n-direction. Moreover, 

in this case for each p B∈  there exists a coordinate system 

,( )A 3X X : U= → p U∈ , 3X Uϕ= , such that  

(5.8) ( ){ }3: X ,c q U q cΣ = ∈ =  

and Eq.(3.28) reduces to  

(5.9) ( ) ( ) ( ) ( )3 3, , ,t
3X X ,X t X X t X t d dκ= Ψ + ⊗g g a  

where it was denoted 

(5.10) ( ) (2 2 , C , Cha e h I a I− ∞Ψ = ∈ × ∈ ).∞   

The time-dependent Bravais moving frame is, in the coordinate system of Eq. (5.8), 

given by  

(5.11) 
( )( ) ( )( ) ( )( )C 1/ 2 3

α

3 3

X , X , X , ,

, , 1, 2,

p t p t p tκ
α

α κ

−Ψ

∂ =

E a

E
  

where the vector fields ( )a : WU I B× →E  have been identified with the vector 

fields ( ) ( )1
a X : X WU I B− × →E . The surfaces ( ), ,,c t c c tΣ a I∈Σ = , t , where 

(5.12) ( ) ( ) ( ) ( ), , , , a , X X ,c t t tc t X X t X t d dκ κ κ α β
αβ= Ψ = = = ⊗ta a a a a  

are then instantaneous umbilical crystal surfaces with the constant mean curvatures 

, ( )c cH H t= ( ),c t R I∈ × , given by [1]  

(5.13) ( ) ( ) 3, ,cH t H c t H h.= = ∂  

Further on we will assume that 
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(5.14) ( ), 0,t I t 1.∀ ∈ Ψ =  

The Christoffel symbols defined by the metric tensor of Eq. (5.9) are given by [20] 

(5.15) 
[ ] [ ] [ ]
[ ] [ ]
[ ] [ ] [ ]

3 3 α
33 3α 33

α α 3
β3 β αβ

κ κ κ
αβ αβ αβ

0,

δ , g

,

H H

Γ = Γ = Γ =

Γ = − Γ =

Γ = Γ = Γc

g g g

g g

g a a
αβ ,  

where [ ]( )a κ
αβ∇ = Γ a  is the Levi-Civita covariant derivative based on the metric ten-

sor a and the dependence on the temporal parameter has been omitted.  

 Since 

(5.16) [ ]C
AB B A A BA CL v vg

B= ∇ = ∂ −Γ g v ,  

it follows from Eqs. (4.15) and (5.9)-(5.15) that if  

(5.17) ( ) ( ) ( )
α 3

α n, v , , v vX t X t 0,= ∂ = = ⋅v v =n  

then 

(5.18) 
[ ]

α3 α 3α 3 α α 33
κ

αβ β α βα κ β α α α

L v , L v v , L

L v v v , va

H H= = ∂ +

= ∂ −Γ = Ψ∇ = Ψa

0,

v ,

=
 

where 

(5.19) β β
α αβ α α αβv g v v , v a v= = Ψ = ,  

and, in general, ( )3
α αv v , ,X X tκ= , α,β,κ 1,2= . Thus 

(5.20) 
( )

3 3 α α 33

αβ αβ αβ α β β α

1D v v , D 0,
2

1D D , D v v
2

a a

Hα = ∂ + =

= Ψ = ∇ +∇ .
 

If v of Eq. (5.17) is the dislocation flow velocity, then it follows from Eqs. (5.3), 

(5.11), (5.19) and (5.20) that the following relations hold: 

(5.21) a
αβ α β β αD 0, i.e., v v 0,a= ∇ +∇ =  

and 
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(5.22) α3 α 3 α α
1D Ds , i.e., v v αγ s .
2 gH S= ∂ + =  

Eq. (4.30) follows now from Eqs. (4.17), (5.9) and (5.21).  

 It follows from Eqs. (5.8), (5.9) and (5.21) that the dislocation flow velocity v 

defines (up to its dimension) a Killing vector field (e.g. [14], [22]) for the crystal sur-

faces , , being here virtually glide surfaces [1]. Note that the so defined 

Killing vector fields can act as the so-called scalar preserving isometries which leave 

invariant the intrinsic metric tensor g as well as the scalar 

3X c= c∈

( )C Bϕ ∞∈  of Eq. (5.7) 

[1]. For example, if the considered crystal surfaces ( ), ,c t c c tΣ = Σ a ,  have additionally 

constant Gaussian curvatures ( )cK t , ( ),c t I∈ × , then we are dealing with the 

following classes of virtual glide surfaces [1]. If ,c tΣ  is a parabolic surface 

( ( ) 0cK t = ), then it admits as its motion, in the small at least, the deformation of a 

Euclidean plane characterizing the single glide case (Section 1): planar rotations and 

translations [23]. In the hyperbolic case ( ( ) 0cK t < ) we ought to take into account 

that the three-dimensional particular Lorentz group can be considered as a deforma-

tion of a Euclidean plane changing a square into a rhomb [24] (the so-called pure 

shear). The remaining three-dimensional Lorentz transformations are planar Euclid-

ean rotations or their compositions with pure shearing. The case of elliptic glide sur-

faces ( ( ) 0cK t > ) can be considered as the one corresponding to an elementary act of 

plasticity connected with the phenomenon of crystal fragmentation in the plastic 

yielding process and called rotational plasticity [25]. We see that Eq. (5.21) can be 

considered as the condition defining generators of a group of conservative material 

flows preserving glide surfaces. 
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  6. Orowan-type kinematics 

 

 Let us return to the definition of congruences of Volterra-type effective disloca-

tion lines given by Eqs. (3.2)-(3.13) and let us consider a congruence [ ]C l  of princi-

pal (Volterra-type) effective dislocation lines defined by the condition [6] 

(6.1) , 1,
g

γ γ .= = ∈γl l l  

It can be shown that if the conditions (5.9)-(5.14) are additionally fulfilled, then [6] 

(6.2) ( )1 1 2 2 , 0γ γ ,− ⊗ + ⊗ ≥γ = γ γ γ γ  

and 

(6.3) 
( )a

a 3

2 2

t 2

2 0g g

H

t H

γ

γ

= = − + 3 ,

.= = + >

t E γ E

t
 

where 

(6.4) 
( ) ( )1 3 2 3

3 1 2 1

1 1, ,
2 2

cos sin , sin cos .ϕ ϕ ϕ ϕ

= + = −

= =

γ k E γ k E

2−γ E + E k E E
 

It follows from Eqs. (6.2)-(6.4) that if [ ]C l  is an arbitrarily chosen congruence of 

Volterra-type effective dislocation lines, then its local Burgers vector b is given by 

[6]: 

(6.5) 
( )3, , 3

,

cos cos ,

1 sin , 0, 1.
2 g g g

t

ρ γ ϕ ϕ μ

μ ϕ

= − + +

= ⋅ = ⋅ =

l E k l

l t

b k E m

l m t m = l m =
 

For example, if  

(6.6) 3,l = γ  
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then 

(6.7) 2 2, , H .ρ μ μ= = =b m m k γ+  

Note that if  

(6.8) 0,γ =  

then 

(6.9) .gb Hρ =  

and, since the considered crystal surfaces are umbilical (Section 5) , the normal cur-

vature  of these surfaces is the same for all their tangent directions and [22]: nκ

(6.10) .n Hκ =  

It means that Eqs. (6.9) and (6.10) define a Riemannian counterpart of Eq. (1.2). 

Moreover, the considered effective edge dislocation lines can be interpreted as those 

describing a continuized Bravais crystal, endowed with a distribution of very small 

prismatic edge dislocation loops normal to the time-dependent m-direction [6]. 

 If the direction of the dislocation flow velocity v of Eqs. (5.17)-(5.22) coincides 

with the direction of shear s of Eqs. (5.3) and (5.4), that is 

(6.11) , 0g gv v ,= >v s  

then  

(6.12) α
3 α

1γ cos s v .
2gHvψ ⎛ ⎞= + ∂⎜ ⎟

⎝ ⎠
 

Thus 

(6.13) γ cos ,gHv ψ=  

if and only if 

(6.14) α 1
α 3 3s s .g gv v−∂ = ∂  
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Particularly, if Eqs. (6.9) and (6.13) are valid, then we obtain the following generali-

zation of the Orowan kinematic relation (1.1): 

(6.15) γ cos ,g gb vψ ρ=  

where multiplier cosψ  is a counterpart of the so-called directional coefficient con-

sidered in the physical theory of plasticity [26]. Note that if additionally the direction 

of shear coincides with the direction of the local Burgers vector, that is 

(6.16) ,gv=v m  

then in Eq. (5.3) we have 1gS =  (or equivalently gδ 0= ) and thus 

(6.17) ( )D , D γ 0.g = ⊗ + ⊗ = >D m n n m  

In this case Eq. (6.14) reduces to 

(6.18) α 1
α 3 3m m ,g gv v−∂ = ∂  

and the Orowan kinematic relation takes the form of Eq. (1.1): 

(6.19) γ .g gb vρ=  

 

 

  7. Final remarks 

 

 Let us consider a material flow ( ), ttχ χ⋅ = , t I∈ , fulfilling the conditions 

(6.15)-(6.18) and consistent with the distribution of ( ),π π= n l m , , of 

local glide planes being virtual slip surfaces for a congruence 

3=n E 3∂

[ ]C l  of effective edge 

dislocation lines defined by the condition  

(7.1) 3 0,⋅ =l E  

and by the following form of its local Burgers vector: 
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(7.2) ,Hρ =b m  

where H is the mean curvature of umbilical crystal surfaces (see Section 6). If T is a 

symmetric stress tensor defined on actual configurations ( )t tU Bχ ⊂ t I∈, , of do-

mains , and identified with an internal stress tensor dependent on the distri-

bution of dislocations and secondary point defects, then the scalar 

0U B⊂

(7.3) [ ] 2T , T kgcm ,−= =mTn  

can be interpreted as the field of resolved shear stresses acting in oriented local slip 

planes of the distribution π  in the direction m of the local Burgers vector b [7] (cf. 

[4]). There are various dislocation dynamics descriptions, treating T as driving stress 

of moving dislocations. For example, it has been experimentally established that at 

low temperatures, when the climb (see [6], Section 1) is negligible, a relationship 

between the dislocation flow speed gv , interpreted as the mean dislocation speed in 

the presence of many secondary point defects, and the stresses, can be taken in the 

following form (see e.g. [3, 4] and [26]): 

(7.4) 0
0

T ,
T

n

gv v
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

where  is a characteristic velocity of the order of the elastic shear wave speed, and 

T is an effective resolved shear stress (represented here by the stress defined by Eq. 

(7.3)). The characteristic parameters  and n may be, in general, dependent on the 

temperature and permanent strains. Moreover, we will assume that the following 

generalized version of the condition of non-negativeness of dissipation is fulfilled: 

0v

0T

(7.5) ( )tr 2TD=2Tγ 0,g = ≥TD  

where Eqs. (6.17) and (7.3) were taken into account. It must be emphasized that Eq. 

(7.4) implies no physical interpretation of the mechanism of dislocation motion. Par-
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ticularly, it is not assumed that a critical value of stresses is needed for the activation 

of the dislocation motion (and thereby, to create conditions for the appearance of 

plastic deformation [26]). 

 If Eqs. (7.4) and (7.5) are admitted, then the condition 

(7.6) α
α 3 3m m T , T 0

T
n ,∂ = ∂ ≥  

should be fulfilled. In this case we obtain, according to Eqs. (6.9), (6.19) and (7.4), 

that  

(7.7) 0
0

Tγ γ , T
T

n
⎛ ⎞

0,= >⎜ ⎟
⎝ ⎠

 

where ( )3
0 0γ γ ,X t=  is a time-dependent characteristic local strain rate of the form: 

(7.8) ( ) ( )3 3
0 0γ , , .X t H X t v=  

Finally, we see that the material flow defined by Eqs. (6.16), (6.17), (7.4) and (7.6)-

(7.8) can be considered as the one consistent with the Orowan kinematic relation as 

well as with treatment of the resolved shear stresses as driving stresses of moving 

dislocations. 

 

 

  Appendix 

 

 In differential geometry is considered the so-called Lie derivative  with respect 

to the vector field  (see e.g. [11, 14] and [18]). For example, if we denote 

Lu

( )W B∈u

(A.1)  A B
BC AT Xd d= ∂ ⊗ ⊗T CX ,

then the Lie derivative operator will act according to the rule: 
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(A.2)  ( )A D A D A A D A
D BC BC D DC B BD CBC

L u T T u T u T= ∂ − ∂ + ∂ + ∂uT Du .

BX ,

,

Particularly (see [1], Appendix): 

(A.3) 
[ ] ( )

B A A
A A B B

A
A

L u , L X u

L , , L u

d d

f f f

∂ = −∂ ∂ = ∂

= = =
u u

u uv u v u ∂

,

 

and  

(A.4)  1/ 2 1/ 2 1/ 2
gL 2 , L div trg g g= = =u ug ε u ε

where (see [1], Appendix) 

(A.5) 
( )

A B A
AB A

B
AB A B B A A AB

ε X X , u ,
1ε u u , u g u
2

g g

d d⊗ = ∂

= ∇ +∇ =

ε = u

,
 

is a Riemannian counterpart of the so-called small strain considered in the contin-

uum mechanics (e.g. [27]), and it was denoted 

(A.6) ( )A 1/ 2 1/ 2 A AB
A Adiv u u , tr g ε .g

g g g−= ∇ = ∂u ε = AB  
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