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 The notion of a congruence of effective dislocation lines endowed with the nonvanishing 

local Burgers vector is introduced. Particularly, the class of congrunces of principal Volterra-

type effective dislocation lines associated with the dislocation densities (tensorial as well as 

scalar) is distinguished in order to investigate the geometry of continuized defective crystals 

in terms of these densities. It is shown that effective dislocation lines can be endowed with 

the dislocation line tension and with a finite self-energy.  

 

 

  1. Introduction 

 

 The straight edge dislocation has a rigorously defined plane in which it can 

move. The plane, called a slip plane, includes the dislocation and its Burgers vector 

and the dislocation motion (in the Burgers vector direction) is called then a glide 

motion. Likewise, a curved edge dislocation has a rigorously defined slip surface 

called also its glide surface. The edge dislocation is then the so-called prismatic dis-

location and the slip on this surface is called a prismatic slip [1]. The planes tangent 

to the slip surface of a prismatic dislocation are local slip planes. For a straight screw 

dislocation its Burgers vector is parallel to the dislocation line.  
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 At low temperatures when the diffusion is difficult, and in the absence of a non-

equilibrium concentration of point defects, the movement of dislocations is restricted 

entirely to glide. However, at higher temperatures an edge dislocation can move out 

of the glide surface normal to the Burgers vector by a process called its climb [2]. 

The glide and climb motions are two basic types of dislocation movements [2]. For 

example, a prismatic edge dislocation loop can move only by glide on a cylindrical 

surface, and if the loop expands or shrinks, climb must be occurring. There are also 

prismatic dislocations in the of forms of cylindrical helices. Namely, dislocations in 

the of forms of a long spiral have been observed in crystals [2]. The spiral dislocation 

lies on a cylinder whose axis is parallel to the Burgers vector, and the dislocation can 

glide on this cylinder. Consequently, the prismatic helical dislocation is mixed (that 

is it has the edge and screw components). 

 The slip, which is the most common manifestation of plastic deformation in crys-

talline solids, can be envisaged as sliding or successive displacement of one plane of 

atoms over another, on a distinguished slip plane (local or global). Discrete blocks of 

crystal between two slip planes remain undistorted [2]. Consequently, any disloca-

tion line in the crystal can be treated as a line formed by means of a slip (homogene-

ous or not), such that the dislocation becomes a boundary between the slipped and 

unslipped parts of the crystal (e.g. [2], [3]). The slip direction is then parallel to the 

Burgers vector of the dislocation, and the slip magnitude equals the strength of dislo-

cation (defined as the modulus of its Burgers vector). The above representation of a 

dislocation concerns flat as well as spatial dislocation lines [3] and the dislocations 

so represented are called Volterra dislocations [2].  

 On the other hand, it is known that the glide motion of many dislocations results 

in slip, and it is observed that globally (i.e. on a macroscale) this motion is accompa-
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nied by the occurrence of slip surfaces [2] in which Volterra dislocations can move. 

It is because, among others, the appearance of many dislocations generates a bend of 

originally straight lattice lines and consequently crystal surfaces being slip surfaces 

occur. Such crystal surfaces are called glide surfaces of Volterra dislocations. For 

example, in the case of the so-called single glide (in which the crystal deforms by a 

slip on one set of parallel crystal planes only), lattice lines originally normal to the 

plane of slip, form a normal congruence, i.e., the lines of the congruence are or-

thogonal trajectories of a family of crystal surfaces of the continuously dislocated 

Bravais crystal [4], [5].  

 We see that, in a continuized crystal with many dislocations [5], the line being a 

boundary between slipped and unslipped parts of the crystal and located on a slip 

surface can be distinguished. This line can be endowed, in the framework of the 

geometrical theory of dislocations, with the Burgers vector [5] as well as with the so-

called local Burgers vector tangent to the slip surface along the line everywhere 

(Section 2 and e.g. [6], [7]). The line endowed with a local Burgers vector nonvan-

ishing everywhere is called a Volterra-type effective dislocation line (Sections 3 and 

4). The glide motion of a Volterra-type effective dislocation can be considered as a 

mesoscopic elementary act of macroplasticity. More generally, we can extend this 

definition of effective dislocations on each smooth curve (flat or spatial) that can be 

endowed with the local Burgers vector nonvanishing everywhere. We consider also 

dislocation lines understood in this broader sense (Sections 2 and 3). It is shown that 

effective dislocation lines can be endowed with the dislocation line tension and with 

a finite self-energy (Section 7).  

 It is known that the occurrence of many dislocations in a crystalline solid is ac-

companied with the appearance of point defects created by the distribution of dislo-
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cations [8]. The influence of these secondary point defects on metric properties of a 

continuously dislocated Bravais crystal can be modeled by the assumption that the 

body under consideration is additionally endowed with such Riemannian internal 

length measurement that reduces to the Euclidean metric of the body if dislocations 

are absent (Section 2; see also [5] and [6]). The influence of secondary point defects 

on the slip phenomenon can be then taken into account by means of the treatment of 

congruences of effective dislocation lines as those located in the Riemannian mate-

rial space, and slip and crystal surfaces can be represented by 2-dimensional sub-

manifolds of this space (Sections 2, 5 and 6). Note, that the such surfaces can be, at 

least locally, observed in the Euclidean ambient space of the dislocated crystalline 

body. It is because these surfaces can be locally isometrically embedded into this 

Euclidean space [9]. For example, crystal planes can be represented in the material 

space by the so-called totally geodesic surfaces [10], being an evident Riemannian 

generalization of planes of Euclidean 3-space (Section 5).  

 

 

  2. Local Burgers vector 

 

 Let 3B E⊂  be a solid body identified with its distinguished spatial configuration 

being an open and contractible to a point subset of the three-dimensional Euclidean 

point space 3E  [11]. We will consider the curvilinear coordinate systems  ( )AX X=  

defined on an open subset U  and such that , , and we will 

denote 

B⊂ AX cm⎡ ⎤ =⎣ ⎦ A 1, 2,3=

( )p p X U= ∈  iff ( ) 3XX p= ∈ . The material structure of the body under 

consideration is defined as a continuous limit approximation of a Bravais crystal with 
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many dislocations (see [5], Introduction). A distinguished basis  

of the linear module W(B) (see [5], Appendix), called further on a Bravais moving 

frame, is considered as the one defining a system of three independent congruences 

of lattice lines of the continuized crystal as well as scales of an internal length meas-

urement along these lines (Section 1 and [5]). The condition that the bend of lattice 

lines due to dislocations (Section 1) is not generated by a global deformation of the 

body means that the so-called object of anholonomity 

( )a ; a 1,2,3Φ = =E

( )c
abC C B∞∈  defined by [5] 

(2.1) [ ] c
a b ab c, C=E E E ,  

does not vanish. The Bravais moving coframe ( )aE∗Φ =  dual to Ф is a basis of the 

linear module ( )W B∗  dual to ( )W B  and uniquely defined by the condition: 

(2.2) 
a a

A Aa A a
A Aa A ba b

, E X E ,e e d e e a
b ,δ= ∂ = ⇒ = =E E  

where, according to the assumed dimensional convention, we have: 

(2.3) [ ] [ ] 1 a A
a A cm , E X cm.d− ⎡ ⎤ ⎡ ⎤= ∂ = = =⎣ ⎦ ⎣ ⎦E  

 Note that although translational symmetries of the crystal are lost in the above 

mentioned continuous limit approximation, the base vector fields of a Bravais mov-

ing frame can be considered as those that define scales of an internal length meas-

urement along local crystallographic directions of the dislocated Bravais crystal 

(Section 1). Namely, we can define the following intrinsic material metric tensor g 

of an internal length measurement within the dislocated Bravais crystal [5]:  

(2.4) 
[ ]

[ ]

a b A
ab AB

a b
2

AB ab A B

δ E E g X X

  g δ , cm ,

d d

e e

= Φ = ⊗ = ⊗

= =

g g

g

B,
 

where Eqs. (2.2) and (2.3) were taken into account. It is a Riemannian model of the 

distortion of the globally Euclidean length measurement within an ideal crystal B due 



 6 

to many dislocations. Since the Riemannian metric is locally Euclidean, therefore it 

is an internal length measurement, consistent with the observed phenomenon that 

dislocations have no influence on the local metric properties of the crystalline body. 

 Next, we can define a nondimensional tensorial representation [ ]ΦS  of an-

holonomity of . Namely, if Φ ( )aΦ = E  is a Bravais moving frame and ( )aE∗Φ =  is 

the Bravais moving coframe dual to Φ , then we define [5], [12]: 

(2.5) 
[ ] a c a b

a ab c

c c c
ab ab ab

E S E E
1S C , S cm
2

d

−

Φ = ⊗ = ⊗ ⊗

⎡ ⎤= − =⎣ ⎦

S E

1

,

.

E
 

[ ]ΦS  characterizes the existence of many dislocations in this sense that 

(2.6) [ ] a
aiff / , a 1, 2,3,ξΦ = = ∂ ∂ =S 0 E  

where ( )aξ ξ= , , is a coordinate system on B. Thus, the tensor field a cmξ⎡ ⎤ =⎣ ⎦ [ ]ΦS  

defines a measure of the long-range distortion of the dislocated Bravais crystal due 

to a bend of originally straight lattice lines [5]. This long-range distortion of the dis-

located Bravais crystal can be quantitatively measured by the so-called Burgers vec-

tor [ ]γb  corresponding to a closed smooth contour γ (a Burgers circuit) in the con-

sidered defective crystalline solid body B [5]: 

(2.7) [ ] [ ] [ ]a a
a

ab , b E
γ

γ γ γ ε= = ,∫b C  

where 1ε = ±  defines the Burgers vector orientation, [ ]ab 1γ⎡ ⎤ =⎣ ⎦ , and , , 

is an orthonormal Cartesian base of the Euclidean vector space  of translations in 

aC a 1,2,3=

3E

3E . It seems physically reasonable to take into account the influence of secondary 

point defects on a Burgers vector. It can be done e.g. if its components are computed 

by means of an internal length measurement dependent on these point defects [5]. 
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Namely, let us consider a Burgers circuit Bγ ⊂  as the one located in the Rieman-

nian material space  where ( ,gB B= g) [ ]= Φg g  is the material metric tensor de-

fined by Eq. (2.4). Next, let us identify the vector fields  with linear differential 

operators and let 

aE

( )aE∗Φ =  denotes the triple of base 1-forms dual to the such un-

derstood  (see [5], Appendix). Then, the components Φ [ ]ab γ  of a Burgers vector 

[ ]γb , can be treated as functionals in the Riemannian space gB  defining , according 

to Eq. (2.7), a mapping [ ] 3
gBγ γ⊂ → ∈b E . Let BΣ ⊂  be a surface possessing the 

closed contour γ  as its boundary and treated as a two-dimensional compact, con-

nected and oriented Riemannian submanifold of gB . Since  

(2.8) [ ]a ab E ,dγ ε
Σ

= ∫  

the Stokes theorem in a Riemannian manifold (e.g. [13], [14]) states that the compo-

nents [ ]ab γ  can be written in the following form [5]:  

(2.9) 
[ ]a ba

b b b

b a
a ab a a

b α , l

l δ l , l l 1, l ,
g

d d dγ
Σ

= Σ Σ = Σ

= = = =

∫
l l a

,

E
 

where ( )W B∈l  is an unit vector field normal to the surface element  of , and 

(2.10) 

dΣ Σ

ba a cdb ba
cdα S , α cm ,eε 1−⎡ ⎤= =⎣ ⎦  

where and abc abce ε  denotes the permutation symbol associated with the Bravais 

moving frame  and considered as components in the base Φ  of a con-

travariant 3-vector density of weight +1 in 

( aΦ = E )

gB . As a rule, the case 1ε = −  is conside-

red in the literature and then the tensor field 

(2.11) [ ]ab 3
a bα cm ,−⊗ =α E E α=  
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is called the dislocation density tensor or the Ney’s tensor. We see that it is a tensor 

defined up to the choice of the Burgers vector orientation. Likewise, the scalar volu-

me dislocation density ρ  of a finite total length ( )dL B  of dislocation lines located in 

B will be measured with respect to the material volume element  of gVd gB : 

(2.12) 

( ) ( ) [ ]

( )

2
d d

1 2 3 1 2 3 1 2 3

a
3

A AB

0 V , cm,

E E E X X E , V X X X ,

det , det g , cm ,

g gB B

g g

g

L B d L B

ed d d d gd d d

e e g g

ρω ρ ρ

ω

ω

−⎡ ⎤< = = < ∞ = =⎣ ⎦

= ∧ ∧ = ∧ ∧ =

⎛ ⎞ ⎡ ⎤= = = =⎜ ⎟ ⎣ ⎦⎝ ⎠

∫ ∫ cm ,

  

where gω  is the volume 3-form and Eqs. (2.2) and (2.4) were taken into account. 

 Let us rewrite Eq. (2.9) in the following form: 

(2.13) 
[ ]

aa

a ba a
b

b β ,

β l α , β cm .

dγ
Σ

1−

= Σ

⎡ ⎤= =⎣ ⎦

∫  

Since the quantity  has the same dimension as the components of a Bur-

gers vector have, the object  is usually considered as a continuum local 

version of this vector [15] (see also e.g.[16]). We will not consider this infinitesimal 

continuum version of the Burgers vector but we will define the local Burgers vector 

as a vector field b tangent to 

a aδb β d= Σ

Ca
aδ δb=b

gB  and such that [1] 

(2.14) 
[ ]

( )

a a a a
a

1/ 2a c
a a ac

b , b β , b cm, 1

b b 0, b δ b , cm,g gg
b b

ρ ⎡ ⎤= = =⎣ ⎦

⎡ ⎤= = > = =⎣ ⎦

b E b

b

;=
  

or equivalently: 

(2.15) , 0g g
bρ .= = >b lα b  

Let us denote by [ ]C l  a congruence in the material space gB  defined by such the 

unit vector field l that the local Burgers vector b of Eq. (2.15) is well-defined. We 

will identify a geometric curve of this congruence (see Appendix) with an effective 
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dislocation line (see Section 1). This effective dislocation line located in gB  can be 

interpreted as the edge (effective) dislocation line if [18] 

(2.16) a a
a ab l m lgb 0,⋅ = = =b l  

or - as the screw (effective) dislocation line if  

(2.17) [ ], 0,η η η= ≠ =b l cm.  

In other cases the effective dislocation line is called mixed.  

 The components  of the dislocation density tensor can be written in the fol-

lowing form [5]: 

abα

(2.18) ( ) [ ]

ab ab ab

ababab ab cab
c

α γ σ ,
1γ α , σ α t ,
2

e

= +

= = =
 

where, according to Eqs. (2.5) and (2.10), we have: 

(2.19) bc b
a abc abt α C , 1e ε ε= = = ±

)

)

 

and  denotes the permutation symbol associated with the Bravais 

moving coframe  and considered as components in the base  of a cova-

riant 3-vector density of weight 

abc
abc abc (e ε ε=

( aE∗Φ = ∗Φ

1−  in gB . It follows from Eqs. (2.5), (2.10), (2.18) 

and (2.19) that 

(2.20) [ ]
c c
ab abda bC t dcγ .eε δ= −  

Therefore, the long-range distortion of the continuously dislocated Bravais crystal 

with secondary point defects characterizes the pair ( )γ, t , where [5] 

(2.21)  
ab ab ba

a b

a a ab ab a 1
a b

γ , γ γ ,

t , t δ t ; γ t cm−

⊗ =

⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦

γ = E E

t E .

 Introducing designations:  
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(2.22) 

( )

, ,

1/ 2a 1
a

cos , 0 ,

t t , cm ,

g

g gg

t

t t

ϕ ϕ π

−

⋅
= ≤ ≤

⎡ ⎤= = =⎣ ⎦

l t l t
l t

t
 

and 

(2.23) 

a
a

a bca
b c ,

μ , 1,

1 1μ t l e , sin 0,
2 2

g

gt

μ

μ ϕ

= =

= = ≥l t

μ = E m m
 

we can write, according to Eqs. (2.13)-(2.15), (2.18), (2.19) and (2.21)-(2.23), the lo-

cal Burgers vector b in the form 

(2.24) 
, 0,

1, 0.
g g

ρ μ μ= + ≥

= = ⋅ = ⋅

b
=

γl m
l m l m t m   

It follows from Eq. (2.24) that 

(2.25) .ρ ⋅ =b l lγl  

Thus, according to Eqs. (2.15) and (2.25), a dislocation line of [ ]C l  is mixed iff 

(2.26) 
,

,

cos ,

cos , 0.

g

g g
g

b

b
b

ρ ϕ

ϕ

=

⋅
= = >

b l

b l

lγl

b l b
 

Particularly, it is the edge dislocation line iff 

(2.27) 0,=lγl  

or it is the screw dislocation line iff 

(2.28) , 0gbρη η .= = >lγl  

The local movement of an effective edge dislocation line is limited to a specific local 

plane. Although the local movement of an effective screw dislocation can also be 

envisaged to take place in a local slip plane, nevertheless the line of the screw dislo-

cation and the local Burgers vector do not define a unique plane.  
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  3. Principal congruences  

 

 A congruence of (effective) dislocation lines [ ]C l  is called principal if l is an 

eigenvector of the tensor field of Eq. (2.21), i.e. ([7], [17]): γ

(3.1) , 1,
g

γ γ .= = ∈γl l l  

We will say then that l defines a principal direction of  and that γ [ ]C l  consists of 

principal (effective) dislocation lines. In this case 

(3.2) 2 2 0.gbρ γ μ= + >  

If , then the orthonormal triple rank 2≥γ ( )a ; a 1,2,3Γ = =l  of eigenvectors of  is 

defined uniquely up to its orientation and we have the following representation: 

γ

(3.3) 
( )

[ ]

a a
a a

a 1
a b ab a

γ , γ C ,

δ , γ cm ,

B∞

−

⊗ ∈

⎡ ⎤⋅ = = =⎣ ⎦

γ = l l

l l l
  

where, according to Eqs. (2.2) and (2.4), should be: 

(3.4) 
( )

( ) ( )

b b
a a b a

a a 1,2,3
b b 1,2,3

Q , Q C

Q ; : SO 3 .

,B

B

∞

↓
→

= ∈

= →

l E

Q
 

Therefore,  

(3.5) T a
a a, γ , rank= = ⊗γ QηQ η E E η 2≥  

and, according to Eqs (2.22)-(2.24), the corresponding triple ( )aB = b  of principal 

local Burgers vectors is given by: 

(3.6) ( ) a

a a a a a

3
a ,

γ , a 1,2,3,
1: SO , sin 0,
2 gB t

ρ μ

μ ϕ

= + =

→ = l t

b QE m

Q E ≥
 

where, according to Eqs. (2.25), (2.26) and (3.1)-(3.3), we have: 
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(3.7) 
a a

2 2 b
,a a a a a b

a a ,a a ,

γ 0, γ γ ,

cos γ / , .
g

g

b

b

ρ μ

ϕ ρ ϕ ϕ

= + > =

= = b l

δ
  

 Let us consider a particular case defined by the following condition: 

(3.8)  
α , / 2, α 1,2.ϕ π= =l t  

In this case, according to Eqs. (2.23) and (3.3), we have 

(3.9) 3,g gt t= ≥ 0,t l  

and 

(3.10) 
1 2

1 1 1 2 2
3

3 3

2γ , γ ,

γ , / 2gt

ρ μ ρ μ

ρ μ

= + = +

= =

b l m b l m

b l
 

where, taking into account that ( )1 2 3, ,l l l  is an ordered triple of vector fields, we 

have: 

(3.11) 1 2 2 1, .= = −m l m l  

It follows from Eqs. (3.7) and (3.8) that 

(3.12) 
( )2α 2

,α

3
,3 ,α α

γ ,

γ , , α 1,2,

g

g g

b

b b

ρ μ

ρ

= +

= = b =
 

and 

(3.13) ( )2 11 2
2

,1 ,2 ,1 ,2

cos γ γ .
2

g

g g g g

t
b b b b

ψ
ρ

⋅
= = −

b b  

Thus 

(3.14) ( )2 1iff γ γ 0.
2 gt
πψ = − =  

 If Eq. (3.8) and the condition 

(3.15) 3γ 0=  
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are fulfilled, then  what means that the principal vector 3 =b 0 3γ  of  does not de-

fine a congruence of effective dislocation lines. If additionally the 2-dimensional 

distribution 

γ

( )1 2,π E E  of planes (see [5], Appendix) consists of local crystal planes 

being virtually local slip planes, then we can take without loss of generality that  

(3.16) 3 3.=l E  

The components a
bQ  of Eq. (3.4) take then the following form: 

(3.17) 
( )a a a a

b b 3 3b b3

a ad
bc dbc

Q cos δ 1 cos δ δ sin ε ,

ε δ ε , : 0, , a, b 1, 2,B

φ φ φ

φ π

= + − −

= → 3.=

2

2

 

So, in this case [18]: 

(3.18) 1 1

2 1

cos sin ,
sin cos ,
φ φ
φ φ

= +
= − +

l E E
l E E

 

and 

(3.19) 
( ) ( )
( ) (

1 1
1 1

2 2
2 1

γ cos sin γ sin cos ,

)
2

2γ sin cos γ cos sin .

ρ φ μ φ φ μ φ

ρ φ μ φ φ μ

= − + +

= − + + −

b E

b E φ

E

E
 

Note that Eq. (3.4) can be considered as a local rotational uncertainty to select the 

Bravais moving frame Ф [5]. Such uncertainty appears in the gauge theory of dislo-

cations [11] and then Eq. (3.17) means the local transverse isotropy of the distortion 

of a crystalline body due to dislocations.  

 The principal Burgers vectors  and  of Eq. (3.19) are tangent to lattice lines, 

like it takes place for single dislocations in real crystal structures [2], if e.g. 

1b 2b

(3.20) ( )tg , 0, / 2 ,μφ φ π
γ

= ∈  

where 

(3.21) 1 2γ γ 0, / 2 0.gtγ μ= = ≠ = ≥  

Then  
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(3.22) α α , 0; α 1, 2,
cos
γρ γ
φ

= ≠b E =  

and it follows from Eqs. (3.12), (3.21), and (3.22) that 

(3.23) 1 2 ,1 ,20, ,g g gb b b⋅ = =b b =  

where 

(3.24) cos 0.gbρ γ ϕ= / >  

If  (that is 0gt = 0φ = ) then ,according to Eqs. (3.18) and (3.22), we are dealing with 

principal effective screw dislocation lines. The commutation rules reduce then to 

[18] 

(3.25) [ ] [ ] [ ]3 2 1 3 1 2 2 1, , , , ,εγ εγ= = −E E E E E E E E 0,=  

and we have 

(3.26) .gbρ γ=  

If additionally 

(3.27) const. 0,εγ = >  

then it is the case of a flat material space ( ),gB B= g  considered in [5]. 

 If 

(3.28) 3, , 0,g gt t / 2,ϕ π= = > =γ 0 t E  

then it follows from Eqs. (3.16), (3.18), and (3.19) that 

(3.29) 1 2 2 1 3 3, , ,= − =l E          l = E          l E  

and (cf. Eq. (3.22)) 

(3.30) α α , / 2, α 1,2.gtρ μ μ= − = =b E  

In this case Eq. (3.23) with 

(3.31) ,gbρ μ=  
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holds. It follows from Eqs. (3.29) and (3.30) that it is the case of principal effective 

edge  dislocation lines. The commutation rules are given then by [18]: 

(3.32) [ ] [ ]1 2 3 α α, , , , , α 1, 2.ε εμ μ εμ= = =E E 0 E E E =   

If additionally  

(3.33) const., const. 0, 1,ρ μ ε= = > =  

then we obtain the case of uniformly dense distribution [5] of principal effective edge 

dislocations of Bianchi-type V considered in [18]. 

 Note that if  

(3.34) , 0g g
t ,= = >γ 0 t  

then it follows from Eqs. (2.22)-(2.24) that all smooth curves, except those tangent to 

the direction of t for which 0gb = , can be interpreted as effective edge dislocation 

lines for which 

(3.35) ( ) ,

, 0

/ 2 sin 0.gt

,ρ μ

μ ϕ

= ⋅ =

= >l t

b m l m
 

Therefore, it is a continuous distribution of edge dislocations such that 

(3.36) ( ) , ,/ 2 sin , 0 .g gb tρ ϕ ϕ π= < <l t l t  

 

 

  4. Volterra and Frenet moving frames 

 

 Let [ ]C l  denote a congruence of mixed effective dislocation lines located in the 

material space ( ,gB B= )g  associated with the Bravais moving frame ( )aΦ = E  

(Section 2). The local Burgers vector b of the congruence is given by Eqs. (2.22)-

(2.26) with  
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(4.1) ( ), 0, .ϕ π∈b l  

Note that for effective screw dislocation lines , 0ϕ =b l  or π  and thus, according to 

Eqs. (2.28), (3.1) and (3.2), a congruence of effective screw dislocations is principal 

iff 0μ = . If the condition (4.1) is fulfilled, then the family ( ),π l m  of planes in gB  

spanned by the vector fields l and m constitute an uniquely defined two-dimensional 

distribution (see [5], Appendix) and the unit vector field n normal to these planes is 

uniquely defined up to its orientation. It follows that the planes of this distribution 

are local slip planes for the congruence [ ]C l  iff  

(4.2) 0,⋅ =b n  

or, equivalently: 

(4.3) 0.=nγl  

The condition (4.2) means that the congruence consists of locally Volterra-type ef-

fective dislocation lines (cf. Section 1). For example, it is the case of a principal 

congruence of effective dislocation lines defined by the conditions (3.1) and (3.16).  

 The ordered triple ( )ϒ = l, m, n , defined by Eqs. (4.1)-(4.3) and called further 

on a Volterra moving frame, defines the two-dimensional oriented distribution 

 of local slip planes associated with the considered congruence of mixed ef-

fective dislocation lines. Note that, according to Eq. (2.15), the dislocation lines of 

opposite orientation have local slips in opposite directions and thus these are physical 

opposites (see e.g [2]). However, the transformation 

( ,πn l m)

( ) (, , , ,→ − −l m n l m n)  of the 

ordered triple preserves its orientation and thus the orientation of the considered dis-

tribution is preserved. If this oriented two-dimensional distribution is integrable  

([14], [19]; see also [5]), then through each point of gB  passes an unique oriented 
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maximal integral manifold of the distribution. These integral manifolds are virtually 

slip surfaces (Section 1) for (effective) mixed dislocations of the considered congru-

ence [ ]C l  and the unit vector field n defines the congruence [ ]C n  of curves normal 

to this family of (virtual) slip surfaces. Note that for each p B∈  the triple 

 spans the vector space ( , ,p p p pϒ = l m n ) ( )Tp B  tangent to B at p. Thus, the Bravais 

moving frame  as well as the Volterra moving frame Φ ϒ span the linear module 

( )W B  of all smooth vector fields on B tangent to B (see [5], Appendix).  

 Let us consider an g-orthonormal basis ( )a ; a=1,2,3ℑ = e  of ( )W B  being a Fre-

net moving frame (Appendix). For example, in the case of the congruence [ ]C l  of 

mixed effective dislocation lines endowed with the local Burgers vector defined by 

Eqs. (4.1), (4.2) and by the condition 

(4.4) 1 ,=e l  

we have that  is the (unit) tangent,  is the principal normal, and  is the second 

normal of this congruence. The vector 

1e 2e 3e

(4.5) 2 ,κ=κ e  

is the curvature vector of the congruence and the scalars κ  and τ  of Eq. (A.13) are 

the curvature and torsion of the congruence, respectively.  

 Let us consider, as an example, the Frenet moving frame for a congruence of 

helical dislocations consisting of cylindrical helices ([17] and Section 1) defined by 

the condition that  

(4.6) , const. 0.c cτ κ= = ≥  

It follows from Eqs. (A.13), (4.4) and (4.6) that the following conditions would be 

fulfilled: 
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(4.7) 
3

22 2

, 0

1 const.

g

g

c

a c

,∇ =

= = + =

lN = l + e N

N
 

So, the unit tangent l is inclined at the constant angle 0ϕ  to the vector field N: 

(4.8) 0 0cos , 0 / 2.c
a a

ϕ ϕ π⋅
= = ≤ ≤

N l  

It can be shown [17] that if  

(4.9) ( )1 1 2

2 1 2

1 sin θ cos θ ,

cos θ sin θ , ,

a a c
a
a a a

= − +

= + =

e l = E E E

e E E N

3

3E
 

the considered Bravais moving frame is parallel along the curves of the congruence 

[ ]C l : 

(4.10)  3 0, a 1,2,3,g∇ = =l E

and the curvature  of the congruence has the form: κ

(4.11) θ 0,κ = ∂ >l  

then Eqs. (A.13), (4.6) and (4.9) are satisfied with 

(4.12) ( )3 1
1sin θ cos θ .c a a

a a
= − − +2e E E 3E

) )

 

 

 

  5. Foliation  

 

 Let  be a Bravais moving frame and let  denote 

a family of local crystal planes spanned by the base vector fields  and . We will 

assume that the Riemannian material space 

( a ; a=1, 2,3Φ = E ( 1 2,π π= E E

1E 2E

( ),gB B= g , where [ ]Φg = g  is given by 

Eqs. (2.2)-(2.4), is foliated by such two-dimensional distribution of local planes [5]. 
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It means that through each point gp B∈  there passes an unique maximal integral 

manifold of π  of the form  

(5.1) ( )1 , 0c c dϕ ϕ− ,Σ = ≠  

where  is a constant and c∈ ( )C Bϕ ∞∈ . It can be shown that for each p B∈  there 

exists then a coordinate system ( )AX X : U= → 3, such that p U∈  and 3X .ϕ=  

For any such coordinates  is a local basis for the family / , 1,X α
α α∂ = ∂ ∂ = 2,

{ },c cΣ = Σ ∈  of these integral manifolds and the slices 

(5.2) ( ){ }3: Xc q U q cΣ = ∈ =  

belong to  [5]. Thus, we can consider, at least locally, a distribution of local crystal 

planes with integral manifolds defined by a distinguished coordinate system on B.  

Σ

 The foliation of gB  by ( )1 2,π π= E E  is equivalent to the condition that there 

are C -functions  on ∞ C , , , 1, 2,κ
αβ α β κ = gB  such that [5]: 

(5.3) , Cκ .α β αβ⎡ ⎤ =⎣ ⎦E E Eκ  

We will assume that additionally, the following condition is fulfilled: 

(5.4) [ ]3 α α, ,H α= =E E E 1, 2,  

where H is a - function on C∞
gB . For example, if  

(5.5) ( )( ) ( )( ) ( )( ) ( )( )C C
α α 3 3X X X ,p X p E p pκ

α≡ ∂E E a E ,  

where, for the simplicity of notations, the vector fields a UE  and  are identi-

fied, then the condition (5.4) with  

1
a X−E

(5.6) 3 lnH E= ∂  

is fulfilled. The material metric tensor g takes then the so-called geodesic form [10] 

discussed in [5]: 
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(5.7) ( ) ( )C 3g ,3X X dX dX dX dXα β
αβ ⊗ + ⊗g  

where the coefficients gαβ  have the following particular form: 

(5.8) ( ) ( ) ( )A Ag a , 2.X X X Eκ
αβ αβ

−Ψ Ψ =  

The hypersurfaces , , are said then to be geodesically parallel to the hyper-

surface  and their metric tensors  are given respectively by: 

cΣ c∈

0Σ ca

(5.9) 
( ) ( )
( ) ( ) ( )

κ κ α β
,αβ

κ κ
,αβ αβ

a ,

a , a

c c

c

X X dX dX

X X c Xκ

= ⊗

Ψ

a

.
 

In this case, the crystal surfaces cΣ , c∈ , are umbilical and their mean curvatures 

 has, according to Eqs. (5.6) and (5.8), the form [10]  cH

(5.10) ( ) ( ), ,cH X H X cκ κ=  

where definition of the mean curvature according to SCHOUTEN [20] in place of the 

definition of EISENHART [10] was taken into account. The umbilical crystal sur-

faces have been discussed in [5].  

 Since, according to Eqs. (5.3) and (5.4), we have: 

(5.11)  3C 0, , 1,αβ α β= = 2,

.

and  

(5.12)  1 1 2 2 3
3 3 3 3 3C C , C C , C 0, =1,2,H Hα α α α α α= − = = − = =

the covariant components  of the vector field t (see Eq. (2.21)) defined by Eq. 

(2.19), takes the form 

at

(5.13) 2 1
1 12 2 21 3t C , t C , t 2 Hε ε ε= = =  

Thus, according to Eqs. (2.5), (2.10), and (2.18), the components  and  of the 

dislocation density tensor and its symmetric part constitute the following matrices: 

abα abγ
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(5.14)  ( )
3

ab a 1,2,3
b 1,2,3 3

2 1

0 t / 2 0
α ; t / 2 0

t t

↓
→

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

0 ,
0

and 

(5.15) ( )ab a 1,2,3
b 1,2,3

0 0
γ ; 0 0

0
,

α
β

α β

↓
→

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where 

(5.16) 2 1t / 2, t / 2.α β= = −  

The eigenvectors aγ  of the symmetric tensor field  of Eqs. (2.21) and (3.3) com-

puted with respect to the intrinsic metric tensor g of Eq. (2.4) are defined by 

γ

(5.17) a a a

a b ab

,
, a,b 1,2,3,

γ
δ

=
⋅ = =

  γγ γ
γ γ

 

where the eigenvalues aγ  of  are roots of the determinant equation γ

(5.18) ( ) ( )ab ab 2 2 2 2det γ δ 0, 0.λ λ λ γ γ α β− = − = = + ≥  

Introducing the angle ϕ  by 

(5.19) 2

1

tarctg , ,
t

α αϕ
β β

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 

we can rewrite Eq. (5.16) in the form 

(5.20) 1 2t 2 cos , t 2 sin .γ ϕ γ ϕ= − = −  

A straightforward computation shows that the eigenvectors have the form: 

(5.21) 
( ) ( )1 3 2 3

3 1 2 1

1 1, ,
2 2

cos sin , sin cos ,ϕ ϕ ϕ ϕ

= + = −

= =

γ k E γ k E

2−γ E + E k E E
 

and the corresponding eigenvalues are given by: 

(5.22) 1 2 3, 0.γ γ γ γ− = = =  
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Thus, we obtain 

(5.23) ( )1 1 2 2 , 0γ γ ,− ⊗ + ⊗ ≥γ = γ γ γ γ  

and, according to Eqs. (5.13), (5.20) and (5.21), the vector field t takes the form 

(5.24) 
( )a

a 3

2 2

t 2

2 0g g

H

t H

γ

γ

= = − + 3 ,

.= = + >

t E γ E

t
 

It follows from Eqs. (5.21)-(5.24) that 

(5.25) 2 , 0,Hγ= − ⋅γt k k t =  

what means that 

(5.26) iff 0.Hγ= =γt 0  

 The local Burgers vector b of the congruence [ ]C l  defined by Eqs. (2.21)-(2.26) 

and (5.21)-(5.24) is given by 

(5.27) 
( )3, , 3

,

cos cos ,

1 sin , 0, 1.
2 g g g

t

ρ γ ϕ ϕ μ

μ ϕ

= − + +

= ⋅ = ⋅ =

l E k l

l t

b k E m

l m t m = l m =
 

It follows from Eq. (5.27), that 

(5.28) 
3, ,

2cos cos cos ,
gb ,
γϕ ϕ

ρ
= −b l l k l Eϕ  

where  

(5.29) { 0 for edge congruences
, 1 for screw congruencescos .ϕ ±=b l  

For example, if  

(5.30) 3 0,⋅ =l E  

then the congruence [ ]C l  consists of effective edge dislocations with the local Bur-

gers vector of the form: 

(5.31) 
, 3

2 2
,

cos ,

, sin 0.H

ρ γ ϕ

μ μ ϕ γ

= − +

= = + ≥

l k

l t

b E μ

μ m
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Note that if  

(5.32) 0,γ =  

then Eqs. (3.2), (3.35) and (3.36) with 0Hμ = >  are valid for any congruence [ ]C l  

of effective dislocation lines such that 3≠±l E . Particularly, if 
3, , / 2ϕ ϕ π= =l t l E  

(that is Eq. (5.30) holds), then 

(5.33) ,gb Hρ =  

and this case can be interpreted as the one defining a congruence of very small pris-

matic edge dislocation loops (Section 1 and e.g. [2]) normal to the direction m and 

replaced, in the continuous limit, with the infinitesimal ones [7]. 

 Let  be a Volterra moving frame associated with Φ  (Section 4). It 

means that the congruence 

( , ,ϒ = l m n)

[ ]C l  consists of Volterra-type effective dislocation lines 

defined by Eqs. (2.5), (2.10), (2.18)-(2.26), and (4.1)-(4.4). The condition (5.30) 

means then that, up to the orientation of the vector field n, should be  

(5.34) 3.=n E  

It is equivalent to the condition that the family ( ),πn l m  of local oriented slip planes 

defined by (Section 4) is in coincidence with the distribution  of 

local crystal planes. In this case the considered crystal surfaces (being integral mani-

fods of the distribution 

ϒ ( )1 2,π π= E E

π ) are virtual glide surfaces (see Section 1) for the consid-

ered congruence [ ]C l  of Volterra-type effective dislocation lines specified by the 

additional conditions (5.21)-(5.24), (5.30) and (5.34). The local Burgers vector b of 

this congruence of Volterra-type effective dislocation lines is given by Eqs.(5.31) 

and (5.34). In this case 

(5.35) ( )2 2 2 2 2
, ,cos sin ,gb Hρ γ ϕ γ ϕ= + +k l l t  
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and the congruence consists of such edge Volterra-type effective dislocation lines for 

which the glide (parallel to m-direction) as well as the climb (parallel to the n-direc-

tion) components of b are admitted (see Section 1). For example, if 

(5.36) 3,l = γ  

then the condition (5.30) is fulfilled and we are dealing with the glide phenomenon 

only defined, up to the local Burgers vector orientation, by: 

(5.37) 2 2, , H .ρ μ μ= = =b m m k γ+  

Thus, the Volterra moving frame ( ), ,ϒ = l m n  defined by Eqs. (5.34), (5.36) and 

(5.37) can be identified as the one that describes a principal congruence of effective 

edge dislocation lines (Section 3) located on glide surfaces and accompanied with a 

distribution of secondary point defects.  

 

 

  6. Final remarks 

 

 Let us consider the congruence [ ]C l  of cylindrical helices (see Section 1 and the 

example discussed in Section 4) defined by the condition that the angles θ  and ϕ  of 

Eqs. (4.11) and (5.19), respectively, are related by  

(6.1) θ, 0a a .ϕ = >  

It follows from Eqs. (4.11), (5.21), (5.24), and (5.27) that  

(6.2) ( )3
1 ,c
a

= +l k E  

and the local Burgers vector of the congruence is given by 

(6.3) ( ) 2 2
3 .c H

a
γρ γ= − + + +b k E m  



 25 

Note that if the torsion of the congruence [ ]C l  equals zero, that is  

(6.4) 0, 1,c a= =  

then, according to Eqs. (4.7), (4.9), (4.12) and (5.21), we have 

(6.5) 1 2 3 3, , 3.= = =e = l k e γ e E  

For example, if 

(6.6) ( ) ( )1 3 2, , , , ,ϒ = = −l m n e e e  

then 

(6.7) ( )2 2
3 .Hρ γ γ= − + +b E  

So, we have defined a congruence of effective Volterra-type edge dislocations of 

torsion zero, located on crystal surfaces with tangent planes being osculating planes 

(that is ) normal to the local Burgers vector direction. The lo-

cal slip planes are identical with the rectifying planes 

( ) (1 2 1 2,π π=E E e e ),

( )1 3,π e e . Thus, it is a congru-

ence of effective dislocation lines being intersections of two orthogonal families of 

surfaces embedded in gB : umbilical crystal surfaces (on which the dislocations are 

located; see [5] and Section 5) and slip surfaces (in which the dislocations can 

move). We will assume additionally that the crystal surfaces are minimal varieties in 

gB : 

(6.8) 0.H =  

In this case [17] 

(6.9) 32 ,ρ γ= −b E  

and  

(6.10) 2 .gbρ γ=  
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The crystal surfaces defined in this manner are totally geodesic surfaces and thus the 

vectors normal to these surfaces are parallel in the enveloping material space [10], 

that is  

(6.11) 30, ,g∇ = =m m −e

,

 

where Eq. (6.6) was taken into account. The totally geodesic (crystal) surfaces are an 

evident generalization of (crystal) planes of Euclidean 3-space [10].  

 It is known that a dislocation of torsion zero lying in a Euclidean plane experi-

ences a static straightening force per unit length of dislocation, acting against the 

direction of the curvature vector κ  of Eq.(4.7) and tending to straighten the line [2], 

that is the force F such that [17] 

(6.12) 
[ ] [ ]

2
1

2

, 0

0, 0; cm ,

S S

S

κ

κ κ −

− = − ⋅ ⋅

> > = =

F = κ e F l = F m =

e
 

where  is the curvature given by Eq. (4.11) and  is the principal normal of the 

considered congruence 

κ 2e

[ ]C l . If Eq. (6.12) is assumed to be valid for the considered 

congruence of effective prismatic edge dislocation lines of zero torsion in the mate-

rial space gB , then 

(6.13) [ ]1, kgcm , kg.g gg
F S F Sκ −⎡ ⎤= = = =⎣ ⎦F  

 A dislocation line in a crystal will remain curved only if there is a shear stress 

that produces a force on the dislocation needed to maintain its curvature  [2]. So, 

let T be a symmetric tensor defined in the material space 

κ

gB  and identified with an 

internal stress tensor dependent on the distribution of dislocations and secondary 

point defects, and let T denote the field of resolved shear stresses defined by  

(6.14) ,T =mTn  
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and acting in the oriented local slip planes ( ),πn l m  in the direction m of the local 

Burgers vector b. The static straightening force F is normal to these slip planes. We 

will assume, generalizing the elastic model of forces acting on single dislocation 

lines (see e.g. [2]), that an effective dislocation line of strength gb  will be in local 

equilibrium in its curved position when 

(6.15) .g

g

F
T

b
=  

Substituting gF  from Eq. (6.13), we obtain 

(6.16) .gb
S T

κ
=  

The quantity S of Eq. (6.16) has units of energy per unit length and thus the effective 

dislocation line has a line tension that is analogous to the surface tension of a soap 

bubble or liquid [2]. Note that Eq. (6.16) generalizes the expression of line tension of 

a curved dislocation lying in a Euclidean plane (cf. [3]). 

 The strength gb  of the considered effective dislocation lines can be written, ac-

cording to Eq. (6.10), in terms of scalar characteristics γ  and ρ  of the continuous 

distribution of dislocations: 

(6.17) 
2

.gb
γ
ρ

=  

Eqs. (6.16) and (6.17) lead to the following expression of shear stresses required to 

bend effective dislocation lines of the congruence and of the line tension of these 

dislocations: 

(6.18) , ,d dT E S E bgρκ ρ= =  

where the scalar  is defined as 0dE >
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(6.19) ,
2d
SE
γ

=  

and it has units of energy, that is [ ] kgcmdE = . We see that the considered congru-

ence of effective prismatic edge dislocation lines can be endowed with a finite self-

energy  [17].  dE

 

 

 

  Appendix 

 

  Let : I Mγ → , where I ⊂  is an interval, be a smooth parametrized curve in 

a 3-manifold M. The curve γ  is called regular if [19] 

(A.1) ( ), 0
t

dt I t
dt

γ∗
⎛ ⎞ ,∀ ∈ = ⎜ ⎟
⎝ ⎠

γ ≠  

where ( ) ( ) ( )tTt γ∈γ M  denotes the vector tangent to ( )I Mγ ⊂  at the point ( )tγ .  

Remark [21] 

Let : M Nχ →  be a smooth mapping from the manifold M into a manifold N and 

let us denote by W(M) and W(N) the linear moduli of smooth vector fields on M and 

N, respectively (see [5], Appendix). The tangent mapping ( ) (: W W )M Nχ∗ →  is 

defined by 

(A.2) ( ) ( ) ( ), ,p pp
p M d

χ
χ χ∗∀ ∈ =v v  

where ( ): T Tp p pd M χ Nχ →  is a mapping between tangent spaces acting, for any 

(Tp p )M∈v  interpreted as a linear first-order differential operator with constant 

coefficients (see [5], Appendix), according to the rule: 
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(A.3) ( ) ( )( ) ( )C , p p pf N d f f .χ χ∞∀ ∈ =v v  

If (W )M∈v , then we define the vector field ( )W Nχ∗ ∈v  by 

(A.4) 1.dχ χ χ−
∗ =v v  

 If ( )W M∈v , then a smooth parametrized curve : I Mγ →  such that 

(A.5) ( ), ,t
t

dt I
dtγ γ ∗

⎛ ⎞∀ ∈ = ⎜ ⎟
⎝ ⎠

v  

is called an integral curve of the vector field v [1]. The vector field ( ): WI Mγ →v  

defined as ( ) ( )ttγ γ=v v  is then a field of vectors tangent to the integral curve γ . 

Theorem 1 [22] 

If (W )M∈v , then for every p M∈ , there exists an integral curve of pγ γ= v  of v 

such that 

(1) ( ) ( ): , , 0 ; 0p p p p p p .I a b M I pγ γ= → ∈ =v v  

(2) Every integral curve σ  of v such that ( )0 pσ =  is a restriction of the curve pγ
v  to 

an open interval pI I⊂ , 0 .I∈  

The curve pγ γ= v  of Theorem 1 is called a maximal integral curve of v passing 

through the point p. If every maximal integral curve of a vector field (W )M∈v  is 

defined on the interval I = , then v is called a complete vector field on M. 

 The parametrized curves : I Mγ →  and ': I Mσ →  are called equivalent if 

there exists a diffeomorphism ϕ  of the open interval I onto the open interval 'I such 

thatσ γ ϕ=  and 0dϕ ≠ . Then 

(A.6) 
( )

( )
'

' , .
t t t

d dt
dt dt dtϕ

dϕσ ϕ γ ϕ∗ ∗
=

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Theorem 2 [19], [23] 

If the parametrized curves γ , σ  are eqivalent and one of them is regular, then the 

second curve is also regular and  

(A.7) ( ) ( )' .C I I Mγ σ= = ⊂  

 The class [ ]γ  of all regular parametrized curves equivalent to γ  is called a geo-

metric curve and can be identified with the set C of the manifold M [23]. If addition-

ally for each curve [ ]σ γ∈  we have σ γ ϕ=  and 0dϕ > , then the curve is called 

oriented (parametrized curves representing an oriented geometric curve define the 

same order of points of the set C of Eq. (A.7)) A set of all geometric curves defined 

by a nonvanishing everywhere vector field ( )W M∈v  is called a congruence.  

 Let [ ]: ,a b Mγ →  be a regular parametrized curve in a Riemannian manifold 

. The length ( ,gM M= g) ( )l γ  of γ  is defined as 

(A.8) ( ) ( ) ,
b

g
a

l tγ = ∫ γ dt  

where ( ) ( ) ( )tTt γ∈γ M  is defined by Eq. (A.1) and p g
v  denotes the norm of a vec-

tor Tp pM∈v  tangent to the manifold gM  at the point p M∈ . Since ( ) ( )l lγ σ=  

for all equivalent parametrized curves, so the number ( )l γ  is well-defined length of 

the geometric curve ( ) gC I Mγ γ= ⊂  identified with the class [ ]γ  of equivalent 

curves. If γ  is a regular integral curve of the vector field v on gM , then 

(A.9) ( ) ( ) .
b

t
a g

l dγγ = ∫ v t  
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Particularly, if  is the maximal integral curve of v passing 

through 

: ,p p pI M Iγ γ= → ⊂v ,

p M∈ , then the length of the geometric curve ( )m
pC pγ⎡ ⎤= ⎣ ⎦

vv  is defined as 

(A.10) ( ) ( ) ,m
p pl l γ= vv  

It follows that for each p M∈  there exists one and only one maximal geometric 

curve  passing through this point.  ( )m
pC v

 Let : gI Mγ →  be a regular parametrized curve of the length ( )l γ . The curve γ  

is called normalized [19] or natural [21] if 

(A.11) ( ) 1.
g

t I t∀ ∈ =γ  

Every regular curve is equivalent to a normalized curve [22]. This equivalence de-

fines a diffeomorphism ( )( ): 0,I lϕ γ→  defined by 

(A.12) ( ) ( ) ( ), ,
t

g
a

t r dr t I aϕ = ∈ =∫ γ ,b  

and called the change of a parameter t I∈  on the natural parameter 

( ) ( ), 0s t s lϕ γ= ≤ ≤ . The curve ( )( )1 : 0, glσ γ ϕ γ−= M→  is a normalized 

curve equivalent to the curve γ  and called its natural parametrization. 

 Let v be a nonvanishing vector field tangent to the three-dimensional Riemannian 

manifold  and let us denote by ( ,gM M= g) [ ]C v  the congrueunce defined by v, i.e. 

the set of all geometric curves defined by v. The vector field /
g

=l v v  defines unit 

vectors tangent to geometric curves of the congruence. We will generalize the the 

Frenet formulae for integral curves of v (see. e.g. [13], [20], [24] and [25]) assuming 

the existence (at least locally) of an orthonormal base { }a ; a 1, 2,3=e  of vector fields 
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on gM  such that  and the following generalized Frenet formulae are valid 

[17]: 

1 =e l

,

(A.13) 

( )

1

1

1

1 2

2 1 3

3 2

, 0,

, 0,

, , C

g

g

g M

κ κ

κ τ τ

τ κ τ ∞

= ∇ = 〉

∇ = − + ≥

∇ = − ∈

e

e

e

κ e e

e e e

e e

 

where g∇  denotes the Levi-Civita covariant derivative based on the Riemannian 

metric g (e.g. [23]). The basis ( )a , a 1, 2,3ϒ = =e  of W(M) consists then of Frenet 

vector fields of the congruence:  is the tangent,  is the (principal) normal, and 

 is the binormal (called also the second normal) of the congruence and will be cal-

led a Frenet moving frame. The vector field  is the curvature vector of the congru-

ence. The scalars  and 

1e 2e

3e

κ

κ τ  denote the curvature and torsion of the congruence, 

respectively. A Frenet moving frame defines (at least locally) three two-dimensional 

distributions of planes (see [5], Appendix): ( )1 2,π e e -osculating planes, -

normal planes and -rectifying planes. 

( )2 3,π e e

( 3 1,π e e )
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