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A simple analytical method is developed to estimate frequencies of longitudinal
modes in closed hard-walled ducts with discontinuities in a cross-sectional area.
The approach adopted is based on a general expression for the acoustic impedance
for a plane wave motion in a duct and conditions of impedance continuity at duct
discontinuities. Formulae for mode frequencies in a form of transcendental equations
were found for one, two and three discontinuities in a duct cross-section. An accuracy
of the method was checked by a comparison of analytic predictions with calculation
data obtained by use of numerical implementation based on the forced oscillator
method with a finite difference algorithm.
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ratio.

1. Introduction

In acoustical systems like air supply ducts, there are often many abrupt vari-
ations in a size of the duct or junctions of ducts with different cross-sections,
often called duct discontinuities, that produce partial reflection of sound waves.
In some systems, variations in duct size are accompanied by rapid changes in
duct shape causing a formation of resonant structure resembling closed duct
with cross-sectional discontinuities. A behaviour of sound waves in duct disconti-
nuities has been studied with the aid of numerous methods (Miles, 1946a, 1946b;
Karal, 1953; Kergomard, Garcia, 1987; Sahasrabudhe, Munjal, 1995;
Pagneux et al., 1996; Muehleisen, Swanson, 2002). For low frequencies an
analysis, using only planar zero order mode, is employed. This method assumes
pressure and velocity fields which are uniform throughout a duct cross-section,
or equivalently, describes the evolution of the pressure and velocity mean values
over the cross-section (Matsui, 2010).
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Similarly, a plane wave assumption is a basis of the method presented in this
paper. In a theoretical model, a general expression for the acoustic impedance
and conditions of impedance continuity at duct discontinuities are used to found
a resonant condition for longitudinal modes. A precision of the theoretical method
is verified by a comparison of resonant frequency predictions with calculation data
obtained numerically for ducts with one and two discontinuities in a cross-section.
A numerical approach, developed in the paper, is a generalization of the method
presented by the author (Meissner, 2009).

2. Analytical formulae for frequency of longitudinal modes

Geometries of ducts under consideration are depicted in Fig. 1. A cross-
sectional shape of ducts is assumed to be circular or rectangular. Viscothermal
losses inside the ducts and a friction loss along duct walls are ignored. It is also
postulated that amplitudes of a sound pressure are small, thus contraction effects
(Meissner, 1999, 2000), such as a separation of acoustic flow and a generation
of vortical perturbations at duct discontinuities, were neglected.

Fig. 1. Analysed geometries of hard-walled ducts having one, two and three discontinuities
in cross-section. Surfaces of cross-section in different parts of ducts are denoted by S1–S4.

In the case of a sound propagation through a duct discontinuity, partial reflec-
tions of sound waves take place. When a cross-size of duct is small in comparison
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with a wavelength, there are only plane waves propagating in both of its parts.
However, in a close proximity of discontinuity higher order modes are excited. In
low-frequency range these modes form the evanescent waves which decay expo-
nentially with a distance from a discontinuity. Thus, for a sake of simplicity, it is
assumed in the further analysis that higher order modes may be ignored and on
both sides of discontinuity only plane waves propagate.

Under the plane wave assumption, a velocity potential associated with the
longitudinal resonant modes can be described by

φ(x, t) = [A sin(kx) + B cos(kx)]ejωt, (1)

where A and B are unknown amplitudes and k = ω/c is a wave number. Using
Eq. (1) a general expression for the acoustic impedance can be found

Z(x) = −jZ0
A sin(kx) + B cos(kx)
A cos(kx)−B sin(kx)

, (2)

where Z0 = ρc/S is a wave impedance, ρ is an air density and S is a surface of
a duct cross-section. For waves travelling along x-axis, the duct system shown in
Fig. 1a represents a connection of two ducts with different cross-sections, thus
at a junction the following continuity condition of acoustic impedance must be
satisfied

Z(0−) = Z(0+), (3)

where notations a− and a+ denote values of x immediately smaller and imme-
diately greater than a, respectively. Equation (3) together with Eq. (2) leads to
the following expression

S2[Z(−l1)− jZ1 tan(kl1)] [Z(l2) tan(kl2)− jZ2]

− S1[Z(−l1) tan(kl1) + jZ1] [Z(l2) + jZ2 tan(kl2)] = 0, (4)

where Z1 = ρc/S1 and Z2 = ρc/S2 are wave impedances in left and right parts
of the duct. Since the duct is closed on both sides by rigid walls, the impedances
Z(−l1) and Z(l2) are infinite, thus from Eq. (4) we obtain the expression

cot(kl1)
S1

+
cot(kl2)

S2
= 0 (5)

from which frequencies of longitudinal modes can be calculated. These frequencies
depend on the duct lengths l1 and l2 as well as the contraction ratio S2/S1. An
application of the same method to the duct having two discontinuities in a cross-
section (Fig. 1b) gives

Z(0−)
[
Z(l+2 )− jZ2 cot(kl2)

]
+ jZ2

[
jZ2 + Z(l+2 ) cot(kl2)

]
= 0, (6)
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where the impedances Z(0−) and Z(l+2 ) are expressed by

Z(0−) = jZ1
Z(−l1)− jZ1 tan(kl1)
Z(−l1) tan(kl1) + jZ1

,

Z(l+2 ) = −jZ3
Z(l2 + l3) + jZ3 tan(kl3)
Z(l2 + l3) tan(kl3)− jZ3

,

(7)

where Z3 = ρc/S3. Taking into account that impedances at x = −l1 and x =
l2 + l3 are infinite, from Eq. (6) the following resonant condition for longitudinal
modes can be obtained

cot(kl1) cot(kl2)
S1S2

+
cot(kl1) cot(kl3)

S1S3
+

cot(kl2) cot(kl3)
S2S3

=
1
S2

2

, (8)

which is somewhat more complex than Eq. (5) because in this situation a modal
frequency is influenced by three duct lengths l1– l3, and two contraction ratios:
S2/S1 and S3/S1.

Among the ducts studied, the latter has the most complicated configuration.
The continuity conditions, which must be fulfilled in this case, are the following

Z(0−) = Z(0+), Z(l−2 ) = Z(l+2 ), Z[(l2 + l3)−] = Z[(l2 + l3)+]. (9)

Using conditions (9) in Eq. (2) and taking into account that the duct is rigidly
terminated we finally obtain

cot(kl1) cot(kl2) cot(kl3)
S1S2S3

+
cot(kl1) cot(kl2) cot(kl4)

S1S2S4

+
cot(kl1) cot(kl3) cot(kl4)

S1S3S4
+

cot(kl2) cot(kl3) cot(kl4)
S2S3S4

=
cot(kl1)
S1S2

3

+
cot(kl2)
S2S2

3

+
cot(kl3)
S2

2S3
+

cot(kl4)
S2

2S3
. (10)

Note, when S1 = S2 = S3 = S4, the above equation yields:

sin[k(l1 + l2 + l3 + l4)] = 0.

Using the same analytical method, the formulae for a frequency of longitudinal
modes can be found for ducts having more cross-sectional discontinuities.

3. Numerical prediction of duct resonant frequencies

For geometries of ducts studied a more precise method for calculating duct
resonant frequencies is the eigenmode method, commonly known as the modal
analysis. The modal analysis has become a useful tool for studying the acoustical
behaviour of rigidly bounded spaces and it is based on solving a wave equation
by expanding the solution in the eigenfunctions and then finding the resonant
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frequencies by solving eigenvalue equations. The eigenfunctions must satisfy cer-
tain requirements, in particular, Neumann boundary condition at rigid walls. For
enclosed spaces of irregular shape, a determination of eigenfunction distribution
requires the application of numerical procedures.

Computational methods commonly used to solve eigenvalue problems are the
finite element method, the boundary element method and numerical implementa-
tions, such a method based on the correspondence between the wave equation and
the diffusion equation (Sapoval et al., 1997) and the method of point-matching
(Kang, Lee, 2000). A numerical procedure employed in this study is the force
oscillator method and it is based on the principle that a response of a linear
system to a harmonic excitation is large when the driving frequency is close to
the resonant frequency (Nakayama, Yakubo, 2001). In this method the eigen-
value problem is solved by use of a solution of the wave equation with a source
term −q(r) cos(ωt), satisfying homogenous initial conditions and the Neumann
boundary condition, where r = (x, y, z) is a position vector and ω is a driving
frequency. A form of this solution is the following (Meissner, 2007)

p(r, t) = 2
√

V
∞∑

r=0

QrΦr(r) sin[(ω + ωr)t/2] sin[(ω − ωr)t/2]
ω2 − ω2

r

, (11)

where V is a volume of the duct, r is a mode number, Φr are orthogonal eigen-
functions normalized in the duct volume, ωr are resonant frequencies and

Qr =
c2

√
V

∫

V

q(r)Φr(r)dv (12)

is a factor determining a sound source strength. Suppose, that the driving fre-
quency ω is close to the resonant frequency ωs, then for sufficiently large time
t = T only the term connected with the mode s contributes the sum in Eq. (11),
so one can write p(r, T ) ≈ aΦs(r), where a is a constant. A spatial distribution
of the function Φs can be determined after a normalization which results in the
elimination of the constant. Finally, a use of the formula

ωs = c

√√√√−
∫

V

Φs∇2Φs dv, (13)

derived directly from the eigenvalue equation: ∇2Φs + (ωs/c)2Φs = 0, enables to
calculate the resonant frequency ωs.

4. Comparison between analytical and numerical results

In order to verify the accuracy of derived analytical formulae, a comparison
with numerical results has been undertaken. In the numerical study the ducts
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having rectangular cross-section and one or two cross-sectional discontinuities
were considered (Figs. 2, 5). Because for these ducts a dependence of eigenfunc-
tions Φr on z describes a clearly defined cosine function, the expressions for Φr

and the resonant frequencies ωr can be written as

Φr(r) ≡ Φimn(r) =





Ψmn(x, y)/
√

h, i = 0,

√
2 cos(iπz/h)Ψmn(x, y)/

√
h, i > 0,

(14)

ωr ≡ ωimn =
√

(iπc/h)2 + ω2
mn, (15)

where i,m, n = 0, 1, 2, 3 . . ., h is a height of duct, Ψmn are orthogonal eigenfunc-
tions normalized over the surface S of duct horizontal section and frequencies
ωmn are given by

ωmn = c

√
−

∫

S
Ψmn∇2Ψmn dxdy. (16)

Fig. 2. Rectangular duct under consideration having one cross-sectional discontinuity. Pro-
portion of duct dimensions: d/l = 0.2, h/l = 0.15, l2/l = 0.7, where l = l1 + l2.

Frequencies of duct longitudinal modes, predicted from Eqs. (5) and (8), were
compared to the resonant frequencies calculated from Eq. (16), where the eigen-
functions Ψmn were computed numerically via the forced oscillator method. Cal-
culations of Ψmn were performed in two-dimensional grid with 80×400 elements.
All frequencies were normalized by the frequency ω0 = πc/l corresponding to
the fundamental resonant frequency of a duct without discontinuities, where
l = l1 + l2 for duct with one discontinuity (Fig. 2) and l = 2l1 + l2 for duct
with two discontinuities (Fig. 5). A modification of a contraction ratio was real-
ized by a variation of the dimension d1 of ducts what is equivalent to a change in
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the non-dimensional parameter d1/d. In numerical examples, this parameter was
assumed to vary from 0.05 to unity with an increment of 0.05. In the case of the
contraction ratio d1/d equal to unity, corresponding to ducts without any dis-
continuity in the cross-section, the eigenfunctions Ψmn and resonant frequencies
ωmn are simply given by

Ψmn(x, y) =





1/
√

S, m = 0, n = 0,
√

2 cos(mπx/l)/
√

l, m > 0, n = 0,
√

2 cos(nπy/d)/
√

d, m = 0, n > 0,
√

4 cos(mπx/l) cos(nπy/d)/
√

S, m > 0, n > 0,

(17)

ωmn = πc
√

(m/l)2 + (n/d)2. (18)

For the Helmholtz mode (m,n = 0) the eigenfunction Ψmn assumes a constant
value which represents the solution of eigenvalue equation for a resonant fre-
quency equal to zero (trivial solution of eigenvalue equation). The modes excited
due to an acoustic resonance along the x and y axes correspond respectively to
the longitudinal modes (m > 0, n = 0), known also as the lengthwise axial modes,
and the transverse modes (m = 0, n > 0), called also the widthwise axial modes.
The remaining modes (m > 0, n > 0), whose shapes depend on both x and y,
are called the oblique modes.

Calculations of duct resonant frequencies were performed in the frequency
range where the occurrence of the first six longitudinal duct modes was noted.
A comparison between analytical and numerical results obtained for the duct
with one cross-sectional discontinuity is shown in Fig. 3 and as may be seen, in
almost all cases the frequencies calculated from Eq. (5) agree reasonably well with
numerical predictions. The interesting thing resulting from Fig. 3a-d is that the
frequency of the first four longitudinal modes alternately increases and decreases
with a growing contraction ratio d1/d. In Fig. 3e the calculation data for the fifth
longitudinal mode are depicted and according to the formula (5) its frequency
has a constant value irrespective of the parameter d1/d. It may be easily found
that it is a consequence of a special proportion between dimensions l1 and l2
of the duct (Fig. 2). Thus, noticeable in this case differences between analytical
and numerical data confirm that an acoustic motion along the duct is essentially
two-dimensional, in particular in a vicinity of a duct cross-sectional discontinuity.
In Fig. 3e,f the numerical data denoted by circles correspond to the frequencies
ω01 and ω11 of the first transverse mode and the first oblique mode. For the
contraction ratio d1/d close to unity, the frequencies ω60 of the sixth longitudinal
mode and ω11 considerably differ but large variations in ω11 with decreasing value
of d1/d cause two mode re-orderings (change of mode sequence on a frequency
axis). The first occurs for d1/d close to 0.3 and the second for d1/d equal to 0.85,
approximately.
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Fig. 3. Non-dimensional resonant frequencies versus contraction ratio d1/d for duct with one
cross-sectional discontinuity. Solid lines: results obtained from Eq. (5). Symbols: numerical data.

For the duct without a cross-sectional discontinuity, the eigenfunctions Ψm0

of longitudinal modes have simple cosinusoidal shapes. Thus, as indicated by
Eq. (16), variations of modal frequencies in the duct with a discontinuity in
a cross-section are connected directly with changes in distributions of these eigen-
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functions on the surface S. The plots in Fig. 4 show longitudinal mode shapes
along the axis of symmetry of eigenfunctions Ψm0 in a duct with one cross-
sectional discontinuity for the contraction ratio d1/d of 0.1 (solid lines) and in
a duct without discontinuity (dashed lines). As may be noted, a duct discontinu-
ity causes a visible deformation of the cosinusoidal shape of eigenfunction and an
increase in the eigenfunction amplitude in a range of x where there is a duct con-

Fig. 4. Longitudinal mode shapes along axis of symmetry of eigenfunctions Ψm0 in duct with one
cross-sectional discontinuity for contraction ratio d1/d = 0.1 (solid lines) and in duct without

discontinuity (dashed lines).
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traction. Since eigenfunctions are orthonormal, the last mentioned effect is a re-
sult of a reduction of the surface S with a decrease in the contraction ratio d1/d.

A geometry of the duct with two discontinuities in a cross-section is depicted
in Fig. 5. In this system a part of duct with smaller area of cross-section is
placed symmetrically with respect to closed ends and furthermore, a size of a duct
contraction is assumed to be very small (l2/l = 0.05). The results of frequency
calculations, obtained both analytically and numerically, are presented in Fig. 6.
It can be seen from this figure that for all modes Eq. (8) quite precisely describes
the relation between the modal frequency and the contraction ratio. Therefore,
this simple formula can be successfully used for approximate predictions of the
frequency of lowest-order longitudinal modes.

Fig. 5. Rectangular duct under consideration having two cross-sectional discontinuities. Pro-
portion of duct dimensions: d/l = 0.2, h/l = 0.15, l2/l = 0.05, where l = 2l1 + l2.

In Fig. 6 such a regularity can be observed that for modes with odd mode
numbers the resonant frequency increases with a growing value of d1/d, whereas
for even mode numbers this frequency steadily decreases. For some modes, a de-
pendence between the frequency and the contraction ratio seems to be almost
precisely linear (Fig. 6b,d). A substantial variation of a resonant frequency is
noted for the fundamental longitudinal mode (Fig. 6a), for which the frequency
becomes nearly twice smaller with a decrease in d1/d from 1 to 0.05 (numerical
results). Moreover, the analytical data show that a frequency of this mode de-
creases to zero when ratio d1/d approaches a zero value. This would mean that
an eigenfunction for the fundamental mode continuously varies from the cosi-
nusoidal form:

√
2 cos(πx/l)/

√
l for d1/d equal to unity, to a shape resembling

the Helmholtz mode for d1/d close to zero. In order to check that, in Fig. 7 the
graphs illustrating a modification of fundamental mode shape with a decrease in
d1/d are depicted. They confirm that for diminishing value of d1/d a distribution
of eigenfunction outside a duct contraction becomes more and more uniform.
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Fig. 6. Non-dimensional resonant frequencies versus contraction ratio d1/d for duct with two
cross-sectional discontinuities. Solid lines: results obtained from Eq. (8). Symbols: numerical

data.

Thus, it should be expected that for a sufficiently small d1/d the eigenfunction
will be approximately constant outside the duct contraction providing the modal
frequency close to zero.
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Fig. 7. Shapes of fundamental longitudinal mode in duct with two cross-sectional disconti-
nuities for contraction ratio d1/d: a) 1, b) 0.5, c) 0.25 and d) 0.1.

The mode shapes along the axis of symmetry of eigenfunctions Ψm0 in the duct
with two cross-sectional discontinuities are plotted in Fig. 8. These data evince
that for modes with odd mode numbers a duct contraction causes a large non-
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Fig. 8. Longitudinal mode shapes along axis of symmetry of eigenfunctions Ψm0 in duct with
two cross-sectional discontinuities for contraction ratio d1/d = 0.1 (solid lines) and in duct

without discontinuity (dashed lines).

linear deformation of an initially cosinusoidal shape of modes. On the contrary,
for even mode numbers slight changes of eigenfunctions are observed and it is
related to relatively small variations of resonant frequencies versus d1/d for these
modes. Because of small size of a duct contraction, a previously noted increase
in the eigenfunction amplitude is not observed.
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5. Summary and conclusions

The aim of this study was to demonstrate how cross-sectional discontinuities
in closed hard-walled ducts influenced resonant conditions for lowest-order lon-
gitudinal modes. In the first part of the paper, the analytical method based on
plane wave assumption was developed to obtain expressions for the frequency of
longitudinal modes in the simplest duct configurations, i.e. a duct with one dis-
continuity in a cross-section and ducts with two and three discontinuities. These
expressions have a form of transcendental equations where a degree of each duct
discontinuity is characterised by the appropriate contraction ratio. Using the
same approach, the analytical formulae for ducts having more cross-sectional dis-
continuities can be found. Moreover, by changing impedance conditions on duct
terminations, the analytical method presented here can be extended to other
resonant systems with discontinuities in a cross-section such as an open duct or
a resonator with one end closed and one end open.

For the two simplest duct geometries, the analytical predictions were com-
pared to numerical data obtained by a wave equation solver employing the force
oscillator method. Computations have been done for the first six longitudinal
modes and they confirmed a reasonably good agreement between analytical and
numerical results. Calculation data obtained for the duct with two discontinu-
ities have shown that for modes with odd mode numbers the resonant frequency
increases with the growing contraction ratio, whereas for even mode numbers
this frequency steadily decreases. For this duct a substantial variation of a fre-
quency of the fundamental longitudinal mode was also noted. An inspection of
eigenfunction shapes has proved that a large decrease in a modal frequency for
the contraction ratio close to zero is a result of eigenfunction smoothing outside
a duct contraction.
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