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This is a review paper on the existing approaches to modelling of di-
screte cracks (fracture) and diffuse microcracking (damage) in ceramic
matrix composites under mechanical or thermal loading. The focus is
on Ceramic Matrix Composites (CMC) with metal particle inclusions
and on interpenetrating metal ceramic networks. The second phase in
form of ceramic inclusions is not considered. The models of toughening
mechanisms are discussed in considerable detail. Sections 2-5 deal with
discrete cracks while Sections 6-9 with diffuse microcracking. The paper
is concluded with identification of unresolved problems and topics for
future research in the area of fracture and damage of CMC.
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1. Preliminaries

The lack of ductility and the consequent low resistance to crack propagation
of brittle ceramics have been an issue limiting their technological application
for a long time. Much research effort has been devoted to enhance the fractu-
re toughness of made materials. Apart from transformation toughening (e.g.
ZrO2), whisker, platelet or ceramic fibre reinforcement (e.g. SiC/Al2O3, or
Al2O3/Al2O3) and microcrack shielding (e.g. Al2O3/ZrO2), ductile particle

1Extended version of the state-of-the-art study performed within the EU project
”Knowledge-based Multicomponent Materials for Durable and Safe Performance” (KMM-
NoE, NMP3-CT-2004-502243)
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toughening and toughening via metal infiltration into a ceramic matrix are
the most common mechanisms bringing additional toughness to ceramics. So-
me other effects contributing to the enhanced toughness of Ceramic Matrix
Composites (CMC) are crack trapping by the ductile phase and crack deflec-
tion. For example, by dispersing partly oxidized aluminium particles in a glass
matrix, a sixtyfold increase in toughness was observed. By infiltrating Ni3Al
intermetallic phase into a porous preform of Al2O3, the fracture toughness
of 9.2MPa

√
m was achieved, which is much enhanced when compared with

monolithic aluminium oxide.

As for damage in CMC, the heterogeneity of such composites leads to
diverse damage modes under thermomechanical loading. In contrast to mono-
lithic ceramics, particulate CMC may reveal different types of microcracking
such as matrix microcracking, interfacial debonding or intra-particle breakage
(Krstic, 1983). While stability and growth of a well-developed macrocrack are
treated by the fracture mechanics, the nucleation and evolution of diffuse mi-
crocracks and their effect on the material response is typically a subject of the
damage mechanics. Somewhat arbitrarily, damage models may be arranged in
two subgroups: continuum damage mechanics and micromechanical damage
models.

The Continuum Damage Mechanics (CDM) models are phenomenological
models that relate nonlinear macroscopic material behaviour to the process
of internal microcracking. A majority of the CDM models start by introdu-
cing the damage variable of either scalar, vector, or tensor type (Lemaitre and
Chaboche, 1985; Krajcinovic, 1996). Since damage is to be modeled as a pro-
cess, the damage variable has to be endowed with an evolution law. It should
be stressed that early CDM models were plagued by too many unidentifiable
constants or even led to contradictory predictions. It was a direct consequence
of ignoring the underlying micromechanisms of damage. The accomplishments
and deficiencies of phenomenological CDM models are discussed at length in
Krajcinovic (1996).

The outburst of micromechanical damage models in the past two decades
(e.g. Krajcinovic, 1996; Mura, 1987; Nemat–Nasser and Hori, 1999; Kacha-
nov, 1993; Aboudi, 1991; Basista, 2001) can, to some extent, be explained as a
search for a remedy for the shortcomings of the CDM. The attribute ”micro-
mechanical” is commonly attached to the class of models and macroresponse
of a material to its microstructure. As such, these models span two different
scales, one of which is typically inhomogeneous (microscale) while the other
(macroscale) is, for computational expedience, approximated by a homogene-
ous effective continuum. An unquestionable merit of micromechanical damage
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models resides in their ability to explain the physics of damage processes with
minimum ambiguity and arbitrariness. Constants appearing in micromechani-
cal models have clear physical interpretations. This is not to say, though, that
their numerical values can always be measured using available experimental
techniques.

2. Crack bridging models in particle reinforced CMC

In ductile particle reinforced CMC, there are several physical scenarios for
crack extension: (1) the crack may avoid the particles and propagate in the
matrix only, (2) stress concentration can induce plastic deformation of the
particles as well as partial or complete debonding at the interfaces, (3) plasti-
cally deforming particles may form a bridging zone and the crack be advancing
by failure of the stretched particles. Even a superficial perusal of the existing
literature on CMC fracture leads to the conclusion that the crack bridging
model is the most often used one when predicting the fracture toughness and
strength of CMC with particulate second phase. This model was first introdu-
ced by Krstic (1983) assuming that once the crack has reached the crack-matrix
interface it will be locally blunted and forced to circumvent the particle leaving
the crack faces pinned together by ductile ligaments at some distance behind
the advancing crack tip.

Fig. 1. Crack bridging by ductile particles

The physical mechanism of toughening is rather straightforward (Fig. 1).
The ductile particles that span the advancing crack stretch as the crack opens
until they fracture or decohere. The work of stretching contributes to the
overall toughness of the composite. On the other hand, the bridging ligaments
exert closing forces which reduce the stress intensity factor at the crack tip.
The size of the bridged zone and the amount of toughening depend on the
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fracture strength of spanning particles and the plastic deformations they may
undergo before they fail (Budiansky et al., 1988).

For the toughening by crack bridging to be effective it is necessary that
the following conditions be met:

• the elastic stiffness of the particle must be less than that of the matrix
for the crack to be attracted by the particle; otherwise the crack will
avoid the particle and grow only in the matrix

• there must be a sufficient number of particles for the toughening effect
to occur

• there must be satisfactory bonding between the matrix and the particle
to utilize the ductility of the particles in the toughening process.

As pointed out in Ashby et al. (1989), the force-displacement curve for a
bonded (constrained) particle is quite different than that for an unconstrained
material as measured in an ordinary tensile test. The degree of constraint is
an important factor affecting the amount of energy absorbed in stretching,
thus the fracture toughness. A series of experiments on glass reinforced with
lead revealed typical failure modes for ductile inclusions in the brittle matrix
as shown in Fig. 2.

In the crack bridging model the key point is to determine the bridging
traction law σ(u) relating the nominal stress supported across the bridging
ligament and the ligament stretch u. Once the σ(u) is determined, the tough-
ness enhancement may be computed as

∆Gc = f

u∗∫

0

σ(u) du (2.1)

where f is the area fraction of ductile particles intercepted by the crack, u∗ is
the crack opening at failure (σ = 0). The σ(u) function was postulated in
constant or linear form (Bannister et al., 1992; Bao and Zok, 1993) or as a
bi-linear function (Budiansky et al., 1988). In more in-depth models it was
estimated using the Bridgman plasticity solution for a cylindrically necked
bar, the slip line solution, and the finite element solution (Sigl et al., 1988).
These solutions complement each other. The finite element calculations are
restricted to early stages with small geometry changes of the particle. The
Bridgman and the slip line solutions are pertinent to the advanced stages of
the deformation process when a stretch zone in the particle is formed.

In Evans and McMeeking (1986), Mataga (1989) and Sigl et al. (1988), per-
fect bonding was assumed in analyses of plastic stretching of ductile particles
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Fig. 2. Failure modes of lead inclusions in glass matrix: (a) single void,
(b) decohesion and internal void, (c) decohesion and multiple voiding, (d) matrix
cracking (reprinted from Acta Metall., 37, Ashby M.F. et al. (1989), with permission

from Elsevier)

in a ceramic matrix. The perfect bonding imposes lateral constraints on the
inclusions prohibiting the full advantage of the particle’s ductility. In contrast,
the interaction of partial debonding with plastic stretching leads to a larger
crack opening in the bridging zone and is closer to the experimental findings
than the perfect bonding predictions. By modifying the neck geometry used by
Sigl et al. (1988), Bao and Hui (1990) proposed a coupled debonding-stretching
model on the assumption of particle incompressibility.
To appreciate the effect of debonding on the fracture toughness enhance-

ment, we shall outline the models promoted in Sigl et al. (1988) and Bao and
Hui (1990). These two models are based on the Bridgman solution making the
analyses tractable.
Consider the blunting geometry shown in Fig. 3. The objective, as set in

Sigl et al. (1988) and Bao and Hui (1990) was to find the explicit expression
σ(u) for the integrand in Eq. (2.1). The Bridgman result for the mean axial
stress in the necked region reads

σz = σf
(
1 +
2R

a

)
ln
(
1 +
a

2R

)
(2.2)

where R is the radius of neck curvature, a the neck radius, σf the uniaxial
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yield stress. According to Sigl et al. (1988), the mean axial stress σz and the
nominal stress σ in Eq. (2.1) are interrelated as follows

σ = σz
( a
a0

)2
(2.3)

with a0 being the initial particle radius. The ductile particle is assumed to
behave as a power law hardening material. Hence, the stress σ and the plastic
tensile strain ε are related as

σ

σ0
=
( ε
ε0

)n
and additionally ε = 2 ln

a0
a

(2.4)

where σ0 and ε0 are the initial yield stress and strain. If volume constancy of
the ductile particle is assumed and the matrix is allowed to undergo only rigid
displacement (no elastic deformations admitted) then it can be shown (Sigl et
al., 1988) that the volume removed from the voids (V1) may be added to the
neck (V2), where obviously V2 = V1.

Fig. 3. Neck geometry in crack bridging: (a) perfect bonding, based on Sigl et al.
(1988), (b) debonding with stretching, based on Bao and Hui (1990)

From the geometry of the angular void crack it follows that the crack
opening and the void radius are interrelated as:
— for perfect bonding

u

a0
≈ 2π

(R
a0

)2
(2.5)

— for partial debonding

u

a0
≈
(R
a0

)2(
π −
4R

3a0

)
(2.6)

Combining Eqs (2.3), (2.4) and (2.5) or (2.6), it was possible to solve the
system explicitly for σ(u) and then integrate Eq. (2.1) to get the toughness
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enhancement ∆Gc. Details of the derivation are provided in the original papers
by Sigl et al. (1988) and Bao and Hui (1990). As the comparison in Bao and
Hui (1990) shows, the effect of debonding increases the fracture toughness by
ca. 80%.

In addition to ∆Gc, other fracture parameters sought in Sigl et al. (1988),
Bao and Zok (1993), Bannister et al. (1992), Ashby et al. (1989), Mataga
(1988) included the length of the bridged zone L and the crack opening at
failure u∗. In Bao and Zok (1993), a continuous model based on the microme-
chanics of plastically deformed particles and the small-scale bridging approxi-
mation were proposed to determine the length of the bridging zone. In Sigl et
al. (1988), these parameters were verified experimentally for two different com-
posites: Al2O3/Al and WC/Co. Only the bridged zone length was reproduced
satisfactorily while the crack opening at failure and the toughness increase
were appreciably less than their experimentally measured counterparts. The
reasons for these discrepancies were attributed to inadequate modelling of the
bridging traction law σ(u).

The approximate analysis of debonding based on circular neck shapes and
the Bridgman solution for rigid-plastic materials proposed in Bao and Ui
(1990) was further advanced in Tvergaard (1992) by considering large elastic-
plastic deformations and using a cohesive zone model to represent the debon-
ding. A rather important result of the numerical analysis in Tvergaard (1992)
was that the predicted values of ∆Gc were much higher that those obtained
using the Bridgman rigid-plastic solution for the stress in the neck.

Apart from the models employing the plasticity-based bridging traction
laws, a distribution of nonlinear springs was also proposed to mimic the brid-
ging action (Budiansky et al., 1988). However, as admitted by the authors
themselves ”...the present theory seems to imply suspiciously high particle
strengths. If such strengths are not confirmed, toughening mechanisms in ad-
ditions to crack bridging may be operative in particulate-reinforced ceramics”
(Budiansky et al., 1988).

In the papers reviewed so far, the modelling of particle bridging consisted
of the following main steps: the system of discretely distributed particles was
replaced by the action of smeared forces; the crack opening constraining for-
ces were modelled via a specific bridging traction law (stress-crack opening
displacement relationship) obtained for a single particle bridge; the resulting
nonlinear integral equation was solved numerically. Additionally, it was assu-
med that the material outside the bridging zone be homogeneous and non-
deforming or linear elastic with the properties obtainable from the rule of
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mixture (matrix with lower stiffness inclusions) or using the effective media
techniques.
Rubinstein and Wang (1998) proposed a comprehensive two-dimensional

model accounting for discrete particle distribution and particle-matrix inter-
face properties. No approximation of the bridging traction law was introduced
in their model. What is also important, the interface properties were directly
incorporated into the model. The particles were assumed elastic-ideally plastic
with their volumes remaining constant during plastic deformation. The plastic
deformation was modelled using a plastic zone reminiscent of the Dugdale-
Barenblatt model. The basic methodology applied in Rubinstein and Wang
(1998) was that of the Muskhelishvili stress potentials – hence the confinement
of the analysis to a 2D case. From the stress potential, the corresponding crack
opening displacement was obtained for the bridging region. Imposing plastic
incompressibility, the shapes of bridging cross sections of initially spherical
particles were obtained. Additionally, a parabolic shape of the neck was as-
sumed. A specific dimensionless parameter A was introduced to specify the
curvature of the selected parabolic profile. The physical meaning of A is that
it characterizes the strength of the inclusion-matrix interface; A = 0 corre-
sponds to a weak, while A = 50 to a strong interface (Fig. 4).

Fig. 4. Neck deformation profiles for different values of interface strength
parameter A (reprinted from J. Mech. Phys. Solids, 46, Rubinstein A.A. and Wang

P. (1998) with permission from Elsevier)

Several interesting conclusions were drawn in Rubinstein and Wang (1998).
For example, it turned out that the fracture toughness of CMC with a weak
interface may be significantly higher that those with strong interfaces – this
effect was earlier experimentally observed by other authors. The optimal pro-
perty for the interface seems to be that of A = 0. Negative values of A
correspond to such weak interfaces that the growing crack may bypass the
reinforcing particles.
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The interaction of the bridged main crack with microcracks was studied in
Kotoul and Profant (2000) who used smeared Bridgman solution in the bridged
zone. The SIFs and the COD were estimated for the bridged crack interacting
with an arbitrarily located single microcrack. The obtained values of SIFs and
COD were further used to determine the effective fracture toughness of the
composite. When compared with the available experimental data, the obtained
theoretical results differed only by 0.5%-3.5% depending on the matrix vs.
particle stiffness.

3. Thermal crack problems in CMC

The CMC are fabricated at elevated temperatures up to 1300◦C. When co-
oled down to the ambient temperature, residual thermal stresses may develop
due to the mismatch in thermal expansion coefficients between the ceramic
matrix and the metallic reinforcement. These residual stresses are capable of
triggering crack propagation at the matrix-particle interface and are thus of
vital importance in the material design and various applications employing
CMC like engines and turbines. Metal particle reinforced CMC are promising
candidates for future high temperature applications due to superior fracture
toughness over monolithic ceramics and excellent high temperature strength
properties when compared with metal alloys.

Hsueh and Becher (1996) analyzed residual thermal stresses in CMC re-
inforced with ellipsoidal inclusions. The thermal expansion coefficient of the
ceramic matrix was assumed isotropic whereas that of the inclusion was assu-
med transversely isotropic to be closer to a real situation. The Eshelby solution
for an inhomogeneous inclusion was the starting point. However, to account
for the finite volume fraction of particles, the Mori-Tanaka method was final-
ly employed to compute stress components and the average stress inside the
inclusion and the average stress in the matrix. Closed form analytical solu-
tions were derived for specific inclusion shapes of discs, spheres and fibres,
and compared with FEM calculations performed for several engineering com-
posites like SiC whisker-reinforced Al2O3. A good agreement was noted for
the average residual stress between measured and calculated values when the
volume fraction of inclusions was less than 0.3. For higher values of f , though,
discrepancies were observed that were traced back to the interaction effects
neglected in the analysis.
The residual thermal stresses are necessary to compute the interface frac-

ture toughness. In Kolhe et al. (1996), the metal ceramic microstructure of
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a two-phase composite (Ni/Al2O3) was studied experimentally and then the
model was developed to analyze the effect of the residual thermal stress on the
interfacial cracking upon cooling from the processing to the room temperature.
The residual stresses were estimated for spherical and cylindrical inclusions as
a function of the inclusion volume fraction. Then the fracture parameters SIFs
and G were calculated as a function of the phase angle. The critical particle
size was obtained from the classical Griffith criterion. In the case of spherical
inclusions, a hydrostatic stress developed inside the inclusion and no plastic
deformation thus occurred. Once debonding has occurred, the assumption of
hydrostatic tensile stress state inside the inclusion ceased to be valid. However,
as the plastic deformation is largely constrained, the assumption of small scale
yielding remained valid in accordance with experimental observations.
The crack shielding under thermal shock was modelled in Jin and Ba-

tra (1999) as bridging of plastically stretched metal particles. A double-edge
cracked strip (Fig. 5) subjected to sudden cooling from temperature T0 to Ta
was considered in a plane strain. The thermal stress intensity factors were
sought.

Fig. 5. Edge cracks with bridge zone ∆a in infinite strip under thermal shock
∆T = T0 − Ta

When the cracks are not considered, the problem reduces to a task of the
classical nonsteady heat flow in the plane strain. The nonlinear temperature
profile within the strip induces the thermal stress in the x2 direction

σT22 =
Ecαc∆T

1− νc

[
−2

∞∑

n=1

λ−1n (−1)
n−1 cos(λnx̃) exp(−λ2nt̃)+2

∞∑

n=1

λ−2n exp(−λ
2
nt̃)
]

(3.1)
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where x̃ = x1/b, λn = π(n − 1/2), t̃ = tκc/b2; κc, αc, Ec and νc are the
conductivity, thermal expansion coefficient, Young’s modulus and Poisson’s
ratio of the composite, respectively. These quantities may be estimated using
one of the effective media techniques of micromechanics.

However, for the thermal crack problem with the bridging zone ∆a (Fig. 5),
in addition to Eq. (3.1) there is also the bridging stress σ in the x2 direction
to be included in the set of boundary conditions. Following previous works
of the Santa Barbara group (Mataga, 1989; Sigl et al., 1988), it was assumed
in Jin and Batra (1999) that the bridging traction law is of the linear form
σ = σ0(1−u/u0), where u is the COD with u0 being its maximum value when
the bridging is lost.

A singular integral equation for the thermal crack problem at hand was
derived and solved analytically in Jin and Batra (1999), making it possible
to compute the thermal stress intensity factors at the crack tip for different
values of the bridge zone size. The toughening effect of particle bridging in the
thermal shock problem was clearly demonstrated. Interestingly enough, it was
shown that for longer cracks the thermal SIF may be reduced to zero due to
the metal particle bridging – a desirable crack arrest effect.

By equating the thermal SIF with the critical value Kcr, the crack length
increase was determined for the Ni/Al2O3 composite vs. that of monolithic
Al2O3. While the crack growth in monolithic Al2O3 turned out to be unstable,
the thermal shock damage in Ni/Al2O3 proved to be significantly less.

4. Cavitation

Cavitation, or void nucleation and growth, is another fracture mechanism that
is encountered in the metal phase of the CMC. It has been a topic of consi-
derable research interest in the mechanics of solids and materials science for
more than six decades now (e.g. early papers by R. Hill on void instability
in the fortieths) due to its role as the initiator of failure mechanisms such
as crack growth, crazing and shear band development. There is a vast body
of literature on void nucleation and growth in nonlinear elastic solids (e.g.
an overview paper by Horgan and Polignone, 1995), rigid-plastic solids (e.g.
Tvergaard et al., 1992 and references contained therein), and elastic-plastic
solids (e.g. Needleman, 1987; Levy, 1995; Huang et al., 1991). The cavitation
has a detrimental effect on ductility and toughness of structural metals and
composites, including CMC.
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As for the void nucleation, in the case of irregular particles, the mecha-
nism starts with cracking of a particle. For regular equiaxed inclusions, the
mechanism of void nucleation is controlled by the inclusion-matrix interface.
Strong interfaces separate by growth of initial microdefects located at the in-
terface, while weak interfaces separate by interfacial decohesion. According
to Levy (1995), the modelling of cavity formation at particles with spherical
symmetry can be grouped according to two nucleation criteria: (1) critical
interfacial stress criterion – void nucleation is the critical event at a particle
rigidly bonded to a plastically deformed matrix, (2) energy criterion – void
nucleates when the total potential energy that would be released in creating
the void becomes comparable to the surface energy generated. These two nuc-
leation criteria should be viewed as artificial ones introduced for modelling
purposes and are not necessarily sufficient to guarantee the void nucleation.
An alternative approach is to treat the cavitation as a process starting with
initial separation of an interface and ending with complete decohesion (e.g.
Needleman, 1987). In this approach, the void nucleation appears as a natural
consequence of the interaction between the linear elastic inclusion, linear ela-
stic matrix and a nonlinear interface. The constitutive relations are specified
independently for the matrix, the inclusion, and the interface. As for the inter-
face, the Dugdale-Barenblatt cohesive zone model with account for geometry
changes was used within a purely continuum setting in Needleman (1987) and
followed later on in Levy (1995). In the constitutive equation for the interface
in Needleman (1987), the traction components were related to the interfa-
ce displacement jumps what necessitated introduction of the characteristic
length.

As for the void growth, its volumetric growth rate is proportional to the
average strain rate and increases strongly with the increasing stress triaxia-
lity. However, if the void in an elastic-plastic material is subjected to a pure
hydrostatic tension exceeding the uniaxial yield stress by several times, then
the so-called cavitation instability occurs. According to theoretical predictions,
above that critical hydrostatic stress the cavity grows without bound driven
by the elastic energy stored in the surrounding material. In the literature (cf.
Tvergaard et al., 1992), the cavitation instability has been approached in the
framework of nonlinear elasticity either as a bifurcation from a homogeneously
stressed material to a material containing a void, or as the growth of a pre-
existing void. For the known modelling advantages, the problem of spherical
particles and, geometrically analogous, the problem of a circular cylindrical vo-
id have been given the most attention by the analysts (Horgan and Polignone,
1995).
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As mentioned above, the cavitation instabilities in elastic-plastic materials
require stress levels of the order of 5 times and more above the yield limit in
the uniaxial case. Such stress levels are not found at sharp notches nor at the
tip of blunting cracks. They may be present, though, due to highly constrained
plastic flow in ductile particles in brittle matrix composites, as reported by
Ashby et al. (1989) from a series of experiments on glass reinforced with lead.
These experiments have shown several small voids growing inside a ductile
particle leading to a dimpled fracture surface (Fig. 2c) or an enormous growth
of a single void (Fig. 2a) in favour of the theoretical concept of cavitation
instability (Needleman, 1987; Huang et al., 1991). The effect of triaxiality
in surrounding materials is such that the high triaxiality promotes multiple
voiding while decaying triaxiality reduces the tendency for nucleation of other
voids (Tvergaard, 1992).
The axisymmetric cavitation states were thoroughly investigated in Hu-

ang et al. (1991) for elastic-perfectly plastic solids and for a power hardening
elastic-plastic material (Tvergaard et al., 1992) with spherical and cylindrical
voids. It was shown in Tvergaard et al. (1992) that the critical stress σc for
the spherical void instability can be evaluated from the following integral

σc
σy
= −

∞∫

0

1

e3ε/2 − 1
f(−ε) dε (4.1)

In Eq. (4.1), f(ε) is the uniaxial constitutive law for a power hardening solid
specified as follows

f(ε) =
σ

σy
=




ε/εy for elastic range

(ε/εy)
1/n for plastic range

(4.2)

where ε denotes the logarithmic strain, σ the uniaxial true stress, σy the
initial yield stress, n the hardening coefficient.
As pointed out in Zimmermann et al. (2001) and Prielipp et al. (1995), the

threshold stresses of a sufficient magnitude to trigger the void instability are
attained in the metal phase during the processing of CMC at some stage of
the cooling process. For example, for aluminium, the void instability critical
stress σc ranges from 5σy to 10σy, while the hardening exponent is 5 or
higher depending on the temperature regime (Prielipp et al., 1995). However,
void instability in Al2O3/Al was not observed, apparently due to different
boundary conditions assumed in the theoretical model (Tvergaard et al., 1992),
i.e. a sphere embedded in an infinitely extended incompressible elastic-plastic
solid under remote stress vs. a sphere embedded in a ceramic matrix under
temperature induced stress field (Zimmermann et al., 2001).
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5. Fracture in CMC with interpenetrating networks

The Interpenetrating Phase Composites (IPC), also called interpenetrating
metal ceramic networks, contain no discrete particles or fibres but consist
of completely interconnected networks of solid phases which form almost
porosity-free composites. If one of the phases were removed from IPC, the
other phase(s) would form an open-celled foam with a non-zero rigidity. For
metal ceramic IPC, the metallic phase is usually the one that is filling the cells
of a porous ceramic skeleton or preform.

Composites with interpenetrating networks of ceramic and metallic phases
constitute a new subclass of CMC which, beginning with the mid nineties,
experienced a rapid growth in terms of processing methods and tailoring of
mechanical properties. However, a rapid growth was not observed in the mo-
delling of fracture and crack growth in these materials – this particular field
seems to be still in an infancy stage.

IPC are designed to benefit from the superior properties of both con-
stituents, i.e. hardness and wear resistance of ceramics as well as fracture
toughness of metals. They are produced via different technological methods
such as: direct oxidation of metals, metal infiltration into a ceramic preform
using external pressure or without external pressure, hot pressing, reactive
metal infiltration (cf. Skirl et al., 2001). An example of a low-temperature
interpenetrating composite is Al2O3/Al whereas that of a high-temperature
is Al2O3/Ni3Al. Both composites have been extensively investigated expe-
rimentally with regard to the fracture toughness, fracture strength, elastic
moduli, and thermal expansion coefficients (e.g. Skirl et al., 2001; Hoffman et
al., 1999; Prielipp et al., 1995; Raddatz et al., 1998). For example, at 30% of
Ni3Al content, the Al2O3/Ni3Al composite manifested the strength of 675MPa
and the fracture toughness KIc = 9.2MPa

√
m which exceeds the fracture to-

ughness of monolithic Al2O3 by a factor of 4. The gas pressure infiltration
of the liquid metallic phase into a porous ceramic preforms is a commonly
used fabrication technique. The ceramic preform may form a random poro-
us network of a sintered aluminium oxide or contain hollow parallel channels
or regular grids if special processing techniques are applied (Raddatz et al.,
1998).

As for toughening processes in the interpenetrating composites, the crack
bridging mechanism plays the same central role as for the particulate CMC.
However, the very feature of IPC that each phase is spatially continuous has
not yet been properly accounted for in the modelling of crack bridging. Usu-
ally, the topologically continuous network of ductile ligaments is replaced for
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modelling purposes by discrete spherical inclusions (e.g. Hoffman et al., 1999)
or unidirectional fibres (Raddatz et al., 1998).
Generally speaking, the resistance of a composite to crack growth R(a)

can be formally decomposed as in Prielipp et al. (1995)

R(a) = R0 +
∑

i

Rµi(a) (5.1)

where R0 is the crack tip resistance, while Rµi(a) represent the toughness
enhancements due to the closure stresses σi(u) in the ligaments, and are given
by

Rµi(a) = fi

u∗
i∫

0

σi(u) du (5.2)

In Eq. (5.2), u∗ is the crack opening in the last active ligament, fi is
the volume fraction of ligaments with the closure stress σi(u). Assuming the
small-scale yielding and neglecting the bridging effect by the ceramic phase,
the fracture toughness of the composite, estimated for the crack length when
the first ductile ligament fails, can be expressed as

KR =
√
K20 +E

′
cRµ(a) (5.3)

where K0 is the fracture toughness at the crack tip and E
′
c is the plane strain

Young modulus of the composite.
The exact form of the σi(u) function in Eq. (5.2) is a sensitive point that

needs further research. In Prielipp et al. (1995), σi(u) was assumed constant up
to the maximum crack opening at which the first ligament fails. The qualitative
predictions of fracture toughness (Eqs (5.3), (5.2)) were favourably verified in
Prielipp et al. (1995) by comparison with the data measured for the Al/Al2O3
composite in function of the Al content with the average ligament diameter as
a parameter.
In Raddatz et al. (1998), aluminium was infiltrated into a ceramic Al2O3

preform containing parallel micro-channels, introduced on purpose during pro-
cessing, so that the ductile phase form a unidirectional family of parallel Al
fibres. In terms of modelling, this enabled application of the existing analyti-
cal methods (e.g. the weight function method) to compute bridging stresses
and crack opening displacements as well as prediction of the R-curves of the
composite. However, a question arises whether this is still an interpenetrating
metal ceramic composite or rather a particular type of fibre-reinforced CMC?
In conclusion, while reviewing the existing models of the interpenetrating

metal ceramic composites, several observations can be made:
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• mechanical properties such as the fracture toughness, strength, elastic
constants, thermal expansion coefficients depend not only on volume
fractions of constituent phases but also on their spatial (anisotropic)
distributions

• there is a lack of fracture models for interpenetrating composites acco-
unting for real spatial distributions of constituent phases

• conventional micromechanics methods based on the Eshelby tensor (ef-
fective media, effective field techniques) do not seem suitable for deter-
mination of effective properties since the interpenetrating phase cannot
be extracted as dispersed inclusions (Feng et al., 2003)

• the simple rule of mixture to model thermal expansion coefficients is not
applicable (Hoffman et al., 1999)

• image analysis and concept of connectivity could be used for prediction
of the effective properties (cf. excellent agreement of predicted effective
moduli with test data reported in Feng et al., 2003)

6. Damage in particulate CMC: micromechanical approach

In the modelling of damage processes, the main issue is the derivation of macro-
scopic constitutive equations and ensuing effective properties of the damaged
material. For particulate CMC, the mutual interaction of inclusions and the
microcracks is an important effect that should be accounted for in constitutive
models. The concept of an RVE is routinely used in such models, and periodic
distributions of microcracks are often assumed to simplify the analyses. The
microcracks are either assumed as traction-free, or the bridging effect of the
reinforcement particles is introduced.
The effective elastic moduli of materials containing defects have been a

topic of primary studies for several decades due to their direct relevance to
engineering problems. The effective compliance tensor S is necessary to relate
the average stress σ to the average strain ε tensor in constitutive equations for
a microcracked material – the very goal of damage models. In particulate CMC,
the situation is exacerbated by the fact that reinforcing particles may interact
with microcracks and influence the deformation and fracture processes. On
the top of that, the microcracks may interact with each other so may the
reinforcing particles.
Generally speaking, two approaches to investigate the interactions of diffe-

rent defects can be distinguished in the mechanics of heterogeneous materials:
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direct defect-defect interaction methods based on the microscale analysis of
local stress fields (e.g. Nemat-Nasser and Hori, 1999; Kachanov, 1993) and ap-
proximate effective continuum (or effective field) methods utilizing the Eshelby
solution. The effective continua/field techniques comprise the self-consistent
method, differential method, three-phase composite model, Mori-Tanaka’s the-
ory, and alike (e.g. Mura, 1987; Nemat-Nasser and Hori, 1999; Kachanov, 1993;
Aboudi, 1991).

One of the widely spread techniques to estimate the effective properties
is the Self-Consistent Method (SCM). There is quite a number of studies on
inclusions in matrix materials using the self-consistent mechanics based on the
works of R. Hill and B. Budiansky published in the mid sixties. The same can
be said on microcracks in matrix materials. However, the approaches to these
two categories of problems are quite different. For particulate CMC undergoing
matrix microcracking, the two approaches should be combined within the self-
consistent framework in order to arrive at the effective moduli. This was done
in Huang et al. (1993) for spherical inclusions and penny-shaped microcracks.
The interactions among the matrix, inclusions and the microcracks were im-
plicitly accounted for via the self-consistency requirement. Random and non-
random (parallel) microcrack distributions were considered. Several interesting
conclusions were drawn in Huang et al. (1993). For example, for stiff inclu-
sions (e.g. MMC) the effect of inclusions and microcracks can be decoupled.
It means that the effect of microcracking may be represented through multi-
plying the accordingly computed effective elastic modulus of the matrix with
inclusions by the factor (1 − 16/9ω), with ω being the Budiansky-O’Connell
microcrack density parameter. For compliant inclusions (e.g. CMC with soft
particles), this decoupling does not hold. As the volume concentration of inclu-
sions increases, the relation of Young’s modulus of the composite E versus ω
gradually deviates from linearity.

The crack bridging is an important deformation mechanism in CMC with
metal particles (cf. Section 2). In the case of multiple microcracks, the bridging
effect makes the overall stress-strain relations deviate from linearity (strain
hardening), increases the composite fracture toughness and prevents sudden
fracture in the very moment of microcracks localisation into a macrocrack.
Therefore, it is of primary importance to determine the overall moduli and
the nonlinear constitutive equations for brittle matrix composites containing
multiple bridged microcracks. This was a theme of investigations in Kariha-
loo et al. (1996) and Wang (2002) using the formalism of pseudo-tractions
(cf. Nemat-Nasser and Hori, 1999; Kachanov, 1993). Starting with a simple
volume averaging of the strain and stress fields for a damaged body, the equili-
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brium and stress boundary conditions as well as the Gauss theorem, the overall
(average) strain and stress tensors are related by the well-known expression

ε = S0 : σ+
1

2VRV E

∑

k

∫

A(k)

(n⊗[u]+[u]⊗n) dA = (S0+H) : σ = S : σ (6.1)

where S0 is the compliance tensor of the virgin matrix material, [u] is the
COD vector, n is the unit vector normal to the microcrack surface, A(k) is
the surface area of the k-th microcrack. The additional secant compliance
tensor due to microcracks H depends on the microcrack configuration and
density. For bridged microcracks, it also depends on the bridging law, and for
a nonlinear bridging law it becomes stress dependent H(σ).
The effectiveness of constitutive equation (6.1) is contingent upon our abi-

lity to compute the crack opening displacement [ui]. In Karihaloo et al. (1996)
and Wang (2002), the method of pseudo-tractions was used to derive the [ui].
For multiple bridged microcracks, the stress-consistency condition on each
crack reads

σpij(xk)−
∑

k 6=l

∫

A(k)

Kijmn(xl,xk)σ
p
mn(xk) dxk + pij(xk) = σ

0
ij (6.2)

where σpij(xk) is the pseudo-traction on the faces of the k-th microcrack,

pij(x) is the bridging stress, σ
0
ij is the homogeneous applied stress, the kernel

Kijmn(xl,xk) represents the stress at xl induced by concentrated crack surface
tractions of unit intensity at xk. Having calculated the pseudo-tractions from
Eq. (6.2), the COD can be obtained as

[ui](xk) =

∫

A(k)

Pim(xk,xl)σ
p
mn(xl)nn dAk (6.3)

where the kernel Pim(xk,xl) represents the COD at xk induced by a set of
concentrated unit loads on crack faces at xl – a standard solution availa-
ble in fracture mechanics handbooks. As for the bridging law pij([ui]), some
linear and nonlinear forms have been proposed (e.g. Karihaloo et al., 1996;
Wang, 2002). Finally, the overall compliances H are then computed from
Eq. (6.1).
The micromechanical modelling of a metal particle reinforced CMC subject

to cyclic loading was a topic in Kotoul (2001). The CMC composite consisted
of spherical elasto-plastic inclusions and an elastic matrix undergoing micro-
cracking in tensile zones around the inclusions. Using basic constitutive rela-
tion (6.1), the concept of the RVE and the modified Mori-Tanaka method, the
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overall stress-strain curves were obtained for the cyclic loading beyond the
elastic range with a non-zero mean stress (ratcheting). The experimentally
measured accumulation of the overall strain vs. number of cycles was reprodu-
ced with a reasonable accuracy. A pronounced ratcheting was predicted during
the first cycles followed by shakedown later on.
An important problem in the modelling of damage in particulate CMC is

the interaction between the inclusion and multiple microcracks. An integral
equation approach capable of handling closely packed microcracks in the vici-
nity of an inclusion was developed by Hu and coworkers in a series of papers
(Hu and Chandra, 1993; Hu et al., 1993; Hu et al., 1994). A perfect bon-
ding was assumed between the matrix and the inclusion, and crack closure
effects were neglected. In particular, the work of Hu et al. (1993) furnished
a fundamental solution for the crack tip behaviour (SIFs) that can further
be used in continuum constitutive modelling of particulate composites with
dilute concentration of inclusions and systems of matrix microcracks. The
crack-crack and crack-inclusion interactions were considered while inclusion-
inclusion interactions were neglected. Typically to many interaction problems,
the superposition technique was employed. The original problem was superim-
posed of a homogeneous subproblem and perturbed subproblems, as shown in
Fig. 6.

Fig. 6. Inclusion-microcracks interaction: superposition of sub-problems

The microcracks were represented through continuous distributions of di-
slocations. An elasticity solution for an infinitely extended matrix conta-
ining an inclusion and subject to a point dislocation was used to determi-
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ne the stresses outside the inclusion. Then, the effects of all microcracks
on the k-th microcrack were analyzed via corresponding distributions of di-
slocations. Imposing the stress-free conditions and summing up the effects
of all microcracks on the k-th microcrack, governing integral equations we-
re obtained for normal and tangential stress components. These equations
when combined with side conditions (crack tip closure condition) imposed
on the dislocation density tensor components furnished an integral equation
of the original interaction problem (Fig. 6). The dislocation distributions we-
re then found by a numerical scheme employing the Gauss-Chebychev qu-
adrature. Once the dislocation distributions were known, so were the SIFs.
It was shown in Hu and Chandra (1993) that if the matrix was subjected
to a remote loading, then microcrack-inclusion interactions would genera-
te local stress shielding (retardation) for harder inclusions and stress am-
plification for weaker inclusions. If, however, a transformation loading was
imposed on the inclusion, then stress amplifications were obtained for hard
inclusions.
The integral representation of the crack-crack and crack-inclusion problems

developed in Hu and Chandra (1993), Hu et al. (1993), Hu et al. (1994) was de-
vised for infinite bodies, simplified crack geometry, spherical voids and simple
loading conditions. Although crucial insight into the behaviour of interacting
microdefects was so gained, the simplified geometry and loading conditions
made the applicability of the obtained solutions of somewhat limited utility
in real-life situations, where complex geometries and loading modes are invo-
lved. Therefore, the next logical step in the modelling was to address this issue
using powerful computational techniques devised to handle real-life macrosca-
le problems. Such an attempt is found in Jiang et al. (1996), where a hybrid
micro-macro BEM formulation was developed capable of handling crack-crack
interactions, crack-elastic inclusion interactions as well as interactions with
boundaries of the system. The fundamental solution, necessary in the BEM,
provided an input from the microscale analysis that was incorporated into a
macroscale computational technique. This made it possible to investigate the
effects of macroscale variations in geometrical parameters and boundary con-
ditions on the microscale evolution of damage (microcrack clusters). Succinctly
stated, the microscale phenomena were captured by the fundamental solution,
while the standard BEM technique was used to link them to the macroscale
problem. This had a positive effect on the proliferation of degrees of freedom –
a common difficulty in numerical attempts to relate micro and macro features
of a problem. In the present case, a conventional BEM approach would require
simultaneous discretization of the external boundary and microscale inclusion
and cracks spanning 3-6 orders of magnitude in dimensions – a prohibitive task
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for any numerical technique. Therefore, a two-step approach was proposed in
Jiang et al. (1996). The first step dealt with microfeatures and the second
step incorporated results from the microscale into a macroscale analysis, the
augmented fundamental solution being a bridge for transition between the
two scales. In the microscale step, the superposition technique was employed.
The solution to the first subproblem of an elastic inclusion embedded in an
undamaged infinite elastic matrix subject to a point load was sought using
the Airy stress functions. For the second subproblem of multiple interacting
microcracks and the inclusion (no point load), the classical representation of
a crack as a continuous distribution of dislocations was used. The ensuing
integral equations were solved using the Gauss-Chebyshev scheme adopted
for singular equations to obtain displacement and stress fields in the second
subproblem. As a result, appropriate kernels were computed for use in the
macroscale BEM analysis. These kernels captured the microscale crack-crack
interactions as well as the crack-inclusion interactions. The proposed hybrid
micro-macro BEM approach was developed for radial microcracks in the neigh-
bourhood of an inclusion. It can be extended to handle the debonding of micro-
cracks at the particle-matrix interface. It can also be generalized by introducing
the RVE concept or a unit cell to estimate the effective material moduli for
damaged CMC.

Apart from the matrix microcracking and particle breakage, the interfa-
cial debonding is one of the frequently encountered damage modes in CMC.
When the interfacial strength of matrix-particle bonding is relatively weak
and CMC is under a triaxial tension, the debonding will become the domi-
nant damage mechanism. Under a monotonically increasing triaxial tension,
the interfacial debonding develops progressively making the composite more
compliant. The statistical distribution of interfacial strengths and the volume
fraction of particles were found to play major roles in the overall stress-strain
behaviour. A micromechanical model was proposed in Baney et al., (1996) to
describe the gradual debonding process of a two-phase brittle matrix composi-
te with aligned oblate inclusions under a triaxial tension (spherical inclusions
were considered in Tohgo and Weng, 1994). For complete debonding to hap-
pen, a triaxial tensile stress state is needed. Unlike the spherical inclusions,
a two-phase system with aligned oblate disc inclusions is axisymmetric. The-
refore, an analysis was needed to examine at what conditions the complete
debonding was attained in the oblate inclusions. As all inclusions exist stati-
stically on equal footing and yet do not debond simultaneously, a statistical
approach to the debonding process seemed both appropriate and appealing.
In Baney et al. (1996), the Weibull function was used to represent probability
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of interfacial debonding at an oblate inclusion under a triaxial stress state.
The Mori-Tanaka method was then employed to predict the overall moduli of
the composite system involving two kinds of inclusions of the same shape –
the bonded and the debonded ones. The debonded inclusions were either still-
bonded or completely debonded (voids). The resulting stress-strain curve of
the progressively debonding composite started out with that of the perfectly
bonded composite, then deviated from it to finally approach the stress-strain
curve of the porous materials (voided). The computed overall moduli revealed
loss of stiffness that was anisotropic and strongly dependent on the inclusion
thickness-to-diameter ratio.

The effect of debonded interface was studied in many ways by assuming
various interfacial conditions, e.g. continuity of the normal displacement and
tractions while allowing a jump in the tangential displacement, or by assu-
ming linear relations between the tractions and the displacement jumps at the
interface. In Yuan et al. (1997) the extent of debonding was simulated by uni-
symmetric or bi-symmetric debonding geometries. The goal was to predict the
influence of the debonded interface on the effective elastic moduli of a com-
posite. The methodology used for this purpose was that of a two-dimensional
FEM. To facilitate the analysis, a periodic rectangular geometry of the compo-
site was assumed which enabled introduction of a unit cell. Parametric studies
on the effect of debonding angle, shear moduli ratios of the matrix and rein-
forcement as well as the reinforcement volume fraction on the composite shear
moduli were performed using FEM (Yuan et al., 1997).

The Voronoi Cell Finite Element Method (VCFEM) developed by Ghosh
and co-workers was modified in Guo et al. (2003) to investigate the matrix-
inclusion interfacial debonding for particulate composites. Damage initiation
was simulated by partial debonding controlled by the critical normal stress
whereas progressive debonding was simulated with an interface remeshing me-
thod in which the critical interfacial node at the crack tip was replaced with
a pair of nodes along the separated interface. A new hybrid variational princi-
ple was derived from the element complementary energy function to account
for the interface traction reciprocity on the bonded interface and traction-free
conditions on the debonded part of the interface. The numerical calculations in
Guo et al. (2003) proved the effectiveness of VCFEM in modelling the interfa-
cial damage in two-phase composites. When compared with commercial FEM
packages like MARC and ABAQUS, good agreements of results furnished by
these packages and VCFEM were obtained. The advantage of VCFEM resides
in its capability to discretize complex microstructures. Thus, it can conside-
rably reduce the number of degrees of freedom.
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7. Damage in particulate CMC – Continuum Damage Mechanics
approach

Micromechanical damage models possess the remarkable ability of relating
the heterogeneous microstructure of a material to the macrobehaviour of a
specimen. However, for practical engineering applications, rigorous microme-
chanical analyses of inhomogeneous stress and strain fields for arbitrary 3D
microcrack patterns including kinking, forking, crack arrests, crack clustering,
etc. may turn out to be a formidable task despite continuously increasing
computer power and more efficient numerical algorithms. The presence of the
second-phase reinforcement and all sorts of interaction effects exacerbate the
situation even more. Consequently, it is not quite surprising that phenomeno-
logical damage models were not abandoned. To the contrary, phenomenological
and micromechanical models coexist in the open literature or, what is more
consequential in terms of modelling, the latter often serves as an inspiration
for the former. The research effort in the field of phenomenological damage
modelling is typical of any branch that is still under development, i.e. while
older and more established models are being implemented numerically to solve
particular initial boundary-value problems, new or improved models are still
appearing, although at much lower pace than in the seventies or the eighties.
More elaborate discussions on phenomenological damage models can be found
in Talreja (1994), Krajcinovic (1996), Kachanov (1993), Basista (2001).

The philosophy of the modelling behind the CDM is the following. By its
very nature, damage is a discrete and stochastic phenomenon induced by a
large number of interacting microdefects. An exact analysis of the behaviour
of these microdefects is a formidable task, still beyond our present computing
capabilities. Alternatively, the whole problem can be seen as a collective effect
of all microdefects on the overall material response. Therefore, the damaged
material may be treated as a fictitious continuum with microdefects uniform-
ly smeared within its volume. Consequently – and this constitutes the basic
concept of the CDM – it is conceivable that an instantaneous state of ma-
terial deterioration in every point of the body be represented, in an average
sense, by a specific field variable called the damage variable. The thus intro-
duced damage variable is nothing else but a macroscopic internal variable.
Any CDM model can, thus, be suitably formulated within the well-established
framework of irreversible thermodynamics with internal variables (e.g. Lema-
itre and Chaboche, 1985). The effect of a large number of microcracks can
be described mathematically by a single damage variable provided that the
material sample is statistically homogeneous. As for composite materials the
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Continuum Damage Mechanics methodology was extensively used by many
authors in the past. The details and abundant literature lists are provided
in a multi-authored monograph (Talreja, 1994). The chapters by Talreja and
Ladeveze therein are particularly recommended for more in-depth studies on
CDM modelling in composites.

An interesting combination of micromechanics, homogenisation and con-
tinuum damage modelling was proposed in Costanzo et al. (1996). In this
work, macroscopic thermodynamic and dissipation potentials were derived for
microscopically inhomogeneous materials such as CMC with growing sharp
matrix microcracks and debond microcracks. Even though the periodic boun-
dary conditions were the authors’ first choice to simplify the analysis, it was
shown that the growing damage violates the periodicity requirement and the
uniform strain boundary conditions were eventually used. It was further as-
sumed that each constituent of the composite RVE behaved as a generalized
standard material. Consequently, the microscopic constitutive behaviour could
be characterised by convex thermodynamic and dissipation potentials. It was
shown that the evolution of the RVE was also governed by a convex dissipa-
tion macropotential. As a consequence, the rates of internal variables could be
derived as derivatives of the macropotential with respect to the generalized
thermodynamic forces conjugate to those variables. For growing microcracks,
the existence of the macro dissipation potential and the ensuing normality rule
is assured whenever the microcrack growth (ȧ) depends on its own thermody-
namic force – the elastic energy release rate (G). This is a well-known result
derived earlier by Rice in his fundamental paper (Rice, 1971) on the internal
variable thermodynamic framework for inelastic constitutive relations.

8. Damage in interpenetrating phase composites

Similarly as for fracture processes in IPC, no specific models seem to have
targeted damage problems in these materials. After a detailed literature search,
it seems justified to say that, so far, the modelling has primarily been focused
on effective elastic properties of IPC in relation to the content and morphology
of constituent phases. To this end, finite element simulations combined with
Voigt and Reuss bounds were used to reproduce overall stress-strain curves
for a particular IPC strained in uniaxial tension and compression (Daehn et
al., 1996).
Apart from applied mechanicians, statistical physicists are also interested

in the modelling of IPC behaviour (in their nomenclature – random compo-
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sites). To this end, they often use the analogy between mechanical (Hooke’s
law) and electrical system (Ohm’s law). In Moukarzel and Duxbury (1994), a
random resistor network on a cubic lattice was used to investigate the strength
of IPC. Simulations on a random network were compared with data for a par-
ticulate composite noting an improved strength and damage tolerance for the
former. As for the bridging effect, naturally occurring in IPC, the issues invo-
lved in fracture and damage modelling of bridged cracks and microcracks do
not differ from other ceramic-metal composites except for the fact that non-
discrete geometry of IPC makes the solutions based on the Eshelby tensor not
quite suitable (Feng et al., 2003).

Having realized that available analytical models are of limited utility in
the modelling of mechanical behaviour of IPC, some authors turned to FEM
modelling as a viable alternative (Wegner and Gibson, 2000a; Wegner and
Gibson, 2000b). Two important observations have been made: (i) IPC mor-
phologies make it impossible to use 2D modelling and 3D modelling is required,
(ii) generic interpenetrating microstructure – whose properties are representa-
tive of IPC in general – does not exist. As pointed out in Wegner and Gibson
(2000a), a realistic though approximate approach is to resort to a unit cell
with appropriate boundary conditions to represent a periodically repeating
3D structure.

In FEM studies presented by Wegner and Gibson (2000a,b) an IPC was
modelled with a hexagonal array of intersecting uniformly sized spheres with
interstices filled with another phase. Both the spheres and the interstices were
elastic and individually formed interconnected networks. This particular cho-
ice of regular network geometry was, on one hand, aimed at resembling an
IPC processed by the 3D printing technology for which a body of experimen-
tal data existed. On the other hand, it was particularly suited for automatic
generation of FE meshes for an IPC with different volume fractions of the
phases. A sensitive point in this type of modelling is the selection of a unit
cell. Periodic boundary conditions were imposed on the unit cell and perfect
bond was assumed between the spheres and the other phase (matrix). In order
for the chosen microstructures to be interpenetrating, the volume fraction of
the intersecting spheres fs should be above the percolation threshold 0.74 and
less than 0.95. The FE model was implemented with the purpose to determine
the elastic modulus, the nonlinear response under uniaxial loading and the
thermal expansion. For non-interpenetrating microstructures (fs much lower
than the percolation threshold), an interesting result was obtained that the
elastic modulus of an IPC with flexible spheres was very close to the Hashin-
Shtrikman upper bound, whereas for a stiff non-interpenetrating network of
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spheres it was close to the lower bound. Simulations were also performed for
elastic-perfectly plastic interpenetrating phases.

A number of conclusions were drawn in Wegner and Gibson (2000a). Fir-
stly, the strength and thermal expansion of IPC were enhanced when compared
with those for non-IPC. Secondly, the enhancement of thermomechanical pro-
perties was achieved not so much by the dual phase contiguity but it was actu-
ally the contiguity of the phase with more desirable properties which imparted
the improved properties of the composite. Consequently, the most important
merit of IPC lies in their ability to combine several desirable properties at on-
ce, by bringing together a number of contiguous phases, each of which exhibits
one of the properties desired.

9. Suggestions for future modelling topics

Fracture

Even though a lot has been done so far in the modelling of discrete cracks
and fracture in CMC with ductile inclusions, there are still some topics that
require further research. To this end, the bridging traction law relating the
stress and the displacement in stretched ligaments requires more scrutiny.
Also, other toughening mechanisms should be looked into as the predictions
of composite toughness based on the crack bridging model are not always
satisfactory (e.g. Budiansky et al., 1988).

As for interpenetrating metal/ceramic composites, due to the fact that
the reinforcing phase can effectively transfer stresses in all directions, one of
the key issues would be the appropriate modelling of the stress transfer rela-
tion of constituent phases with specific microstructures. Statistical correlation
functions and image analysis might be of some help in this regard.

Damage.

For particulate CMC, damage models seem to be well developed both on
the micromechanical and the phenomenological level. The room for the mo-
delling is in the introducing of real-life geometries, complex loading conditions
and finite dimensions of considered bodies. Also, less modelling effort has be-
en invested so far into the damage modelling of cavitation effects in metal
particles – this gap might be worth filling up in future research.
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As for interpenetrating metal ceramic composites, there seems to exist an
acute lack of all kinds of models for fracture and damage processes mainly due
to relative immaturity of this class of composites.
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Modelowanie uszkodzenia i pękania w kompozytach o matrycy
ceramicznej – przegląd stanu wiedzy

Streszczenie

Niniejsza praca stanowi przegląd istniejących modeli pękania i uszkodzenia w kom-
pozytach o matrycy ceramicznej (CMC) pod działaniem obciążeń mechanicznych lub
termicznych. Nacisk położono na CMC z inkluzjami metalicznymi oraz na CMC typu
przenikających się faz metaliczno ceramicznych. Sytuacje, gdy druga faz ma postać
inkluzji ceramicznych, nie były analizowane. Rozdziały 2-5 dotyczą problemów pęka-
nia (wzrostu makroszczeliny), podczas gdy Rozdziały 6-9 – problemów uszkodzenia
(wpływu mikroszczelin na zachowanie się CMC). Na zakończenie pracy zapropono-
wano listę nierozwiązanych problemów oraz tematów przyszłych badań pożądanych
w zakresie pękania i uszkodzenia CMC.
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